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Nitrogen metabolism is an important physiological process that affects the

survival and virulence of Mycobacterium tuberculosis. M. tuberculosis’s utilization

of nitrogen in the environment and its adaptation to the harsh environment of

acid and low oxygen in macrophages are closely related to nitrogen metabolism.

In addition, the dormancy state and drug resistance of M. tuberculosis are closely

related to nitrogen metabolism. Although nitrogen metabolism is so important,

limited research was performed on nitrogen metabolism as compared with

carbon metabolism. M. tuberculosis can use a variety of inorganic or organic

nitrogen sources, including ammonium salts, nitrate, glutamine, asparagine, etc.

In these metabolic pathways, some enzymes encoded by key genes, such as

GlnA1, AnsP2, etc, play important regulatory roles in the pathogenesis of TB.

Although various small molecule inhibitors and drugs have been developed

for different nitrogen metabolism processes, however, long-term validation is

needed before their practical application. Most importantly, with the emergence

of multidrug-resistant strains, eradication, and control of M. tuberculosis will still

be very challenging.
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1. Introduction

The first recorded case of tuberculosis (TB) can be traced back to 9000 years ago in
the Eastern Mediterranean (Holzheimer et al., 2021). Human and zoonotic TB is normally
caused by the infection of Mycobacterium tuberculosis complex which includes several
species. They share highly conserved genomic sequences and possibly evolved from a single
ancestor. During the past 200 years, TB kills more than 1 billion people (Gagneux, 2018).
Furthermore, TB can also co-infected with other disease, leading to more serious symptoms
(Huang and Zhao, 2022). As a matter of fact, co-infection with Mycobacterium tuberculosis
(M. tuberculosis), becomes the primary reason of death to HIV-1 infectors. Despite some
progress in diagnosis in recent years (Liao et al., 2022), the situation is still not promising.
The mortality increased to 423,000 in 2020 (from 209,000 in 2019) (Bell and Noursadeghi,
2018; Harding, 2020), suggests that high rates of HIV infection have more TB cases and
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higher mortality rates (Dean et al., 2022). This increase shows that
TB poses a significant threat to people’s lives whether they are co-
infected with HIV or not.

In 2020, M. tuberculosis, the etiological agent of TB, caused 5.8
million new cases around the world and there may be 4.1 million
people who haven’t been diagnosed or reported as WHO estimated
(Harding, 2020). Despite the enormous financial and human
resources invested in combating this deadly disease, they remain
inadequate. Targets set in 2015 to reduce the number of infections
and deaths have both not been met, with only half (11–20%) and
a quarter (9.2–35%) of the plans achieved, respectively (Kirby,
2021). Especially with the COVID-19 pandemic, massive medical
resources have been taken up, suggesting that we are facing a great
hardship even more difficult to overcome than precedented. More
worrying is that some studies suggest that the immune suppression
and storm of inflammatory cytokines caused by COVID-19 may
contribute to the development of TB (Hildebrand et al., 2022). The
recent emergence of a case of latent TB reactivation due to COVID-
19 infection (Leonso et al., 2022) has heightened this concern, as the
proposed causes were the immunosuppressive sequelae of COVID-
19, the effects of the chemotherapy (steroids and remdesivir),
or a combination of both. Given the large numbers of people
infected by both diseases, we must be alert to the potentially serious
consequences of co-infection.

As a kind of facultative intercellular pathogen, M. tuberculosis
can multiply in macrophages despite the acidic environment rich
in radicals, and lacking in oxygen and nutrition, which usually
kills most other bacteria (Höner zu Bentrup and Russell, 2001). In
the dilemma, M. tuberculosis reduces metabolic activity and enters
a dormant state which increases its resistance. However, most
antibiotics target the processes of DNA replication, translation,
or cell wall formation which are active in rapidly dividing cells.
This makes it really hard to treat the infection. Patients are
advised to use 4 drugs combination including isoniazid, rifampin,
ethambutol, and pyrazinamide for 2–6 months and the therapy
for multidrug-resistant cases even costs more time, 9–20 months
(Caño-Muñiz et al., 2018). Even after a long period of treatment, if
a small percentage of the pathogen is not killed, the probability of
recurrence is very high. Therefore, exploring how M. tuberculosis
survives in macrophages is really important and it’s attractive to
develop novel drugs based on these studies.

