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Introduction: Biochar and bioorganic fertilizer (BOF) application in agriculture 
has garnered increasing interest recently. However, the effects of biochar and 
BOF on rhizosphere soil microecology, especially in a region with saline-alkaline 
soil, remain largely unexplored.

Methods: In this study, we performed Illumina-based 16S rRNA sequencing to 
investigate the effects of biochar with or without BOF addition, as well as at 
different addition rates and particles sizes, on the microecology of saline-alkaline 
rhizosphere soil.

Results: In the field experiment, biochar and BOF application altered the rhizosphere 
soil microecology. Actinobacteriota, Proteobacteria, and Chloroflexi accounted 
for >60% of the total bacterial population in each treatment. In the different 
treatments, Actinobacteria and Alphaproteobacteria were the predominant classes; 
Micromonosporales and Vicinamibacterales were the dominant orders; norank_f__
Geminicoccaceae and Micromonosporaceae were the most abundant families; and 
Micromonospora and norank_f_Geminicoccaceae were the predominant genera. 
Application of biochar with or without BOF decreased soil electrical conductivity (EC) 
by 7% -11.58% only at the depth of 10 cm below the surface, again, soil EC can be 
significantly reduced by an average of 4% at 10 cm depth soil after planting Sesbania 
cannabina. Soil organic carbon, organic matter, available potassium, and available 
phosphorus contents had significant effects on the soil bacterial community structure.

Conclusion: Co-application of biochar and BOF resulted in the greatest improvement 
of rhizosphere soil microecology, either by promoting plant growth or improving the 
nutrition and physicochemical properties of soil, followed by BOF alone and biochar 
alone. Additionally, higher application rate of biochar was better than lower application 
rate, and fine biochar had a stronger effect than coarse biochar. These results provide 
guidance for the development of new saline-alkaline soil remediation strategies.
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1. Introduction

Soil salinization is a common abiotic stress that reduces the water-extraction capacity of 
roots and disrupts plant metabolism, in turn affecting crop growth and yield in agroecosystems 
on a global scale (Yang et  al., 2021). Moreover, high salinity not only affects resources, 
environment, and ecology but also hampers sustainable socioeconomic development. Therefore, 
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the salinization of soils has become a global concern, and many 
countries are actively researching the underlying causes and 
developing measures to address this problem. Yellow River Delta, 
located in the Shandong Province of China, is one of the few large 
river deltas in the world, with 620,000 hm2 of saline-alkaline land that 
has not yet been extensively developed (Zheng et al., 2020). Since this 
region is considered a unique land-based resource in Shandong, its 
restoration aimed at replenishing arable land was undertaken, leading 
to the improvement of a large portion of the saline land and its 
utilization for agricultural production, supporting both economic and 
social development. Several studies have examined the physical, 
chemical, biological, and engineering improvements resulting from 
the restoration of saline land (Saleh and Madany, 2015; Hidri et al., 
2016; Rajput et al., 2016; Zhao et al., 2018). Among them, eco-friendly 
amendments and bioremediation are highly praised for their 
sustainability, such as poultry manure, spent mushroom substrate, 
plant growth-promoting bacteria (PGPB) or along with CRISPR and 
nanotechnological approaches significantly reduced adversity stress 
by increasing the availability of nutrients, phytostimulation activities 
in plant, and enzymatic activities of the rhizospheric saline soil 
(Upadhyay and Chauhan, 2022; Upadhyay et al., 2022a; Chauhan and 
Upadhyay, 2023). Biochar and bioorganic fertilizers (BOFs) have been 
identified as effective ecological measures for improving the saline-
alkaline land (Lu et al., 2020).

Biochar is a carbon-rich byproduct derived from the burning of 
organic material such as wood, manure, or leaves, under minimal 
oxygen concentrations through a process called pyrolysis 
[International Biochar Initiative (IBI), 2015]. Because biochar exhibits 
good physical and chemical properties, has several ecological 
advantages, and is abundant and renewable, its application has drawn 
attention for agricultural production and environmental resource 
development (Hunt et al., 2010; Liu et al., 2021). Decades of research 
shows that biochar contains 40%–75% carbon and is characterized by 
a large specific surface area, rich pore structure, good aeration, low 
mass and density, and strong adsorption capacity (Abukari and 
Duwiejuah, 2019; Yang et  al., 2021). Therefore, biochar has been 
widely used as a soil amendment to improve soil fertility (Yuan et al., 
2011). Biochar has also been used in research studies for the 
remediation of saline soils, increasing plant biomass (Drake et al., 
2016), improving soil physicochemical properties (Fei et al., 2019; 
Duan et al., 2021), enhancing soil nutrient levels (Agbna et al., 2017; 
Xiao and Meng, 2020), and changing soil microbial structure (Qiao 
et al., 2020). Overall, the conversion of biowaste into biochar, as a soil 
amendment, has agronomic and environmental benefits and has 
gained considerable research interest (Qiao et al., 2020).

