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In the present scenario, the uncontrolled and irrational use of pesticides is 

affecting the environment, agriculture and livelihood worldwide. The excessive 

application of pesticides for better production of crops and to maintain 

sufficient food production is leading to cause many serious environmental 

issues such as soil pollution, water pollution and also affecting the food chain. 

The efficient management of pesticide use and remediation of pesticide-

contaminated soil is one of the most significant challenges to overcome. 

The efficiency of the current methods of biodegradation of pesticides using 

different microbes and enzymes depends on the various physical and chemical 

conditions of the soil and they have certain limitations. Hence, a novel 

strategy is the need of the hour to safeguard the ecosystem from the serious 

environmental hazard. In recent years, the application of nanomaterials has 

drawn attention in many areas due to their unique properties of small size 

and increased surface area. Nanotechnology is considered to be a promising 

and effective technology in various bioremediation processes and provides 

many significant benefits for improving the environmental technologies using 

nanomaterials with efficient performance. The present article focuses on and 

discusses the role, application and importance of nano-bioremediation of 

pesticides and toxic pollutants to explore the potential of nanomaterials in the 

bioremediation of hazardous compounds from the environment.

KEYWORDS

pesticides, bioremediation, nano-bioremediation, microbial degradation, 
environment

Introduction

The use of pesticides increased in Indian agriculture with the green revolution between 
years 1967 and 1972. The use of pesticides played an important role in increasing crop 
production, but on the other hand, it has raised several serious issues related to human and 
animal health. Pesticides have been used for protection from pests but the fact is that only 
1% of pesticides used could target the pests and the remaining cause contamination of soil, 
water and air (Sun et al., 2018; Figure 1).
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Pesticides used for crop protection not only integrate into the 
food chain but also affect the soil health by affecting the soil 
microbiome and its enzyme activity (Degeronimo, 2015). Moreover, 
~40% of applied pesticides are converted into transformed products, 
which may remain in the soil for a longer period, even for a decade 
(Erinle et  al., 2016). These transformed products contaminated 
groundwater via leaching (Robinson and Piatt, 2019). Pesticide 
residues entered into the food chain affect human health by 
targeting several organs for example they affect the endocrine 
system like the thyroid gland (Huang H.S. et  al., 2017), cause 
neurological disorders (Schmidt et al., 2017), have direct cytotoxic 
effects (Erdoğmuş et al., 2015) and even may increase the rate of 
mutations in human beings (Teodoro et al., 2019).

Chlorpyrifos (Pesticide of the organophosphate group) has 
been reported to cause a reduction in children’s intelligence 
quotients (Sun et al., 2018). Pesticide residues also affect animal 
health and productivity. In human beings, pesticides cause health 
problems while in animals also, various disease conditions like 
cancer, immunosuppression (Nicolopoulou-Stamati et al., 2016), 
birth defects, hepatic and nephrotoxicity (Choudhary et al., 2018) 
have been reported in the farm as well as in wild animals. As 
pesticides target the endocrine system, several reproductive and 
fertility problems have been encountered in farm animals (Marlatt 
et al., 2022). Pesticides not only affect the female reproductive 
system (Ramakrishna et al., 2022) but also are detrimental to the 
male reproductive system, causing toxicity to the sperm plasma 
membrane (Torres-Badia et al., 2022). Pesticides have deleterious 
effects on the biodiversity of invertebrates, mainly insects have 
been observed in many countries in the last few decades (Vogel, 
2017). Due to the indiscriminate use of pesticides, agricultural 
land used by winter migrating birds is reduced and resulting in a 
significant reduction in the bird population. Some pesticides like 
imidacloprid reduced the reproductive capacity and the survival 
rate of birds like the white crowned sparrow (Zonotrichia 
leucophrys; Eng et  al., 2017). Adverse effects of pesticides like 
neonicotinoids were observed in bees, bumble bees and other 

useful insects (Phelps et al., 2020). Even the bats were affected due 
to an omnivorous diet and exposed to pesticide residual 
contamination (Oliveira et al., 2020). Due to a reduction in the 
population of bees, birds and beneficial insects, pesticides have 
made a tremendous economic impact on the environment (Ali 
et al., 2021) and according to a few estimates, this loss may be 100 
times more than the money spent on the conservation of the 
global environment and biodiversity (Organization for Economic 
Co-operation and Development (OECD), 2019). Around 8,000 
species of insects are at the risk of extinction and in some countries 
like Germany, the insect population has been reduced by 75% in 
the last three decades (Hallmann et al., 2017). Pesticides not only 
affected the natural habitats and biodiversity of places where they 
were used, but as an effect of wind and evaporation, they could 
reach the atmosphere and contaminate the sites which were 
located far away (De Neri, 2020). Various studies have concluded 
that the use of pesticides for a longer period may affect soil health 
by interacting with the microflora, microfauna, and macrofauna 
of the soil (Dahiya et al., 2022).