There have been lots of studies on carbon metabolism reported
in the literature, which have shown various carbon sources that
M. tuberculosis used, the ways the bacterium obtained them from
hosts, and specific metabolic pathways that it exploited during
infection (Ehrt et al., 2018). By contrast, studies on the metabolism
of nitrogen, another equally important element involved in the
synthesis of many biomolecules including amino acids, proteins,
nucleotides, some cofactors, and peptidoglycan, in this pathogen
have just begun. A great deal of mystery remains about the
processes of acquiring and assimilating nitrogen. In this review, we
describe some of the key genes identified so far in the regulation of
nitrogen metabolism, as well as some small molecule inhibitors.

2. Key genes in nitrogen metabolism

Central nitrogen metabolism, the best-studied part of nitrogen
metabolism so far, concerned with the intake and utilization of

ammonium, is indispensable to all living organisms around the
world to balance internal and adapt to the external environment.
In vivo, ammonium assimilation metabolism can be divided into
two kinds according to the different conditions of glutamic acid
synthesis. One is the formation of glutamate from ammonium
and α- ketoglutaric acid in response to glutamate dehydrogenase
and the other is a molecule of glutamine and a molecule
of α-ketoglutarate catalyzed by glutamate synthetase to form
two glutamates. The former has a lower Km value and is
therefore referred to as a low-affinity pathway, while the latter
is referred to as a high-affinity pathway. The major assimilation
pathway in M. tuberculosis is the high-affinity pathway related to
glutamine synthetase and glutamine oxoglutarate aminotransferase
(GOGAT), which catalyze the production of glutamine or
glutamate, respectively. Although a low-affinity pathway for
ammonium assimilation using glutamate dehydrogenase exists
in other bacteria, in M. tuberculosis the enzyme acts primarily
on glutamine catabolism which breaks down glutamine into α-
ketoglutaric acid and ammonium. Besides ammonium, the source
of nitrogen can be various either inorganic substances such
as nitrate or organics including alanine, aspartate, asparagine,
glutamate, and glutamine (Agapova et al., 2019). Furthermore,
nitrogen from different amino acids goes to different places. For
example, according to the results of the isotope tracer, more than
50% of 15N from 15N1-Asp was transferred to Glu/n, 15N1-Glu
to six amino acids, 15N2-Gln to eight amino acids, and 15N1-Leu
to Ile. Nitrogen from glutamine is the major source and can turn
into many other amino acids. While alanine is used directly as a
component of thallus rather than transformed (Borah et al., 2019).
Interestingly, M. tuberculosis grows faster when utilizes organic
nitrogen sources. Some of the metabolic pathways involved in this
review are shown in Figure 1 and the structures of proteins encoded
by key genes are shown in Figure 2.

2.1. glnA1

Glutamine and glutamate are two molecules that play
irreplaceable roles in central nitrogen metabolism. When
ammonium in the medium is used as primary nitrogen donors by
the bacterium, it must combine with glutamine and glutamate first
(Leigh and Dodsworth, 2007). And because of lacking of a low-
affinity pathway for ammonium assimilation, M. tuberculosis
cannot assimilate ammonia directly into glutamate. Thus
glutamine synthetase and glutamate synthetase are the sole
means of ammonia assimilation (Tullius et al., 2003). There are 4
kinds of isoforms of glutamine synthetase, GlA1, GlnA2, GlnA3,
and GlnA4. Among these, GlnA1, GlnA3, and GlnA4 synthesize
L-glutamine, whereas GlnA2 synthesizes the D-glutamine and
D-isoglutamine required for cell wall biosynthesis. However, only
glnA1 expresses abundantly, the three other genes being 9–15-fold
less expressed (Harth et al., 2005). Though glnA3 will overexpress
when GlnA1 is inhibited, the quantity is less than fold which is
too little to compensate for the lack of glnA1 (Lee et al., 2006;
Carroll et al., 2011), thus GlnA1 provides the main activity in
M. tuberculosis. The gene glnA1 consists of 1437 base pairs and
encodes 478 amino acids (57.3 kDa) (Couturier et al., 2015). In
addition to its internal role in bacteria, GlnA1 can also be secreted

Frontiers in Microbiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1149041
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1149041 May 13, 2023 Time: 13:5 # 3

Xu et al. 10.3389/fmicb.2023.1149041

FIGURE 1

The sketch of nitrogen metabolism pathway in mycobacteria.

into the external environment as a secreted protein, which may
affect phagosomal pH and phagosomal lysosomal fusion, thus
allowing M. tuberculosis to survive phagocytosis by macrophages
(Harth et al., 1994). What’s more, as reported, GlnA1 is related
to the synthesis of poly-l-glutamate/glutamine. This component,
which is absent in non-pathogenic mycobacteria, corresponds to
10% of the cell wall of pathogenic mycobacteria (Couturier et al.,
2015). These all imply the importance of the gene glnA1.

