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Klebsiella pneumoniae is one of the leading pathogens contributing to 
antimicrobial resistance. The emergence of carbapenem-resistant K. pneumoniae 
(CRKP) has put the use of clinical antimicrobial agents in a dilemma. In particular, 
CRKP exhibiting resistance to ceftazidime/avibactam, tigecycline and colistin 
have raised great clinical concern, as these are the last-resort antibiotics for the 
treatment of CRKP infections. Within-host evolution is a survival strategy closely 
related to the emergence of antimicrobial resistance, while little attention has 
been paid to the in vivo genetic process of conversion from antibiotic-susceptible 
to resistant K. pneumoniae. Here we  have a literature review regarding the in 
vivo evolution of resistance to carbapenems, ceftazidime/avibactam, tigecycline, 
and colistin in K. pneumoniae during antibacterial therapy, and summarized the 
detailed resistance mechanisms. In general, acquiring blaKPC and blaNDM harboring-
plasmid, specific mutations in blaKPC, and porin genes, such as ompK35 and 
ompK36, upregulation of blaKPC, contribute to the development of carbapenem 
and ceftazidime/avibactam resistance in vivo. Overexpression of efflux pumps, 
acquiring plasmid-carrying tet (A) variants, and ribosomal protein change can 
lead to the adaptive evolution of tigecycline resistance. Specific mutations in 
chromosomes result in the cationic substitution of the phosphate groups of lipid 
A, thus contributing to colistin resistance. The resistant plasmid might be acquired 
from the co-infecting or co-colonizing strains, and the internal environment and 
antibiotic selection pressure contribute to the emergence of resistant mutants. 
The internal environment within the human host could serve as an important 
source of resistant K. pneumoniae strains.
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Introduction

Klebsiella pneumoniae is a common pathogen for community-and hospital-acquired 
infections, such as pneumonia, urinary tract infection, and bacteremia (Podschun and 
Ullmann, 1998; Bengoechea and Sa Pessoa, 2019). The emergence of antimicrobial resistance 
in K. pneumoniae poses a serious threat to public health, particularly with the rise of 
carbapenem-resistant K. pneumoniae (CRKP). According to China Antimicrobial Surveillance 
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Network, carbapenem resistance in K. pneumoniae increased rapidly 
from 3% in 2005 to more than 25% in 2019 (Hu et al., 2020). The 
irrational use of antibiotics in clinical practice has fostered the 
occurrence and spread of resistance to “old class antimicrobials.” 
Ceftazidime/avibactam, tigecycline, and colistin are now considered 
the last resort for the treatment of CRKP infections (Pournaras et al., 
2016; Rabanal and Cajal, 2017; Shields et al., 2017b; Xu et al., 2022). 
However, the emergence of resistance to the last-resort antibiotics in 
CRKP has been repeatedly reported (Ah et al., 2014; van Duin et al., 
2014; Shields et al., 2016, 2017a). More attention should be paid to 
the resistance of these types of antimicrobials. Besides, it is nerve-
wracking to find that the antimicrobial resistance in K. pneumoniae 
is changing rapidly in response to in vivo microenvironmental stress 
during antimicrobial therapy (MacKenzie et  al., 1997; Gaibani 
et al., 2022).

The prevailing view is that the growing prevalence of 
antimicrobial resistance is largely attributable to selection pressure 
from antibacterial drugs. However, our understanding of the in vivo 
development of antimicrobial resistance in K. pneumoniae is limited. 
While the majority of studies have focused on the epidemiology, risk 
factors, and treatment outcome of CRKP and other multi-drug 
resistant K. pneumoniae infections, relatively little attention has been 
paid to the in vivo genetic process underlying the conversion of a 
bacterial strain from antibiotic-susceptible to resistant. Within-host 
evolution is an important survival strategy, often associated with 
persistent or recurrent infections. Understanding the mechanisms 
that drive the de novo development of antimicrobial resistance in 
K. pneumoniae in patients during treatment is crucial for optimizing 
infection treatment and preventing the emergence of resistance. In 
this review, we focused on the antimicrobial drugs currently used in 
clinical practice, and summarized the adaptive evolution of 
antimicrobial resistance in K. pneumoniae under internal pressures. 
Our aim is to provide valuable insights into the emergence of 
antimicrobial resistance in K. pneumoniae during 
antibacterial therapy.