BOFs are processed from organic substrates, and then mixed with 
beneficial living microbes (Jena et al., 2020). Possessing the advantages 
of both traditional organic and microbial fertilizers, BOFs effectively 
promote fertilizer use efficiency (Yu et al., 2019), reduce chemical 
fertilizer application (Jena et  al., 2020), improve soil quality 
(Moraditochaee et al., 2014), increase crop yield and quality (Li et al., 
2018), and enhance crop disease and stress resistance (Tao et  al., 
2020). BOFs function by inducing the rapid reproduction of functional 
bacteria that optimize soil microbial population structure (Jia et al., 
2010), enhance soil enzyme activity (Zhao et al., 2016), activate soil 
nutrients (Gao et al., 2020), improve root vitality (Bhardwaj et al., 
2014), and promote root absorption and the use of nutrient elements 
(Jena et al., 2020). Thus, BOFs are critical for the development of green 

organic agriculture, and have become a focus of related disciplines 
worldwide (Nisar et al., 2021). In addition, BOFs have been shown to 
improve the structural properties and microecological environment 
of saline-alkaline land (Hafez et al., 2021a) and to enhance the nutrient 
buffering capacity of soil to prevent salt build-up (Lu et al., 2020), thus 
serving as an effective tool for the remediation of saline soils (Hafez 
et al., 2021b). However, few studies have evaluated the combined use 
of BOFs and biochar for the reclamation of saline-alkaline land.

Salt stress affects all the major processes of plant such as 
germination, growth, photosynthetic pigments and photosynthesis, 
water relation, nutrient imbalance, oxidative stress, and yield by 
causing osmotic and ionic stress (Chauhan P. K. et al., 2022). Some of 
the plants have the ability to grow under salinity due to the presence of 
different mechanisms in them for salt tolerance, such plants are known 
as salt resisting plants, salt tolerating plants or halophytes (Aslam, 
2011). Sesbania cannabina is highly adaptable to adverse environmental 
conditions, such as salinity, drought, and waterlogging (Ren et al., 
2016). Therefore, being a pioneer plant that decreases soil salt content 
(Li et  al., 2016), there are several studies involved in the excellent 
performance of S. cannabina in soil fertility improvement and salinity 
reduction (Ren et al., 2018; Zheng et al., 2018). In this study, we used 
S. cannabina to examine the effect of biochar and BOF on plant growth, 
soil physicochemical properties, and soil bacterial community 
structure in saline-alkaline soil and to explore the feasibility of using 
these components for soil improvement. We  hypothesize that the 
combined application of biochar with BOF can more significantly 
improve soil nutrients levels within salt-alkali soil than the single 
application of biochar or BOF and that the combined application can 
significantly impact the soil microbial community compositions. 
Therefore, this study aims to (i) evaluate the effectiveness of combining 
biochar with BOF of different particle sizes or amounts in improving 
saline alkali soil. (ii) Determine the characteristics of microbial 
community diversity changes after different treatments.

2. Materials and methods

2.1. Biochar and BOF

BOF was produced by Yangfeng Agricultural Technology Co., Ltd. 
(Weifang, China), with mushroom residue, humic acid, soybean meal 
and corn residue as the main substrates, along with supplements 
including three Bacillus species (B. subtilis, B. licheniformis, and 
B. mucilaginous), with effective bacteria ≥ 500 million/g, OM ≥ 60%, 
and nitrogen, phosphorus, and potassium content ≥6%–8%. Biochar 
was produced by Taiyu Bioengineering Co., Ltd. (Qixia, China), using 
pyrolytic reactor to char the apple stems under 450°C for 24 h. The 
sample was then milled and passed through 10, 30, and 60 mesh 
sieves, obtaining samples with pH of 7.49, 7.36, and 7.45, respectively, 
and electrical conductivity (EC) of 0.357, 0.355, and 0.349 mS/cm, 
respectively. The larger meshed samples contained the smaller 
mesh sample.

2.2. Field experiments

Field experiments were conducted at the Institute of Modern 
Agriculture on the Yellow River Delta, Shandong Academy of 
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Agricultural Sciences (118.37°N, 37.17°E), Dongying, China. The 
experimental plot used for this experiment is a saline-alkaline 
wasteland with silty clay soil (Zheng et al., 2018). Except CB1_BOF 
and FB1_BOF, which were applied at the rate of 100 t/ha, other biochar 
and BOF treatments were applied at rates of 150 t/ha, such as CK 
(control; neither biochar nor BOF), CB (10 mesh biochar), FB (30 
mesh biochar), BOF, and CB1_BOF (10 mesh biochar + BOF), CB2_
BOF (10 mesh biochar + BOF), FB1_BOF (30 mesh biochar + BOF), 
FB2_BOF (30 mesh biochar + BOF). The biochar and BOF were 
scattered over the soil surface and tilled to a depth of approximately 
0–20 cm by raking in November, the field treatment was performed in 
triplicate by a random block design, with plot in sizes of 4 m × 8 m. Soil 
was sampled from each plot in March before planting S. cannabina. 
The S. cannabina were sowed in the field in April, and no field 
management practices were performed, except watering. Plant height 
was measured in August, and rhizosphere soil was collected in June 
and August. The plant root system was shaken to remove excess soil, 
and only the tightly adhering soil was used for analysis. The 
rhizosphere soils of three plants were sampled from a depth of 
0–20 cm in each treatment, and the three soils samples per treatment 
were pooled together, mixed thoroughly, and cleaned to remove 
impurities. Then, each pooled sample was divided into two sections: 
one of that was immediately packaged with dry ice after liquid 
nitrogen quick freezing, and sent to MajorBio for high-throughput 
sequencing, while the other part was air-dried, homogenized, and 
sieve through a sieve with an aperture of less than 2 mm to remove any 
remaining impurities, and used for the measurement of soil 
physicochemical properties. Biological replicate was conducted 
in triplicate.