In other bacteria represented by E. coli, the regulation of GlnA1
is a cascade reaction, mainly dependent on three proteins, PI
protein, PII protein, and Gln D. Among them, PI has adenylyl
transferase activity, which can adenylate or deadenylate GlnA1,
thereby regulating its activity. There are two forms of PII: PII-UMP
and defridulated. PII can promote PI-catalyzed adenylation, while
PI-UMP can promote deadenylation. Different forms of PII are
regulated by the uridylyl transferase GlnD (Read et al., 2007). In
M. tuberculosis, the homologous proteins of the three proteins are
GlnE, GlnK, and GlnD. But there are some differences between its
function and that of E. coli.

According to many studies, both GlnA1 and GlnE are necessary
for the growth of M. tuberculosis. This is specific to M. tuberculosis,
studies have shown that GlnE is not necessary for E. coli and
Streptomyces (Fink et al., 1999). GlnE has both adenylation and
deadenylation activities, which regulate the activity of glutamine
synthetase by transferring AMP to, or removing AMP from GlnA1.
When GlnA1 binds to AMP, it becomes inactive. But studies that
deleted adenylation or deadenylation domains separately showed
that only the former was necessary for growth, and that the absence

of the latter had no significant effect on growth (Carroll et al., 2008).
This may be because if all the highly expressed GlnA1 is in the
active state, the intracellular glutamate and ATP will be rapidly
depleted. Given that glutamate is required for the sole pathway
for M. tuberculosis to assimilate external ammonium, this could
explain the lethality of the mutation.

In addition, GlnD showed adenylyl transferase but not uridylyl
transferase activity in M. tuberculosis, controlling GlnK adenylation
or deadenylation (Williams et al., 2013). Unlike E. coli, GlnK and
GlnA1 adenylation appear to be independent of each other in
M. tuberculosis. Studies have shown that glnD-null mutants do not
show growth defects, although the expression of amt, glnD, and
glnK genes is upregulated under nitrogen deficiency conditions
(Read et al., 2007). Therefore, the role of GlnK and GlnD in
M. tuberculosis nitrogen metabolism needs to be further studied.

Furthermore, it is also reported that GlnA1 has the activity
of acyltransferase in active sites different from typical theories
(Baghel et al., 2011). It means that glnA1 may not only regulate
nitrogen metabolism by controlling the use of sources but also by
modulating the activity of other proteins while being regulated by
GlnE.

2.2. pknG

The GOGAT of M. tuberculosis is composed of two subunits,
GltB and GltD (Cole et al., 1998), which play a very important role
in nitrogen metabolism and adaptation to adverse environments.
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FIGURE 2

Structure of polypeptide chains encoded by key genes. (A–H)
Overall structure of protein or polypeptide chain encoded by glnA1,
pknG, groES, groEL2, ansP2, ansA, argB, and argF. The 3D model of
AnsP2 and AnsA came from AlphaFold protein structure database
(https://alphafold.com). Different colors in a 3D model represent
per-residue confidence score (pLDDT) between 0 and 100 (Dark
blue: pLDDT > 90, Light blue: 90 > pLDDT > 70, Yellow:
70 > pLDDT > 50, Orange: pLDDT < 50). The 3D model of other
proteins came from RCSB PDB (https://www.rcsb.org/).

Some studies have shown that GltB/D catalyzed reactions can
be used to neutralize cytoplasmic pH that is acidified while
consuming host propionate carbon through the methylcitrate cycle.
In contrast, there are defects in M. bovis BCG, which is not
pathogenic and is less adaptable (Lee et al., 2018). Prior to this,
it has been reported that the loss of gltB or gltD in M. bovis
BCG would cause glutamatergic nutrient deficiency, resulting in
inadequate growth of the strain in a medium with glutamate as the
sole nitrogen source (Viljoen et al., 2013). These all implied that gltB
and gltD may be related to the pathogenicity of M. tuberculosis.

Similar to GlnA1 above, GOGAT activity is regulated by
a series of reactions. The glycogen accumulation regulator A
(GarA) plays a regulating role in GOGAT and GDH. On the one
hand, it can activate GOGAT to promote glutamate synthesis,
on the other hand, it can inhibit GDH to inhibit glutamate
decomposition. When GarA is phosphorylated, it becomes inactive,
and metabolism shifts to glutaminolysis. The interconversion
between glutamate and α-ketoglutarate can be regulated by
phosphorylation and the dephosphorylation of GarA.