In vivo adaptive resistance to 
carbapenem

Acquisition of carbapenemase encoding 
genes

The production of carbapenemase is the leading cause of 
carbapenem resistance in K. pneumoniae, with K. pneumoniae 
carbapenemase (KPC) being the most prevalent in several countries, 
including China (Hu et al., 2012; Giani et al., 2013; Pollett et al., 
2014; Zhang et  al., 2020). Ding et  al. reported that the in vivo 
acquisition of blaKPC-2 led to carbapenem resistance in K. pneumoniae 
during antimicrobial therapy, and blaKPC-2 was acquired through 
horizontal transfer of an insertion sequence containing ISKpn6-like, 
blaKPC-2 and ISKpn8 (Ding et al., 2016). Duplicative transposition 
might involve in the mobilization of this insertion sequence, since 
the transposase gene tnpA was located upstream of blaKPC-2 in KPC 
plasmids of the CRKP strains. Moreover, in vivo horizontal 
dissemination of the blaKPC-2 gene carried on IncL/M type conjugative 
plasmids has been observed among diverse Enterobacteriaceae 
clinical isolates with different genetic backgrounds, including 

K. pneumoniae, E. coli, and E. cloacae complex (Anchordoqui et al., 
2015). These studies demonstrated that in vivo carbapenem 
resistance in K. pneumoniae can result from the horizontal transfer 
of a resistance plasmid or an insertion sequence (Figure 1).

Hypervirulent K. pneumoniae (hvKP) can also evolve into 
carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) 
under long-term antibiotic treatment by acquiring a resistance 
plasmid. Recently, a report showed that a sequence type (ST) 218 
hvKP strain developed into CR-hvKP in a patient by acquiring an 
IncFIIk blaKPC-harboring plasmid donated by a ST585 CRKP strain 
(Tang et al., 2021). K. pneumoniae ST218 is a single-locus variant 
of ST23 and belongs to clonal group  23, which comprises 
hypervirulent clones harboring the virulence factors of iuc locus, 
iro locus, and rmpA/rmpA2 at high frequencies. The IncFIIk blaKPC-
harboring plasmid is conjugative and carries five antibiotic 
resistance genes, blaKPC-2, blaCTX-M-24, tet (A), arr-3, and floR 
(Table 1).

Porin deficiency

Outer membrane protein (OMP) is the main component of the 
outer membrane of gram-negative bacteria, including porin and 
lipoprotein. Porins typically aggregate to form pores, enabling the 
passage of small hydrophilic molecules, such as β-lactams, across the 
membrane (Pagès et al., 2008). The porins of K. pneumoniae mainly 
include OmpK35 and OmpK36 (Hernández-Allés et al., 1999). The 
deficiency of OmpK35, known as OmpF, is reported widely reported 
in Enterobacteriaceae strains (Gravey et al., 2020). While OmpK35 is 
not thought to be the primary pathway for K. pneumoniae resistance 
(Shields et al., 2015; Pagès et al., 2016). The function of OmpK35 
should be further studied in vivo circumstance of K. pneumoniae. 
OmpK36 is classified as a member of the OmpC porin group, and 
functions as a non-specific, passive diffusion pore (Ye Y. et al., 2017). 
The loss of OmpK36, coupled with extended-spectrum β-lactamases 
(ESBLs) and/or AmpC production, can result in carbapenem 
resistance in K. pneumoniae (Hamzaoui et  al., 2018). Tian et  al. 
(2020) reported three K. pneumoniae strains successively isolated 
from one patient during hospitalization and found that the final 
strain developed carbapenem resistance after 14-day of imipenem 
treatment. This particular CRKP strain exhibited OmpK36 deficiency 
due to a premature stop codon in the ompK36 gene. This study 
highlights that the alteration of outer membrane porins due to the 
14-day use of imipenem plays a potential role in leading to clinical 
presentation of carbapenem resistance (Figure 1). In addition, some 
researchers have gradually discovered that porins are also associated 
with ceftazidime/avibactam resistance of K. pneumoniae (Xu et al., 
2022), which reflects the important role of porins deficiency in the 
adaptive evolution of K. pneumoniae.