2.3. Analysis of soil physicochemical 
properties

Soil pH was determined using a Magnetic Multi-parameter Water 
Quality Analyzer (DZS-708; Shanghai Lei). The volumetric weight 
(VW) of soil samples was determined by the ring knife method (Li 
et al., 2019). The electrical conductivity (EC) of soil was measured at 
a depth of 10 cm using the FieldScout EC450 meter. The detection 
methods of the other nutrients were shown in Supplementary Table S1.

2.4. Soil microbial community analysis

Genomic DNA was extracted from the rhizosphere soil samples 
with the E.Z.N.A.® soil DNA Kit (Omega Bio-Tek, Norcross, GA, 
United States), and the quality of the extracted DNA was checked by 
NanoDrop 2000 UV–Vis spectrophotometer. The bacterial universal 
V3–V4 region of the 16S rRNA gene was amplified by polymerase 
chain reaction (PCR) using primers 338F (5′-ACTCCTACGGGA 
GGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTATCTAAT-3′; 
see Supplementary Table S1 for the DNA metabarcoding details). The 
PCR products were quantified using Quantus™ Fluorometer 
(Promega Corporation, Madison, United States) after purification. The 
purified amplicons were mixed in equimolar amounts, and sequenced 
by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China) on the 
Illumina MiSeq PE300 platform (Illumina Inc., San Diego, CA, 
United States). More details on the DNA metabarcoding molecular 

analyses can be found in Supplementary Table S1. All sequences have 
been deposited in the NCBI SRA database under accession number 
SRA data: PRJNA884485.

2.5. Data analysis

Calculations were performed using Microsoft Excel, and statistical 
analyses were performed using the DPS Statistics 18.10 software.1 All 
analyses were conducted on the Majorbio Cloud Platform2; for 
instance, α-diversity was calculated using the Mothur software 
(v.1.30.2); rarefaction curves were generated using Mothur at a 97% 
identity level; Venn and bar diagrams were generated with R script 
(v.3.3.1); and Circos plot was visualized using Circos-0.67-7.3 Beta 
diversities were visualized using principal coordinate analysis (PCoA), 
based on the distance matrix, with bray_curtis. Redundancy analysis 
(RDA) was conducted using R (version 3.3.1) rda analysis, and 
graphed using the vegan package. Finally, network analysis was 
performed using the Networkx software. Data are presented as 
mean ± standard error followed by Duncan’s multiple range test, and 
differences among the means of different treatments were determined 
at p < 0.05.

3. Results

3.1. Biochar- and BOF-induced changes in 
soil physicochemical and plant properties

The effects of biochar and BOF application on the physical and 
chemical properties of soil are summarized in Table  1. All the 
physicochemical properties of soil, except pH, were significantly 
increased by the biochar and BOF treatments. Except BOF, all 
treatments significantly reduced the VW and increased the TN of soil 
compared with the CK. All treatments, except FB and BOF, 
significantly increased the soil AN content compared with the 
CK. Compared with the CK, the CB treatment significantly reduced 
the AP, while the other treatments significantly increased the AP 
content of soil. The AK content of all plots receiving BOF (FB1_BOF, 
FB2_BOF, CB1_BOF, and CB2_BOF) was significantly higher than 
that of plots not treated with BOF (FB, CB, and CK). Among all 
treatments, CB2_BOF and FB2_BOF showed the highest AK level. 
Compared with CK, all treatments significantly increased the soil OC 
and OM contents, and significantly promoted crop growth (p < 0.05); 
FB2_BOF caused the greatest increase in plant height (from 123.00 to 
154.00 cm; Supplementary Figure S1).

Biochar and BOF induced significant changes in soil EC (Figure 1). 
All treatments significantly decreased the EC by 7%–11.58%, 
regardless of whether biochar and BOF were applied alone or in 
combination, however, no significant difference was observed among 
treatments, moreover, this reduction was only observed at 10 cm 
depth, and no significant difference was detected among CK and 
treatments at 20 or 30 cm depth. Again, compared to before planting, 

1 http://www.dpsw.cn

2 www.majorbio.com

3 http://circos.ca/

https://doi.org/10.3389/fmicb.2023.1190716
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://www.dpsw.cn
http://www.majorbio.com
http://circos.ca/


Gu et al. 10.3389/fmicb.2023.1190716

Frontiers in Microbiology 04 frontiersin.org

soil EC can be significantly reduced by an average of 4% after planting 
at 10 cm depth, but not at 20 cm or 30 cm depth. In addition, soil EC 
at 10 cm depth was significantly lower than that of 20 cm, and 20 cm 
depth was significantly lower than that of 30 cm depth.

3.2. Sequence data and bacterial 
composition

After filtering out low-quality reads, a total of 1,387,916 high-
quality reads were obtained. The total number of bases was 

576,080,099, and the average read length was 415.13 bp. Rarefaction 
curves tended to approach the saturation plateau in all 24 samples 
(Supplementary Figure S2), combined with the richness and diversity 
indices (Supplementary Table S2), suggesting that the data were 
sufficiently large to capture most of the bacterial diversity in the 
samples. The number of OTUs was highest in the FB treatment and 
lowest in the CB1_BOF treatment.