Further studies revealed that GarA phosphorylation and
dephosphorylation were regulated by Serine-threonine protein
kinase PknG (O’Hare et al., 2008). Disruption of pknG or garA
has opposite effects on metabolism: defects in glutamate catabolism
or intracellular glutamate depletion, respectively. Interestingly,
disruption of GarA phosphorylation sites caused the same defects
as pknG depletion (Rieck et al., 2017). In conclusion, a slight change
in pknG expression can sensitively regulate metabolism through
cascade amplification.

According to the crystal structure, there is no direct amino
acid binding site for glutamine on PknG, so its activity needs the
help of auxiliary components (Scherr et al., 2007). PknG consists of
three distinct structural domains: rubredoxin domain (RD), kinase
domain (KD), and tetratricopeptide repeat-containing domain
(TPRD). The KD is sandwiched between RD and TPRD (Lisa
et al., 2015). Some studies have shown that the activity of PknG
is related to the environment outside the bacteria. The conserved
aspartate-specific solute binding protein GlnH links extracellular
amino acid concentration to PknG activity via the periplasmic
transmembrane protein GlnX. There is a specific binding site for
aspartic acid on GlnH. When amino acids are abundant in the
environment, the conformation of GlnH bound to aspartic acid will
be changed and bind to the transmembrane protein GlnX, and the
signal will be transmitted to the cell, causing the activation of PknG.
Activated PknG phosphorylates and inactivates GarA, thereby
regulating glutamate metabolism (Bhattacharyya et al., 2018). In
addition, studies of PnkG substrates by affinity purification-mass
spectrometry revealed that PknG may regulate many physiological
processes, such as nitrogen and energy metabolism, cell wall
synthesis, and protein translation (Gil et al., 2019). Metabolomic
analysis showed that PknG was necessary to adapt to hypoxia and
maintain REDOX balance, and was associated with a dormancy
state (Khan et al., 2017).

2.3. groES and groEL2

In addition to ammonia, nitrate is also an important source
of nitrogen available to M. tuberculosis. It was a few decades ago,
researchers have found that nitrate can be the only nitrogen source
to support the growth of M. tuberculosis (Hedgecock and Costello,
1962). Nitrate is also essential for the survival of M. tuberculosis
under hypoxic conditions. It can act as a terminal electron
acceptor in the respiratory chain under hypoxic conditions, causing
M. tuberculosis to enter a dormant state instead of dying (Aly et al.,
2006; Via et al., 2008). In addition, nitrite produced by reduction
during nitrate metabolism can protect bacteria from the damage of
reactive oxygen species and reactive nitrogen species in vivo. The
metabolic pathway of nitrate is quite conservative. It is reduced
to nitrite, which is further reduced to ammonia by NirBD, and
then enters the central nitrogen metabolism. The nitrite that is not
immediately reduced during this process is expelled from the cell
(Malm et al., 2009).

Recent studies have found that the reduction of nitrate by
M. tuberculosis requires chaperones expressed by groES and groEL2.
They’re all heat shock proteins (HSP) due to their increased levels
of expression at elevated temperatures. As chaperone proteins,
HSPs are widely and highly conserved in various organisms. They
perform ATP-dependent folding of proteins to ensure cell viability
at different temperatures (Ellis, 1999). The most characterized one
among them is the GroEL/ES complex, or called Cpn60/Cpn10,
from E. coli. GroEL forms two heptamer rings, which are then
stacked back-to-back to form a complex of tetradecamers. GroES,
on the other hand, bind to one or both ends of the GroEL complex
after forming a heptamer ring driven by ATP. Both Cpns are
required for E. coli (Xu et al., 1997; Grallert and Buchner, 2001).
But in M. tuberculosis, the situation is different. Although there
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are also homologous GroEL and GroES co-expressed by groE
operon, there is another HSP in M. tuberculosis that belongs to
the HSP60 family, commonly referred to as GroEL2. The gene
that encodes the protein is not on groE operon (Qamra et al.,
2005). And experiments showed that when the genes encoding
GroES or GroEL2 were deleted, M. tuberculosis growth was
completely inhibited. However, the lack of GroEL only prevented
granulomatous inflammation in infected mice or guinea pigs (Hu
et al., 2008). In addition, unlike E. coli, neither GroEL nor GroEL2
forms tetradecamers in M. tuberculosis cells, but exists as oligomers
(Qamra et al., 2004). Crystal structures show that GroEL2 forms
dimers in M. tuberculosis (Qamra and Mande, 2004). Furthermore,
it has been proposed that GroEL2 has only weak ATPase activity
and can function in an ATP-independent mode (Qamra et al.,
2004). This may be due to the slower growth of mycobacteria, which
helps it survive in harsh environments such as hypoxia and poor
nutrition. The HrcA acts as a transcriptional repressor to block the
expression of groES and groEL2 though binding to their cognate
DNA elements. Together with the pup-proteasome system, they
regulate nitrate utilization. When the pup-proteasome system is
absent and HrcA cannot be degraded, M. tuberculosis is deficient in
nitrate utilization (Becker et al., 2019). Furthermore, the GroESL2
complex may also be able to fold other proteins involved in nitrogen
metabolism. Researchers can explore the role of this regulatory
mechanism in other pathways and there may be more discoveries.