In vivo adaptive resistance to 
ceftazidime/avibactam

Ceftazidime/avibactam is a novel β-lactam/β-lactamase inhibitor 
combination, which has been approved for the treatment of 
complicated intra-abdominal infections and urinary tract infections 
in 2015 (Zasowski et  al., 2015; Shirley, 2018). Avibactam exhibits 
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activity against Ambler class A enzymes (including ESBLs and KPC) 
and some Ambler class C and D (e.g., OXA-48) enzymes, but it is 
ineffective against class B enzymes like New Delhi metallo-β-
lactamase (NDM) (Shirley, 2018). Though ceftazidime/avibactam 
displayed potent activity against KPC-producing K. pneumoniae 
(KPC-KP), the emergence of ceftazidime/avibactam resistance in 
clinical strains during antimicrobial treatment has been repeatedly 
reported (Humphries et al., 2015; Shields et al., 2016; Both et al., 2017).

Specific mutations of blaKPC

The major in vivo adaptive ceftazidime/avibactam resistance 
mechanism is the emergence of specific mutations in blaKPC (Figure 1). 
A report from China revealed that following a 6-day course of 
ceftazidime/avibactam treatment, a ST11 K. pneumoniae strain 
developed ceftazidime/avibactam resistance, owing to the mutation of 
KPC-2 to KPC-33, with a substitution of D179Y within the Ω loop (Li 
D. et al., 2021). The Ω loop is located at residues 164–179, which is an 
essential domain for class A β-lactamases, and the substitution of 
D179Y may be detrimental to the binding of avibactam (Gaibani et al., 
2021; Wang et al., 2021). Another study conducted in Italy showed that 
in vivo development of ceftazidime/avibactam resistance in 
K. pneumoniae was also linked to the D179Y substitution in KPC-3, 
which emerged after 17-day of ceftazidime/avibactam treatment 
(Gaibani et  al., 2018). Similarly, in vivo development of KPC-71, 
KPC-76, KPC-94, and KPC-95-mediated ceftazidime/avibactam 
resistance during antimicrobial treatment has also been reported in 
ST11 and ST512 KPC-KP (Li X. et al., 2021; Guzmán-Puche et al., 
2022; Shen et al., 2022). Of note, the low antibiotic pressure may have 
selected hybrid subpopulations of KPC-KP due to the high adaptability 
of KPC to ceftazidime/avibactam. For example, a study reported that 
KPC-KP strains isolated from bronchoalveolar lavage harbor blaKPC-3 
and T243M mutations, while those isolated from the blood have 

D179Y mutation (Gaibani et al., 2021). Except for KPC, the in vivo 
emerging P170S exchange in CTX-M-14 has also been associated with 
elevated ceftazidime/avibactam MICs for independent K. pneumoniae 
isolates, but this substitution was not sufficient for full resistance (Both 
et al., 2017).

Interestingly, KPC mutations mediating ceftazidime/avibactam 
resistance are generally associated with the restoration of 
carbapenem susceptibility (Haidar et al., 2017; Shields et al., 2017a), 
and this kind of reversion may be dynamic. As illustrated in a recent 
study, the infection began with a KPC-2-producing K. pneumoniae. 
After treatment with ceftazidime/avibactam, the strain switched to 
a KPC-33 mutant (D179Y), which restored carbapenem 
susceptibility. However, the restored carbapenem susceptibility in 
vivo was not stable and the subsequent use of imipenem against 
KPC-33-producing K. pneumoniae infection resulted in a reversion 
of KPC-2 producers (Wang et al., 2021). The selective pressure of 
antibiotics in the mutation and reversion of blaKPC genes may lead 
to the dynamic change of KPC enzymes and the emergence of 
resistance to ceftazidime/avibactam and carbapenems.