The number of common and unique bacterial OTUs in the 
different samples is shown in Figure 2. Treatments receiving biochar 
of different particle sizes shared 3,263 of the total 5,535 OTUs 
(Figure 2A), and those receiving biochar at different application rates 

TABLE 1 Effect of biochar and BOF on the physical and chemical properties of soil.

CK CB FB BOF CB1-BOF CB2-BOF FB1-BOF FB2-BOF

VW 1.61 ± 0.04a 1.45 ± 0.05b 1.4 ± 0.03b 1.6 ± 0.01a 1.44 ± 0.01b 1.38 ± 0.03b 1.39 ± 0.01b 1.42 ± 0.02b

pH 8 ± 0.15a 7.94 ± 0.15a 7.96 ± 0.14a 7.97 ± 0.13a 7.96 ± 0.08a 7.97 ± 0.09a 7.97 ± 0.12a 7.96 ± 0.1a

TN 1.37 ± 0.04e 1.7 ± 0.05d 1.72 ± 0.05d 1.32 ± 0.03e 1.95 ± 0.11c 1.83 ± 0.13 cd 2.27 ± 0.1b 3.27 ± 0.12a

AN 71.6 ± 4.25e 83.07 ± 5.16d 71.41 ± 3.4e 70.56 ± 2.91e 77.56 ± 6.33de 103.5 ± 7.31c 116.96 ± 6.75b 133.81 ± 7.63a

AP 4.52 ± 0.17 g 2.87 ± 0.11 h 5.86 ± 0.21f 8.19 ± 0.35e 16.29 ± 1.08d 20.37 ± 0.64b 17.66 ± 0.56c 21.5 ± 1.23a

AK 270.68 ± 16.46d 277.6 ± 15.2d 280.31 ± 14.11d 459.75 ± 19.38c 535.12 ± 25.77b 582.57 ± 26.51a 488.53 ± 21.63c 576.98 ± 24.6a

OC 8.77 ± 0.37 g 13.37 ± 0.73e 12.51 ± 0.83ef 11.11 ± 0.78f 16.03 ± 1.26d 18.31 ± 1.45c 25.58 ± 1.74b 30.14 ± 2.34a

OM 15.46 ± 1.23 g 22.71 ± 0.91e 21.24 ± 1.57ef 18.82 ± 0.91f 26.64 ± 2.89d 31.23 ± 2.21c 43.09 ± 2.88b 50.95 ± 3.15a

Data represent mean ± standard deviation (SD) of three biological replicates. Different lowercase letters within a row indicate significant differences (P < 0.05).

FIGURE 1

Effect of biochar and BOF on soil EC. (A) Comparison of soil conductivity at different depths. (B) Comparison of conductivity among different 
treatments. (C) Comparison of conductivity in different periods. CK, soil without amendment; CB, soil amended with 10 mesh biochar; FB, soil 
amended with 30 mesh biochar; BOF, soil amended with BOF; CB1_BOF (100 t ha−1 10 mesh biochar + BOF), CB2_BOF (150 t ha−1 10 mesh biochar + 
BOF), FB1_BOF (100 t ha−1 30 mesh biochar + BOF), FB2_BOF (150 t ha−1 30 mesh biochar + BOF); Error bars represent the standard error of mean (n = 3). 
Different lowercase letters indicate significant differences among treatments (p < 0.05).
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shared 4,063 of the total 6,348 OTUs (Figure 2B). A total of 7,925 
OTUs were detected across all libraries, with 4,007 OTUs common to 
different plant growth periods (Figure 2C), with the higher number of 
unique OTUs obtained in the CK (921). In addition, in the comparison 
of two groups of different particle sizes of biochar, the CK groups, 
biochar only, BOF only, and biochar + BOF treatments showed a 
similar trend, with the biochar + BOF treatment harboring the highest 
and CK possessing the lowest number of unique OTUs, regardless of 
the particle size, and shared 2,333 (CB) and 2,302 (FB) OTUs, 
respectively (Figures 2D,E). Additionally, all treatments shared 1,856 
OTUs, with the BOF treatment containing the highest number of 
unique OTUs (Figure 2F).

3.3. Taxonomic analysis of soil microbiota

The 7,925 OTUs were classified into 45 phyla, 139 classes, 339 
orders, 580 families, 1,154 genera, and 2,360 species. High-throughput 
sequencing revealed the diversity of bacterial communities in different 
samples at the phylum level (Figure  3). Actinobacteriota and 

Proteobacteria were the most dominant bacterial phyla, accounting 
for more than 40% of the bacterial population in each sample, followed 
by Chloroflexi and Acidobacteriota. Proteobacteria was the 
predominant phylum in FB, CB1_BOF, and FB2_BOF treatments, 
while Actinobacteriota was the predominant phylum in all other 
treatments. Compared with CK, the relative abundance of 
Proteobacteria and Bacteroidota, two of the top 10 phyla, increased in 
the biochar + BOF treatment; and Myxococcota, Gemmatimonadota, 
Firmicutes, Bacteroidota, and Methylomirabilota increased in the 
biochar only treatment; and Chloroflexi Acidobacteriota, 
Gemmatimonadota, Firmicutes, Methylomirabilota, and 
Planctomycetota increased in the BOF only treatment.