2.4. ansP2, ansA, and Rv3722c

Asparagine is also important or even known as one of the
best nitrogen sources for M. tuberculosis. There should be systems
in place to transport and utilize this amino acid. It has been
previously reported that M. tuberculosis can capture aspartate
through membrane transporters and use the amino as a source
of nitrogen during infection. Interestingly, AnsP2 (Rv0346c), the
homolog of AnsP1 whose expression is markedly induced in the
lungs of patients (Rachman et al., 2006), was recently predicted
to be an asparagine transporter. However, although the growth of
the knockout strain was affected when asparagine was used as the
sole nitrogen source, the pathogenicity to mice was not reduced
(Gouzy et al., 2014), suggesting that there may be other unknown
transporters waiting to be discovered.

There are also some new achievements in the study of
asparaginase. This enzyme was discovered decades ago in
various mycobacteria, including M. tuberculosis (Kirchheimer and
Whittaker, 1954). The AsnA/Rv1358c was previously found to
hydrolyze aspartate in vitro in Mycobacterium bovis (Cai et al.,
2012), and its homolog in M. tuberculosis was recently found to
perform the same function. The activity of AsnA/Rv1358c has been
reported and annotated, indicating that Rv1358c, as a secretory
protein, can help M. tuberculosis resist an acidic environment by
hydrolyzing asparagine to aspartic acid and ammonia. In addition,
it is also recognized to induce stress to primary immune cells
and compromise the host immune response (Gouzy et al., 2014;
Kataria et al., 2021). Compared with central nitrogen metabolism,
the research in this area is less and still in its infancy. Studying
the function of genes involved in this metabolic pathway is an
alternative research direction in the future.

In addition, as mentioned above, Glu is the primary portal
of nitrogen assimilation and 27% of nitrogen is distributed via
Asp for the dedicated biosynthesis of several cofactors, nucleotides,
and amino acids (Reitzer, 2004). It highlights the importance
of aspartate aminotransferase which connects metabolisms of
glutamate and aspartate. Gratifyingly, Rv3722c was found to encode
the main aspartate aminotransferase in M. tuberculosis (Jansen
et al., 2020). What’s more, Rv3722c belongs to a recently described
and structurally distinct subclass of AspATs, designated type Ic,
whose members are absent in humans and almost exclusively
present in bacteria (Son and Kim, 2016; El-Gebali et al., 2019). It
lays an avenue between carbon and nitrogen metabolisms.

2.5. Gene of arginine synthesis

Mycobacterium tuberculosis preserves most of the essential
nutrient synthesis pathways, allowing it to survive in a variety
of nutrient-deficient environments, which may be one of
the important reasons for its success. In previous studies,
M. tuberculosis strains deficient in leucine or glutamate showed
reduced growth but did not die (Hondalus et al., 2000; Lee
et al., 2006). Only the absence of methionine or arginine causes
bactericidal effects (Berney et al., 2015). Strains with knockdown
of argB or argF, coding two key enzymes in the de novo arginine
synthesis pathway, are unable to grow in an arginine-deficient
medium. Of particular interest, although M. tuberculosis has
two carriers for arginine transport and sufficient amino acids
in host serum, this cannot compensate for the absence of de
novo arginine synthesis (Tiwari et al., 2018). This was reflected
in the experimental results that when argB-or argF-deficient
M. tuberculosis was injected into mice, the mutants failed to
replicate. It has previously been reported that Mycobacterium bovis
cannot utilize in vitro arginine as the sole nitrogen source (Peteroy-
Kelly et al., 2003). Given the similarity between the two bacteria,
this may imply that M. tuberculosis is unable to utilize or only
inefficiently transport exogenous arginine. In addition, oxidative
damage caused by ROS accumulation was observed in argB or argF
null mutants, which is the bactericidal mechanism of the commonly
used anti-tuberculosis drug isoniazid (Middlebrook et al., 1954;
Dhandayuthapani et al., 1996), suggesting the research direction of
new bactericidal or adjuvant drugs. And since there is no metabolic
pathway for de novo arginine synthesis in the body, it might be a
target with fewer side effects.