Increased blaKPC gene expression

Increased gene expression and copy number of blaKPC can lead 
to ceftazidime/avibactam resistance in K. pneumoniae. A study 
reported that a novel ST4496 strain, which is a novel ST closely 
related to ST11, displayed ceftazidime/avibactam resistance after 1 
month of ceftazidime/avibactam treatment. Sequencing analysis 
showed that there was duplication of blaKPC-2 on a 108 kb IncFII 
KPC plasmid due to unequal crossover of the IS26 composite 
transposon, resulting in elevated levels of blaKPC-2 expression (Han 
et al., 2021). The increased expression of KPC carbapenemase could 
lead to enhanced hydrolysis of ceftazidime, as avibactam may not 
be able to completely inhibit the higher amounts of KPC. Besides, 

FIGURE 1

In vivo adaptive resistance to carbapenem and ceftazidime/avibactam. In general, acquiring blaKPC harboring-plasmid, and specific mutations in porin 
genes, such as ompK35 and ompK36, contribute to the development of carbapenem resistance in vivo. Acquiring blaNDM harboring-plasmid, specific 
mutation in blaKPC and upregulation of blaKPC lead to in vivo ceftazidime/avibactam resistance.
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TABLE 1 Examples of studies on in vivo adaptive resistance in Klebsiella pneumoniae.

Resistant types Initial strain 
types

Interval between 
S and NS isolates 

(days)

Sequence type 
(ST)

Underlying 
mechanisms

Region/Country

Carbapenem

KP 23 11 Acquisition of blaKPC-2-

harboring Plasmid

Shanghai, China  

(Ding et al., 2016)7 11

KP NA 37 Acquisition of blaOXA-1-

harboring plasmid

Hunan, China  

(Li et al., 2017)

hvKP 5 218 Acquisition of blaKPC-harboring 

plasmid

Hebei, China  

(Tang et al., 2021)

KP 14 660 Porin deficiency Zhejiang, China  

(Tian et al., 2020)

Ceftazidime/avibactam

KP 15/14 11 Mutation and reversion of 

blaKPC genes

Beijing, China  

(Wang et al., 2021)

CRKP 6 11 Mutations in blaKPC Henan, China  

(Li D. et al., 2021)

CRKP 10 101 Mutations in blaKPC Italy (Gaibani et al., 2018)

CRKP 21 NA Mutations in blaKPC Shanghai, China  

(Shen et al., 2022)

MDR KP 23 383 Mutations in blaCTX-M-14 German (Both et al., 2017)

CRKP 30 4496 blaKPC-2 duplication Zhejiang, China  

(Han et al., 2021)

CRKP 13–22 11 Increased gene expression of 

mutated blaKPC

Beijing, China  

(Sun et al., 2021)

CRKP 11 11 Acquisition of blaNDM-5-

harboring plasmid

Fujian, China  

(Huang et al., 2021)

Tigecycline

CRKP 41 11 Deletion of the ramR RBS Shanghai, China  

(Ye M. et al., 2017)

CRKP 340 1544 Upregulation of RamA and/or 

RarA

Taiwan, China  

(Lin et al., 2016)37 23

147 1526

7 660

5 45

hv-CRKP 50 11 Mutations of ramR and lon Zhejiang, China  

(Jin et al., 2021)

MDR KP 4 NA kpgABC overexpression. United States  

(Nielsen et al., 2014)

CRKP 13 11 The tet(A) variant (S251A) Zhejiang, China  

(Du et al., 2018)

CRKP NA 11 Plasmid harbors the blaKPC-2 

and tet(A) variant genes

Zhejiang, China  

(Zhang et al., 2018)

CRKP 29 11 The rpsJ variant (V57L) Zhejiang, China  

(He et al., 2018)

Colistin

CRKP 30 258 Inactivation or deletion of the 

mgrB gene

Italy (Cannatelli et al., 2013)

CRKP 12 512 Mutations of pmrB Italy (Cannatelli et al., 2014)

hv-CRKP 50 11 Mutations of pmrB, phoQ, and 

mgrB genes

Zhejiang, China  

(Jin et al., 2021)

KP, Klebsiella pneumoniae; CRKP, carbapenem resistant Klebsiella pneumoniae; hvKP, hypervirulent Klebsiella pneumoniae; ST, sequence type; S, susceptible; NS, not susceptible; RBS, 
ribosomal binding site; MDR, multi-drug resistance; BSI, bloodstream infection; NA, not available.
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the increased gene expression of blaKPC-51 also leads to high-level 
ceftazidime/avibactam resistance (Sun et al., 2021).