Actinobacteria was the predominant class in CB2_BOF and FB1_
BOF, while Alphaproteobacteria was the dominant class in the other 
treatments. Micromonosporales occupied the top of the relative 
abundance list of the order in CB2_BOF and FB1_BOF; 
Vicinamibacterales was the predominant order in CB and BOF, and 
Tistrellales was the most abundant order in the other treatments. 
Micromonosporaceae was the most abundant family in CB2_BOF and 
FB1_BOF, while norank_f__Geminicoccaceae was the most abundant 

FIGURE 2

Venn diagrams showing the number of OTUs identified in different treatments. (A) Grouping by particle size of biochar. (B) Grouping by different 
biochar rate. (C) Grouping by different plant stage. (D) Grouping by coarse biochar and BOF. (E) Grouping by fine biochar and BOF. (F) Grouping by all 
treatments.
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family in the other treatments; similarity, Micromonospora was the 
most abundant genus in CB2_BOF and FB1_BOF, and norank_f_
Geminicoccaceae was the predominant genus in the other treatments 
(Supplementary Table S3).

Significantly different taxa showed high abundance in the different 
treatments, as determined by Linear discriminant analysis Effect Size 
(LEfSe; Figure  4). In CK, only norank_f__Micromonosporaceae was 
enriched at the genus level. On the contrary, in BOF, 1 phylum, 8 classes, 
13 orders, 13 families, and 13 genera were enriched, namely, 
Acidobacteriota (from phylum to genus); MB-A2-108, Gitt-GS-136, 
Dehalococcoidia, KD4-96, and S0134_terrestrial_group (from class to 
genus); Thermomicrobiales (from order to genus). In addition, in CB, 
one phylum, two classes, two orders, two families, and two genera were 
enriched, namely, Planctomycetota (from phylum to genus) and 
Subgroup_21 (from class to genus). In FB, three orders, four families, and 
five genera were enriched, including Paenibacillales and Streptomycetales 
(from order to genus), Ardenticatenales (enriched only at the order 
level), Methyloligellaceae and Phycisphaeraceae (enriched only at the 
family level), and MND1 (enriched only at the genus level). In CB1_BOF, 
only Chitinophagales (at the order level) and Chitinophagaceae (at the 
family level) were enriched. In CB2_BOF, two families and two genera 
were enriched, including Pseudomonadales (from family to genus), 
Pseudohongiellaceae (at the family level), and Anaerosporobacter (at the 
genus level). In FB1_BOF, one class, three families, and three genera were 
enriched, including Xanthobacteraceae (from family to genus), 
Bacteroidia (at the class level), Thermomonosporaceae and 
Rhodanobacteraceae (at the family level), and unclassified_f__
Micromonosporaceae and Ohtaekwangia (at the genus level). In FB2_
BOF, only Negativicutes (at the class level) and Sphingoaurantiacus (at 
the genus level) were enriched. These differentially abundant taxa could 
be considered as potential biomarkers (LDA > 3, p < 0.05).

3.4. β-Diversity analysis

PCoA was conducted to further identify the microbial populations 
associated with biochar and BOF (Figure 5). This analysis revealed the 

main variations in bacterial community composition and abundance 
among the treatments. The biochar + BOF treatments showed a lower 
PC1 value (40.14%), while the BOF treatments showed a lower PC2 
value (9.78%; p = 0.001). In addition, the treatments with different 
biochar contents and particle sizes clustered together separately, 
indicating that both biochar content and particle size affected the 
microbial community structure, while the biochar only treatment was 
closer to CK. PCoA analysis revealed that the BOF treatment had the 
greatest effect on bacterial community structure, followed by biochar 
content and particle size.

3.5. Relationship between environmental 
parameters and microbial communities

The RDA results revealed the relationship of bacterial community 
composition with AP, AN, TN, AK, OC, and OM (Figure 6). The first 
axis accounted for 40.39% of the overall variation in microbial 
community composition, while the second axis accounted for only 
4.02%. RDA showed that the bacterial community structure in biochar 
+ BOF treatments was positively correlated with AP, AK, OC, and OM.

3.6. Network structure

A bipartite association network was used to visualize the 
associations among treatments at the order level (Figure 7). Compared 
with the CK, which contained only unique orders, the FB, BOF, and 
FB2_BOF treatments harbored a greater number of unique orders, on 
the basis of 220 shared orders. FB and FB2_BOF shared nine unique 
orders, which was the highest number of orders among two-way 
interactions, however, no order was shared between CK and FB. In 
addition, CK, FB, and BOF shared 13 orders, which was the highest 
number of orders among three-way interactions.