3. Inhibitors of nitrogen metabolism

After long-term studies, a variety of anti-tuberculosis drugs are
being used in clinical practice. For drug-sensitive M. tuberculosis,
the combination of several common drugs, such as rifampicin,
isoniazid, pyrazinamide and ethambutol, can achieve good results.
But because of the existence of the dormant state, many patients
suffer from a long course of treatment and easy to relapse. In
addition, the large number of multi-drug resistant bacteria also put
forward an urgent need for the development of new drugs. The
inhibitors involved and their dosages are shown in Table 1 and the
docking view of ligands and proteins is shown in Figure 3.
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3.1. Inhibitor of glutamine synthetase

As one of the most important enzymes in central nitrogen
metabolism, glutamine synthetase is a natural candidate drug
target. In addition, although GlnA1 is also present in humans, its
homology with M. tuberculosis is low, less than 20% (Krajewski
et al., 2008). Therefore, drugs developed with this target will
have limited risks of on-target in vivo toxicity. Earlier drugs
were mostly glutamine analogs that competitively bind glutamine
synthetase. For example, L-methionine-Sr-sulfoximine (MSO) has
been reported to reduce the number of M. tuberculosis in the lungs
and spleen of diseased animals, and can synergize with isoniazid
and ascorbic acid to improve the efficacy. As expected, MSO
showed high selectivity for M. tuberculosis protein. The compound
was 100-fold less active against human glutamine synthetase
(Harth and Horwitz, 2003). Unfortunately, although the drug
markedly reduced the amount of poly real–L–glutamate/glutamine
cell wall structure in M. tuberculosis, the drug can’t cross the
cell wall of mycobacteria. Therefore, only extracellular glutamine
synthetase can be inhibited, but the effect on cellular glutamine
synthetase is very small (Harth and Horwitz, 1999). For other
mycobacteria, there is few report about the antibacterial efficacy
of MSO. However, in vitro biochemical result shown that MSO
can largely inhibit the enzymatic activity of glutamine synthetase
in Mycobacterium avium, the representative strain of non-
tuberculosis mycobacteria (NTM) (Alvarez and McCarthy, 1984).

Consider the process catalyzed by glutamine synthetase, ATP
phosphorylates glutamate to form an intermediate, and then the
amino group replaces the phosphate group to form glutamine,
glutamine synthetase functions as an ATP-dependent process.
Drugs that interact with ATP binding have been developed in
recent years. Bedaquiline (BDQ), the first new drug approved

in decades, is an inhibitor of M. tuberculosis ATP synthase.
As expected, there has been some evidence supporting the
synergy between MSO and BDQ (Wang et al., 2019). Several
bisphosphonic acid derivatives have been reported to have
potential as new drugs, and given their bone-targeting properties,
these compounds are promising for the treatment of bone
tuberculosis (Kosikowska et al., 2016). In addition, 4-(2-Tert-
Butyl-4-(6-Methoxynaphthalen-2-Yl)-3 h-Imidazol-4-Yl) pyridin-
2-Amine was also found to has antibacterial activity by high-
throughput screening (Gising et al., 2012) (the drug-target
interaction is shown as Figure 3A). However, it is highly toxic to
human cells, so its specificity needs to be enhanced to develop its
clinical use.

Recently, it has been reported that the anticancer drug linsitinib
can act as a competitive inhibitor of ATP binding and affect GlnA
activity, thereby inhibiting the growth of M. tuberculosis. It can also
enhance the resistance to M. tuberculosis by activating autophagy
in host cells. Similarly, it also showed a certain synergistic effect of
bedaquiline (Wang et al., 2022). As a drug developed in the past,
its safety is relatively guaranteed. However, its anti-tuberculosis
effect needs to be strengthened and further optimized in subsequent
studies.