Acquiring blaNDM-5-harboring plasmid

Acquiring blaNDM-5-harboring plasmid could also lead to 
ceftazidime/avibactam resistance, since avibactam could not inhibit 
NDM. One study observed that a ST11 CRKP strain displayed 
ceftazidime/avibactam resistance after 11-day of treatment. This strain 
harbored blaKPC-2, blaSHV-182, and blaTEM-1B, and it acquired an additional 
IncX3 blaNDM-5-harboring plasmid when compared with the 
corresponding susceptible isolate. This blaNDM-5 plasmid is conjugative 
and could be  successfully transferred into E. coli J53 with high 
frequency (Huang et al., 2021).

In vivo evolution of tigecycline 
resistance

Tigecycline is a derivative of the semi-synthetic tetracycline 
minocycline, which was approved in China in 2012 (He et al., 2015; 
Alhashem et  al., 2017). It has a broad antibacterial spectrum and 
displays potent antibacterial activity against gram-positive cocci, gram-
negative bacilli (excluding Pseudomonas aeruginosa and some Proteus), 
anaerobic bacteria, and atypical pathogens (Society of Clinical 
Microbiology and Infection of China International Exchange and 
Promotion Association for Medical and Healthcare, Clinical 
Microbiology Group of the Laboratory Medicine Society of the Chinese 
Medical Association, Clinical Microbiology G.I.S. ofthe C. M, 2020). 
Tigecycline mainly binds to the bacterial ribosome 30S subunit, 
preventing aminoacyl-tRNA from entering the ribosome A site, thus 
exerting an antibacterial effect by inhibiting bacterial protein synthesis 
(Velkov et  al., 2010). Recently, tigecycline-resistant K. pneumoniae 
strains have been frequently reported (Sun et al., 2013). Overall, the 
most commonly reported mechanisms of tigecycline resistance include 
overexpression of efflux pumps, acquisition of plasmid-carrying tet (A) 
variants and ribosomal protein change (Figure 2).

Increased efflux pumps activity

Efflux pumps can actively squeeze drugs out of cells, and 
resistance nodulation-cell division (RND) type efflux pump, 
including AcrAB-TolC and OqxAB, is the dominant drug-
associated efflux pump in gram-negative bacteria (Nikaido, 2018). 
AcrAB-TolC is predominantly related to tigecycline resistance in 
CRKP (Masi et al., 2019). AcrAB-TolC is mainly composed of three 
parts: membrane fusion protein (AcrA), efflux transporter (AcrB), 
and outer membrane channel protein (TolC). Meanwhile, the 
expression of the AcrAB-TolC is regulated by a variety of regulatory 
factors, including acrR, ramA, and marA (Wang et al., 2001; Keeney 
et al., 2007). Studies have shown that bacteria can sense flux rate 
and regulate efflux pumps to survive the environmental antibiotic 
challenge, suggesting that resistance mechanisms in vivo may differ 
from those in vitro (Fritz et  al., 2015). Understanding the 
mechanisms underlying the de novo development of tigecycline 
resistance in patients is challenging. One strategy is to perform a 
longitudinal study by isolating K. pneumoniae strains from patients 

before, during and after tigecycline therapy. Ye et al. reported that 
the deletion of ramR ribosomal binding site (RBS) could lead to in 
vivo development of tigecycline resistance in K. pneumoniae after 
more than 40 days of tigecycline therapy (Ye M. et al., 2017, 2022). 
RamR exerted negative regulation on acrAB gene expression, and 
this 12-bp deletion abolished RamR protein production, resulting 
in high levels of acrAB expression and tigecycline resistance.