Correlation network analysis was conducted to explore the 
complexity of the interactions among the communities in different 
treatments and environmental parameters and to assess their 

FIGURE 3

Relative abundance of bacteria at the phylum level in each sample.
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topological properties (Figure 8). The complexity of CB2_BOF-FB2_
BOF was greater than those of CB-FB and CB1_BOF-FB1_BOF, 
indicating that both the addition of BOF and higher application rate 
of biochar increased the complexity of the correlation between 
microorganisms and soil environmental factors. The average number 
of connections per node was higher following the CB2_BOF-FB2_
BOF treatment (node average degree = 2.1) than after the CB-FB 
(node average degree = 2) or CB1_BOF-FB1_BOF (node average 
degree = 1.5) treatment (Supplementary Table S4). CB2_BOF-FB2_
BOF treatment also resulted in a higher number of positive 
correlations (positive edges = 27) than CB-FB (positive edges = 16) or 
CB1_BOF-FB1_BOF (positive edges = 6). Nodes with the highest 
connections between environmental parameters and bacteria were AP 
(6) and Blastococcus (3) in CB-FB, respectively; AK (3) and 
unclassified_f__Micromonosporaceae (4) in CB1_BOF-FB1_BOF, 
respectively; AP (15) and Iamia (4) in CB2_BOF-FB2_BOF, 
respectively.

4. Discussion

Biochar (Xie et al., 2015), inorganic fertilizer (Chen et al., 
2021), organic fertilizer (Moraditochaee et al., 2014; Gao et al., 

2020), microbial fertilizer (García-Fraile et al., 2015; Milton et al., 
2020), and BOF (Jena et al., 2020) improve soil physicochemical 
properties and enhance plant growth. Especially microbial 
fertilizer, which is considered to be one of the most promising 
means to improve the productivity of the crop in an environment-
friendly manner. Microbes present in microbial fertilizers play a 
pivotal role in optimizing various activities like organic matter 
decomposition, plant nutrient absorption such as that of 
potassium, nitrogen, phosphorous in plants (Milton et al., 2020; 
Chauhan S. et al., 2022; Rani et al., 2022; Upadhyay et al., 2022b). 
Several studies have shown that the co-application of biochar and 
other fertilizers is better than the application of biochar or 
fertilizer alone (Naeem et al., 2017; Li et al., 2018; Cui et al., 2020; 
Bai et  al., 2022). However, fewer studies performed field 
experiments to investigate the reclamation of saline-alkaline land 
through the co-application of biochar and BOFs. Our results 
demonstrate that the combined application of biochar and BOF 
is more effective than the application of either biochar or BOF 
alone for enhancing plant growth and soil physicochemical 
properties, and the BOF only treatment is superior to the biochar 
only treatment. Several factors may be  responsible for these 
results. First, the enhancement of soil properties is partly 
dependent on the nutrient supply from biochar and BOF 

FIGURE 4

LEfSe and LDA. (A) LEfSe. (B) LDA.
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(Agegnehu et al., 2017). Second, biochar has a porous structure 
and is therefore able to store and control the subsequent slow-
release of nutrients, which improves soil fertility, aggregation, 

and water storage capacity, increases nutrient contents, and 
decreases nutrient leaching (El-Naggar et al., 2019). Third, the 
functions of BOF and biochar were amplified when applied 

FIGURE 5

PCoA of the relationship among treatments, based on the similarity in bacterial community composition The first two components (PCoA1 and PCoA2) 
account for 49.92% of the variation in bacterial community composition.

FIGURE 6

RDA of the relationship between soil characteristics and soil bacterial community. The first two components (PCoA1 and PCoA2) account for 44.41% of 
the variation in bacterial community composition.
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together, probably because BOF increased the diversity of 
beneficial microorganisms, while biochar provided a better living 
environment for microorganisms owing to its porous nature (Cui 
et al., 2021). Therefore, compared with the application of either 
biochar or BOF, the co-application of biochar and BOF promotes 

microbial activity and improves soil physicochemical properties, 
in turn enhancing plant growth.

The effect of biochar application rates on crop yield varies 
considerably, with some application rates even having a negative 
effect (Biederman and Harpole, 2013; Chen et  al., 2018). In 

FIGURE 7

Co-occurrence network analysis of microbial communities.

FIGURE 8

Correlation network analysis of environmental parameters and microbial communities (A) CB-FB. (B) CB1_BOF-FB1_BO F. (C) CB2_BOF-FB2_BOF.
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general, increasing biochar application rate increases crop yield; 
for example, an application rate of >30 t ha−1 was better than that 
of <30 t ha−1 (Bai et  al., 2022). Yao et  al. (2017) reported an 
increase in the soil OM and OC contents after the application of 
maize stalk-derived biochar at rates of 50, 100, and 200 Mg ha−1. 
Cui et  al. and Zheng et  al. also proved that 3%–5% biochar 
application enhanced the S. cannabina height and biomass 
(Zheng et al., 2018; Cui et al., 2021). Our results were consistent 
with the above reports. Higher application rates lead to increased 
costs, but the cost can be reduced by applying the amendment 
around the root zone of the plant. Soil salinity, and the associated 
soil compaction and low fertility, is a major problem for land 
management in the coastal zone (Xiao and Meng, 2020). In the 
current study, the soil was silty clay and was heavily compacted, 
leading to low aeration and water permeability of the surface soil, 
which directly inhibits the growth of plant roots and the 
absorption of nutrients. Therefore, the addition of porous biochar 
greatly improved the soil structure, increased soil permeability, 
and reduced soil VW, which was consistent with Xiao and Meng 
(2020) and Gu et al. (2022). Moreover, the improved soil porosity 
by biochar addition due to the abundant pores in the biochar, 
beneficial for air and water infiltration could be  one of the 
reasons responsible for the enhanced plant growth (Zheng et al., 
2018). In the current study, the application of biochar alone or 
together with BOF significantly reduced the soil VW, while the 
application of BOF alone did not have this effect. This is 
undoubtedly due to the porous structure of biochar, which makes 
biochar an excellent conditioner for compacted soil. Additionally, 
the biochar particle size and application rate in this study had no 
significant effect on soil VW among different treatments, this 
may be due to the fact that the rate and particle size of biochar 
used in this study did not reach a point where there was a 
significant difference.