These molecules with different roles and different sources
provide a broad prospect for the development of new drugs.

3.2. Inhibitor of PknG

As mentioned in the previous content, PknG is related to
many physiological processes in M. tuberculosis, participating in
the regulation of various metabolism, and its metabolites connect
carbon metabolism and nitrogen metabolism. In particular, it is
associated with the survival and dormant state of M. tuberculosis

TABLE 1 Chemical inhibitors targeted to nitrogen metabolism.

Name Structural formula IC50 MIC Target References PubChem ID

L-methionine-SR-sulfoximine / 10 µM Glutamine synthetase Harth and Horwitz, 2003 801860

4-(2-Tert-Butyl-4-(6-
Methoxynaphthalene-2-Yl)-3 h-
Imidazole-4-Yl)
pyridine-2-Amine

0.049 µM 2 µg/ml Glutamine synthetase Gising et al., 2012 56928064

AX20017 0.39 µM / PknG Scherr et al., 2007 673481

Doxorubicin 56 µM / Asparaginase Kataria et al., 2019 31703

Pranlukast 2.7 µg/ml 5.2 µg/ml ArgJ Mishra et al., 2019 4887

“/” Means the values are not mentioned in the references. The structure of L-methionine-SR-sulfoximine was drawn using Chemdraw and others came from PubChem database (https:
//pubchem.ncbi.nlm.nih.gov/).
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FIGURE 3

Docking view or co-crystal complexes of ligands and proteins. (A) Co-crystal complexe of 4-(2-Tert-Butyl-4-(6-Methoxynaphthalene-2-Yl)-
3 h-Imidazole-4-Yl) pyridine-2-Amine (PubChem-ID: 673481) as ligand and GlnA1 (Co-crystallization PDB-D: 3ZXV). Sticks representation of
residues with 4Å around ligand in a zoomed view. (B) Co-crystal complexe of ax20017 (PubChem-ID:673481) as ligand and PknG (Co-crystallization
PDB-D: 2PZI). Sticks representation of residues with 4Å around ligand in a zoomed view. (C) Docking view of Pranlukast (PubChem-ID:4887) as
ligand and ArgJ (PDB-ID: 3IT4). Sticks representation of residues with 4Å around ligand in a zoomed view.

under hypoxia. This is crucial for the survival of M. tuberculosis
in macrophages and the development of drug resistance. It is
well known that many TB drugs, such as isoniazid, mainly target
bacteria in the replicating phase but have little effect on bacteria in
the non-replicating dormant state. Therefore, PknG as a drug target
may play a role in killing bacteria and weakening drug resistance, so
as to achieve a better therapeutic effect.

Compound AX20017 was reported to occupy the binding site
for ATP whose structure is out of the ordinary, inhibits PknG,
and causes mycobacterial transfer into lysosomes, thereby killing
mycobacteria (the drug-target interaction is shown as Figure 3B).
Moreover, kinase-dependent processes within the macrophage host
cell, such as the capacity to proliferate, synthesize proteins, and
phagocytose do not interfered, so as the cellular morphology
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demonstrating that AX20017 is a highly specific inhibitor of
PknG (Scherr et al., 2007). To improve the affinity, selectivity
and potency of AX20017, the cyclopropyl ring which does not
exploit binding capacity fully may be an alternative modification
site. In recent years, although some studies have found RO9021
and a few flavonoids by computer virtual screening and simulation
docking, no subsequent experiments based on cells or animals have
been found (Qasaymeh et al., 2019; Arica-Sosa et al., 2022), so
its effectiveness still needs to be verified and it is still far from
clinical use. It is worth nothing that targeting PknG can also
cause the growth inhibition of M. bovis, which has been proven
through several independent reports (Singh et al., 2015; Kanehiro
et al., 2018; Kidwai et al., 2019). The similar sequence of PknG
among MTBC therefore let it become a promising broad-spectrum
anti-mycobacteria drug target.