In another study, researchers identified five paired clinical isolates of 
K. pneumoniae that were initially tigecycline-susceptible, but later 
developed into tigecycline-non-susceptible (Lin et al., 2016). They found 
that tigecycline-non-susceptibility was associated with upregulation of 
RamA and/or RarA and the corresponding AcrAB-TolC and/or OqxAB 
efflux pump (s), respectively. Furthermore, various mutations in ramR 
and oqxR lead to ramA and rarA overexpression. Meanwhile, AcrAB-
TolC efflux pump-mediated tigecycline resistance has also been 
confirmed in CR-hvKP strains. ST11-KL64 CR-hvKP developed 
tigecycline resistance due to the mutation of ramR during tigecycline 
therapy, and a novel frameshift mutation of lon was identified in the 
high-level tigecycline-resistant strain (Jin et  al., 2021). In addition, 
Nielsen et al. also reported a new efflux pump operon, kpgABC. An 
insertion sequence (IS5) was correlated with an elevated kpgABC 
expression, which led to the in vivo development of tigecycline 
nonsusceptibility in K. pneumoniae (Nielsen et al., 2014).

Acquiring plasmid-carrying tet (A) variants

The widely disseminated plasmid-carrying tet (A) variants in 
K. pneumoniae have greatly contributed to tigecycline resistance 
(Chiu et  al., 2017). Tet (A) is one of the most common major 
facilitator superfamilies (MFS) efflux pumps. Tigecycline therapy 
could upregulate the expression of tet (A) in tigecycline-susceptible 
CRKP, leading to the development of tigecycline resistance. Du et al. 
(2018) reported tigecycline-resistant ST11 CRKP isolates from a 
56-year-old female patient during tigecycline therapy. One amino 
acid substitution S251A in TetA was identified in the tigecycline-
resistant isolates. Subsequent transformation experiments confirmed 
the contribution of this TetA variant (S251A) to tigecycline resistance 
and the tetA gene was located on a transferable plasmid. Another 
study reported that clinical CRKP strains carrying a conjugative 
plasmid harboring the blaKPC-2 and tet (A) variant genes readily 
evolved into tigecycline-resistant CRKP upon treatment and persisted 
in the human gastrointestinal tract (Zhang et al., 2018).

Ribosomal protein change

Mutations in rpsJ encoding ribosomal protein S10, the target site 
of tigecycline, have also been associated with tigecycline resistance 
(Villa et al., 2014). He et al. (2018) monitored a 59-year-old male 
patient infected with ST11 KPC-producing K. pneumoniae. They 
identified the V57L amino acid substitution in rpsJ, and confirmed 
that this mutation was the main cause of tigecycline resistance 
through transformational complementation assay. This study 
demonstrated that the evolution of the rpsJ gene could lead to 
tigecycline resistance in CRKP during tigecycline therapy. Since this 
gene is located on the chromosome, it provides a clinical warning that 
under the selective pressure of tigecycline, rpsJ mutations may occur, 
resulting in drug resistance and treatment failure.
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In vivo evolution of colistin resistance

Polymyxins (polymyxin B and colistin) are the key drugs for the 
treatment of infections caused by CRKP (Livermore et al., 2011; 
Petrosillo et al., 2013). However, the emergence of colistin-resistant 
K. pneumoniae has been increasingly reported (Giani et al., 2013; 
Ah et al., 2014). There are some reports of K. pneumoniae acquiring 
colistin resistance under in vivo selective pressure.

The outer membrane of gram-negative bacteria is the action site 
of polymyxins due to its affinity for the phosphate group of lipid 
A. Lipid A is the hydrophobic part located in the outer monolayer of 
the outer membrane and is synthesized by a series of enzymes encoded 
by the lpx gene cluster. Lipid A has a negative charge due to the 
presence of free phosphate groups, while polymyxin has a high affinity 
for the negative charge of lipid A (Li et al., 2019). As shown in Figure 3, 
two ionic groups, pEtN and L-Ara4N, can impact the affinity between 
polymyxin and the outer membrane and lead to resistance. The 
expression of these two ionic groups is controlled by LPS-modifying 
enzyme genes pmrC, pmrE, and pmrHFIJKLM, which is then 
controlled by PmrAB and PhoPQ two-component system (Kox, 2000; 
Lee et al., 2004; Olaitan et al., 2014). In addition, CrrAB and MgrB are 
also involved in this regulatory axis. CrrAB could regulate the 
expression of PmrAB and PhoPQ (Olaitan et al., 2014), while MgrB is 
a negative regulator of the PhoPQ signaling system. The mutations in 
certain genes are involved in the regulation of these signaling 
pathways, such as pmrAB, phoPQ, mgrB, crrB, which can lead to 
colistin resistance (Cheng et al., 2010; Cannatelli et al., 2013; Chen and 
Groisman, 2013; Xie et al., 2022).