Although the particle size of biochar is an important factor 
affecting soil characteristics and functions (Anders et al., 2013; 
Xie et al., 2015; Liao and Thomas, 2019), few studies have been 
conducted on this topic. In the current study, finer particle size 
and higher application rate of biochar showed the best results 
when applied together with BOF, but application of finer particle-
size biochar alone only improved soil AP content, confirming 
that biochar with fine particle significantly increased the release 
of P (Sarfraz et al., 2020). The particle size of biochar affects soil 
water storage by changing the pore space between particles 
(interpores) and by adding pores that are part of the biochar 
(intrapores; Liu et al., 2017). Thus, finer particle-size biochar has 
larger interpores and intrapores, providing more area for 
nutrients and microbial populations, thus amplifying the function 
of BOF. In addition, fine particles of biochar can be more readily 
degraded by microbes than coarse particles (Chen et al., 2017). 
Therefore, finer biochar together with BOF improve the physical 
and chemical properties of soil and promote plant growth. 
Nonetheless, different plant species respond slightly differently 
to biochar particle size (Kartika et al., 2018). Therefore, intensive 
studies are needed to explore the appropriate biochar particle size 
for each plant species in saline-alkaline soil for a more 
comprehensive understanding.

Biochar has a strong influence on soil salinity (Saifullah Dahlawi 
et al., 2018). For instance, in a pot experiment conducted for 3 years 

using rice plants, the application of biochar decreased the value of soil 
EC by 28.96% (Huang et al., 2022). Yue et al. (2016) demonstrated 
that biochar can also improve the leaching of soluble salts to decrease 
soil EC. However, biochar application at high rates has been shown 
to increase salinity and/or sodicity (Zheng et al., 2018). In the current 
study performed using S. cannabina, the application of biochar with 
or without BOF significantly reduced the EC of saline-alkaline soil at 
10-cm depth, regardless of its particle size or application rate; 
however, no effect on soil EC was observed at 20-cm or greater depth. 
Biochar alleviates salt stress by modifying soil properties and 
regulating soil bacterial abundance and community structure (Huang 
et al., 2022). Similarly, salt-tolerant plant cultivation and fertilizer 
application have also been claimed to decrease salt stress and improve 
plant yield in saline soils (Qadir et al., 2007). Sesbania cannabina is 
well-adapted to salinity stress (Ren et al., 2016), and therefore can 
significantly reduce EC after plantation. The same effect can 
be achieved by supplementation with biochar and BOF, based on the 
above reasons, although no significant differences were detected 
among treatments. The reason why a significant reduction in EC was 
observed at only a depth of 10 cm below the surface, and not at 
greater depths, was probably because the capillary roots and nodules 
of S. cannabina roots were mainly distributed in the soil above 10 cm. 
This is consistent with the study of Ma et al. (2012), who reported that 
the maximum reduction in soluble salt and sodium in saline soil 
occurs at a depth of 15–20 cm below the surface, where the fibrous 
root system of hybrid giant Napier grass was the most dense. This can 
be explained based on the fibrous root system of plants, which forms 
micro/macro pores in the soil, improving the hydraulic conductivity 
of the soil and increasing water availability for plant growth. In 
addition, the distribution of fibrous roots in the soil promotes the 
adsorption, transport, and biometabolism of ionic substances, 
leading to nutrient accumulation and soluble salt uptake.

Accumulating evidence suggests that biochar and BOF affect soil 
microorganisms, which play vital roles in the utilization of soil 
nutrients, suppression of pests and diseases, and promotion of plant 
growth (Qiu et al., 2019; Jena et al., 2020; Alkharabsheh et al., 2021). 
Compared with the CK, the unique OTUs identified after planting 
S. chinensis were less (Figure  2C), and all biochar treatments, 
regardless of the particle size, application rate, and the presence or 
absence of BOF, harbored more unique OTUs (Figures  2D,E), 
indicating that biochar and BOF induce great changes in soil 
microbiota. Actinobacteriota, Proteobacteria, and Chloroflexi 
accounted for 63–77% of all sequences in the soil samples. However, 
the relative abundance of these phyla varied among the different 
treatments, which was partly consistent with Huang et al. (2022). 
Awasthi et al. (2017) reported that Proteobacteria play an important 
role in OM degradation, which is related to the carbon cycle. 
Actinobacteria are reportedly associated with the degradation of 
recalcitrant polymers, and are thus considered important for the 
turnover of soil OM (Zhou et al., 2018). Acidobacteria and Chloroflexi 
are oligotrophic bacteria that can survive in low-nutrient soil, whereas 
Proteobacteria prefer nutrient-rich soil (Huang et al., 2022). This may 
explain why the relative abundance of Proteobacteria in four biochar 
+ BOF treatments conducted in this study was higher than their 
abundance in the CK. However, the relative abundance of Chloroflexi 
was lower in the other treatments than in the CK. This is consistent 
with the results of RDA, which showed that relative bacterial 
abundance was positively correlated with AK, AP, OC, and OM 
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following the co-application of biochar and BOF; this is partly 
consistent with previous studies (Gao et al., 2020; Ren et al., 2020).