3.3. Inhibitor of asparaginase

As mentioned above, asparagine is one of the important
nitrogen sources for M. tuberculosis. Asparaginase is mainly
categorized into type I, II, and III. Type I and II are found
in most bacteria, while type III, which has a distinct mode of
catalysis is usually found in mammals and plants (Nomme et al.,
2012). This difference makes the enzyme a good candidate as
a drug target. Specific inhibitors targeting the active site of this
enzyme, the potential inhibitors were predicted and screened from
ZINC database, TCM database and FDA-approved drug database,
according to the structure. Excitingly, M3 (ZINC 4740895), M26
(ZINC 33535) and doxorubicin were screened out and showed
satisfactory results in M. smegmatis (Kataria et al., 2019). The
experiment in M. tuberculosis has not been reported, which
is worthy of further study. The result can also be extended
to Salmonella typhi, H. pylori, and L. donovan, which encode
significant overlaps in the conserved catalytic residues. This makes
it possible that these compounds could be used as a basis for further
development of broad-spectrum antimicrobial drugs to help
patients with multiple bacterial co-infections. It was also reported
that three kinds of phytocompounds, Physalin D, Withanone, and
Withaferin A, can competitively bind asparaginase (Sharma et al.,
2022). However, the effect on M. tuberculosis remains to be studied.

3.4. Inhibitor of arginine synthesis

Arginine is very important for the growth of M. tuberculosis,
and the abundant arginine in the outside world cannot compensate
for the influence caused by the blockage of its own synthetic
pathway. In addition, there is no metabolic pathway for de novo
arginine synthesis in human body. These make it possible to find
drug targets in arginine anabolic metabolism. Most of the substrates
for arginine synthesis are common small molecules, so if they are
used as the targets of inhibitors, the drugs may have serious off-
target effects. However, the allosteric sites of enzymes required
for metabolism are less conserved in evolution, which can be
used as drug-targeting sites to enhance specificity and reduce side
effects (Wenthur et al., 2014). Recently, it has been reported that
Pranlukast (PRK) can act as an allosteric inhibitor of ArgJ during

arginine biosynthesis in M. tuberculosis and inhibit its ornithine
acetyltransferase activity, thereby inhibiting bacterial survival and
virulence (Mishra et al., 2019) (the drug-target interaction is
predicted as shown in Figure 3C). Further metabolomics studies
showed that PRK caused significant differential expression of 50
metabolites (Yelamanchi et al., 2022). This will contribute to a
deeper understanding of PRK-mediated metabolic changes and
provide a basis for the development of new therapeutic approaches.
Because it has already been approved by the FDA, PRK could be
ready for use much faster than a new drug. And as an approved
drug, there are no excessive concerns about its safety, and patients
are more likely to accept it.

4. Way forward

In this review, we describe some of the key genes involved
in nitrogen metabolism in M. tuberculosis using ammonium and
nitrate as inorganic nitrogen sources and some amino acids as
organic nitrogen sources. Some inhibitors or drugs targeting
nitrogen metabolism were also introduced. The action sites of
the inhibitors are mainly some key enzymes in the metabolic
process, which also indicates the direction of developing new anti-
tuberculosis drugs in the future. Many new inhibitors have been
discovered, giving hope for the development of new anti-TB drugs.
However, many research results remain at the level of computer
prediction or biochemical experiments, and the subsequent results
of cell and animal experiments are lacking, which may be related
to the greater risk of Mycobacterium tuberculosis and the higher
requirements of laboratory safety level for research. Considering
previous studies have reported some nanomolar inhibitions of
GlnA1 inhibitors, none of which were active against whole-cell
M. tuberculosis (Couturier et al., 2015), cautious optimism is
warranted.

In addition, it is worth noting that some drugs not only
act on the metabolic process of M. tuberculosis, but also
kill the pathogen by affecting host cells. Recent studies have
reported that mitochondrial metabolism regulated by mTOR limits
mycobacteria-induced cytotoxicity (Pagán et al., 2022) suggesting
that screening new anti-TB drugs from existing drugs that target
mTOR may be a good direction. And compared with developing
new drugs, existing drugs have great advantages in terms of safety
and time to approval.

Like we have been through in the past, the clinical application
of nitrogen-targeted antimicrobials will inevitably lead to drug
resistance in the future. However, finding a synergistic drug
combination includes 1, 2, or more extra antibiotics could be an
effective way to overcome drug resistance. The previous research
from our team has shown that inhibiting both ATP synthesis and
glutamine synthesis causes a synergistic killing effect (Wang et al.,
2019), it is therefore worth to keep exploring the combination
between BDQ and other nitrogen metabolism targeted drugs, since
ATP is the crucial factor driving hundreds of biochemical reactions
to maintain the bacterial nitrogen homeostasis.

There are still many possible drug targets that have not been
studied or rarely studied, leaving a wide range of possibilities for
new drugs. However, due to the complexity of metabolic processes
and the need to consider the effects of drugs on the patient’s body,
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the real development of effective and safe drugs will still be a long
and arduous process.
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