Comparative genomic analysis of a pair of sequential KPC-KP 
isolates from the same patient, including a colistin-susceptible isolate 

and a colistin-resistant isolate selected after colistin exposure, revealed 
that insertional inactivation of the mgrB gene is a genetic mechanism 
for acquired colistin resistance (Cannatelli et al., 2013). Another study 
found a non-synonymous nucleotide substitution in the pmrB gene 
that resulted in a leucine-to-arginine substitution at amino acid 
position 82 in CRKP-infected patients treated with low-dose colistin 
(Cannatelli et al., 2014). This substation upregulated transcription of 
pmrA and pmrK, which is part of the pmrHFIJKLM operon responsible 
for modification of the colistin lipopolysaccharide target. Besides, the 
mutations of pmrB, phoQ and mgrB genes also account for the in-host 
evolution of CR-hvKP to colistin resistance (Jin et al., 2021).

Conclusion

Our work summarized in vivo adaptive evolution of antimicrobial 
resistance in K. pneumoniae during antimicrobial therapy in currently 
clinical practice. We further described the underlying mechanisms of 
evolved resistance to carbapenems, ceftazidime/avibactam, 
tigecycline, and colistin within human hosts. In general, acquiring 
blaKPC and blaNDM harboring-plasmid, specific mutations in blaKPC, 
and porin genes, ompK35 and ompK36, upregulation of blaKPC, 
contribute to the development of carbapenems and ceftazidime/
avibactam resistance in vivo. Overexpression of efflux pumps, 
acquiring plasmid-carrying tet (A) variants, and ribosomal protein 
change can lead to the adaptive evolution of tigecycline resistance. 
Specific mutations in chromosomes result in a variety of modifications 
of LPS, contributing to colistin resistance.

The adaptive evolution of K. pneumoniae can be attributed to the 
impact of the human host’s internal environment and antibiotic 

FIGURE 2

In vivo evolution of tigecycline resistance. Overexpression of efflux pumps, acquiring plasmid-carrying tet(A) variants, and ribosomal protein change 
can lead to the adaptive evolution of tigecycline resistance.
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selection pressure. The in vivo development of antimicrobial 
resistance in K. pneumoniae was established mainly through the 
acquisition of a resistant plasmid and the emergence of specific 
mutations. Plasmid-carried resistant genes have been proven to 
disseminate ubiquitously, such as blaKPC and tet (A). Moreover, 
acquired antimicrobial resistance in hvKP clones demonstrated that 
in vivo adaptive evolution also promotes the convergence of 
hypervirulence and resistance.

The resistant plasmid might be acquired from the co-infecting or 
co-colonizing strains, and the internal selection factors may contribute 
to the horizontal transfer of plasmid within the human host. The 
emerging resistant K. pneumoniae strains in vivo could then disseminate 
through nosocomial settings and be screened by sectional molecular 
epidemiology studies. It is possible that the internal environment within 
the human host could serve as an important source of resistant 
K. pneumoniae strains. In the future, more attention should be paid to 
the in vivo genetic process of conversion from antibiotic-susceptible to 
resistant K. pneumoniae, and the high possibility of convergence of 
hypervirulence and resistance. The evolution of resistant strains could 
be effectively reduced by blocking this conversion process.
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FIGURE 3

In vivo evolution of colistin resistance. Specific mutations in chromosomes led to the cationic substitution of the phosphate groups of lipid A, 
contributing to colistin resistance.
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