Bacillus species are commercially marketed as biopesticides, 
biofertilizers, and soil amendments (Cao et al., 2011). It is worth 
noting that the abundance of Bacillus species in the rhizosphere soil 
did not increase after the application of Bacillus compound 
biofertilizer (Gu et al., 2022; Zhu et al., 2022). In the current study, 
Bacillus also did not flourish with the application of BOF, as expected. 
This may be owing to the competitive relationship between Bacillus 
and other bacteria in saline-alkali soil. In this study, Bacillus was 
positively correlated with TN and AN, and negatively correlated with 
AP. Iamia, which belongs to the Actinobacteriota phylum, produces 
antibiotics to help plants resist pathogen infection (Jin et al., 2016; Liu 
et al., 2016; Zhang H. Q. et al., 2022). Wang et al. (2021) reported that 
SOM, AP, and AK were positively correlated with Iamia. In the 
current study, the relative abundance of Iamia was positively 
correlated with OC, OM, TN, and AN, which is partly consistent with 
the results of Wang et al. (2021). The relative abundance of Iamia was 
significantly higher in 0.6% and 1.2% biochar treatments than in the 
no biochar treatment (He et  al., 2021). Additionally, the relative 
abundance of Iamia was higher in biochar treatments than in the 
CK. In addition, Iamia was demonstrated that indirectly positively 
correlated with OM, TN, and AN (Chen et al., 2012; Xu et al., 2018). 
Xanthobacteraceae is closely involved in P solubilization and N 
fixation (Zhang et al., 2021), exhibits an associative relationship with 
microbial N (Obermeier et al., 2020), and can fix N (Lee et al., 2005; 
Yang et al., 2021). However, in the current study, Xanthobacteraceae 
was positively correlated with OC, and was enriched in FB1_
BOF. This may be consistent with the results of Xu et al. (2022), who 
reported that Xanthobacteraceae significantly increased in response 
to organic mulch. Streptomyces, an important group of soil bacteria 
belonging to the actinomycetes family, are widely reported in the 
literature for their plant growth-promoting rhizobacteria potential 
(Nassar et  al., 2003; El-Tarabily, 2008). Studies have shown that 
Streptomyces can stimulate host plant growth by directly altering 
hormone balance in the plant, for example, through the production 
of phytohormones (auxins, cytokinins, and gibberellins), increasing 
mineral nutrient solubilization (for example, siderophores scavenge 
ferric iron from the environment), fixing nitrogen, producing cell 
wall degrading enzymes, and suppressing stress in the plant by 
producing 1-aminocyclopropane-1-carboxylate (ACC; Wu et  al., 
2021). In addition, Streptomyces can also promote plant growth by 
causing antagonism toward plant pathogens (Gopalakrishnan et al., 
2013). In the present investigation, Streptomyces was positively 
correlated with OC, OM, TN, AN, and AP, and was enriched in 
FB. Similarly, MND1 which are nitrifying, N-fixing, and cellulose-
decomposing bacteria (Zhang D. J. et al., 2022), were also enriched 
in the FB treatment. Cáceres et al. (2021) also confirmed that genus 
MND1 (Proteobacteria) was found in soils that are associated with N 
cycling. In addition, according to Sun et  al. (2020), MND1 is 
significantly positively correlated with AP and TP contents; 
consistently, our results showed that MND1 was positively correlated 
with AP. Biochar and BOF changed soil microbial community 
composition, structure, and abundance, altered microbial habitats, 
directly or indirectly affected microbial metabolic activities, and 
provided a more suitable environment for plant-friendly bacteria in 
the soil, which in turn promoted plant growth. Thus, biochar and 

BOF could be used as potential soil amendments for improving soil 
health by altering microbial activities and functions; however, many 
aspects of biochar and BOF are still to be studied.

5. Conclusion

This study provides empirical evidence showing that the 
application of biochar and BOF is an effective way for improving the 
rhizosphere soil microecology and crop productivity in saline–alkali 
soil. Application of biochar and BOF in saline-alkali soil positively 
influenced the growth of S. cannabina. Among all treatments, the 
impact of 150 t ha−1 biochar (30 mesh) application together with BOF 
was the greatest. Biochar and B_BOF also improved the physical and 
chemical properties and the nutrient contents of saline-alkaline soil, 
and altered the diversity and community structure of rhizosphere 
bacteria in the saline-alkaline soil. The co-application of biochar and 
BOF along with the planting of S. cannabina decreased the EC of soil 
at a depth of 10 cm below the surface. Overall, biochar and BOF 
co-application was the most superior, followed by BOF alone and 
biochar alone. Compared with the lower application rate, the higher 
application rate was better. Additionally, fine biochar had a stronger 
effect than coarse biochar. Collectively, our results reinforce the 
influence of biochar and BOF application on saline-alkaline land in 
terms of microbial community structure and soil nutrients, providing 
a suitable method for saline-alkaline land reclamation. Additional 
studies are needed to investigate the long-term effects and interaction 
mechanism of biochar, BOF, beneficial microorganisms, and plants.
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