Keeping these facts in mind, essential measures should 
be  taken for the remediation of pesticides from soil and the 
environment. In this article, we  have focused and discussed 
the significant.

The objective of this review article is to highlight the 
importance, impact and significant applications of the 
nanomaterials in the bioremediation process, for the effective 
remediation of toxic pollutants such as pesticides and heavy 
metals from the environment.

Techniques of remediation

The soil has its capacity for degradation of compounds 
used in the pesticides up to a certain extent but a high 
concentration of these compounds is toxic for the soil 
microflora involved in the bioremediation and therefore needs 
necessary interventions in this area (Cheng et  al., 2016a). 
Several techniques based on physical, chemical and 
physicochemical principles have been used for the 
bioremediation of the soil (Baldissarelli et al., 2019).

Physiochemical processes of 
bioremediation

Advance oxidative process

Technique of advanced oxidative process has been used as a 
pretreatment or treatment technique. This technique works on the 
principle of oxidation of polluting compounds into water, carbon 
dioxide and inert compounds. Ambient temperature and pressure 
are the pre-requisites for this technique (Cheng et al., 2016b). 
Though this technique has shown promising potential, most of the 
studies have been conducted in laboratory conditions and need 

FIGURE 1

Schematic representation of the effects of pesticides on 
environment.
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further modification for scale-up in field conditions. Economic 
aspects of the application of this technique are also yet to 
be  studied (Morillo and Villaverde, 2017). There are several 
variations of an advanced oxidative process like Fenton’s reaction, 
photocatalysis, plasma oxidation and ozonization, which have 
been tested for soil bioremediation.

Fenton process

This process is based on the oxidation of iron ions (Fe2+) in a 
medium containing hydrogen peroxide to produce a reactive 
hydroxyl radical. Hydroxyl radicals further oxidize the organic 
pollutants into less harmful compounds. Apart from hydrogen 
peroxide, some other reagents like permanganate (MnO4

−), 
persulfate (S2O8

−) and ozone have also been used but each reagent 
exhibited its own merits and demerits (Cao et al., 2013; Cheng 
et  al., 2016a). This technique has a few advantages as it may 
be  used in situ (onsite) or ex situ (offsite) as well as it is 
environment friendly and easy to operate (Cao et al., 2013) but the 
application of this technique reduces the pH of the soil (pH < 4), 
which may affect the soil microbiome. Fenton’s method has mainly 
used an aqueous media for the treatment of groundwater or 
wastewater (Rosas et al., 2014). For the degradation of chlorinated 
pesticides like DDT (Dichlorodiphenyltrichloroethane), Fenton’s 
method was used in combination with other oxidative systems like 
zero valence ion, Ethylene diamine tetraacetic acid, air (ZVI/
EDTA/Air; Cao et  al., 2013) with the amino ZVI/Air system 
(Zhou et  al., 2014) and with trisodium citrate (Vicente et  al., 
2012). Though the variety and efficiency of Fenton’s reaction to 
degrade contaminants and pollutant have shown promising 
potential but the studies using this technique for mass soil 
contaminants treatment is still the same (Baldissarelli et al., 2019).

Heterogeneous photocatalysis

In this technique, metal oxides like titanate and zinc oxide are 
based as photosensitizers in the photo induce process. As they 
have semi filled valence band structure, they cause displacement 
of electrons from hydroxyl radicals of pollutant compounds 
(Santos et al., 2015). The efficacy of this technique depends on 
several factors like soil morphology, surface, pH, particle size, soil 
depth and light intensity (Castro et al., 2016). Though the reuse of 
these metal oxides is laborious yet this technique has been 
demonstrated by some workers in their studies (Sharma 
et al., 2015).

Plasma oxidation and ozonation

Plasma oxidation is a technique of production of electrons by 
providing energy and space for reactive molecules. This technique 
may be  used for the oxidation of various compounds like 

hydrocarbons and pesticides (Cheng et  al., 2016a) but the 
requirement of a high energy source is a limitation of this 
technology. Therefore, some modifications were made to this 
technique and with low energy consumption; technique was used 
for remediation of non-miscible liquid pesticides from the soil in 
a short reaction time (Aggelopoulos et al., 2015). This technique 
has been used for the remediation of various pollutants like 
Pentachlorophenol (Barjasteh et al., 2021), pentanitrophenol and 
glyphosate (Wang et al., 2014).

Soil washing

The technique of soil washing was used as a physical method, 
chemical method, or a combination of the physical and chemical 
methods for the treatment of organic and inorganic contaminants 
(Usman et al., 2022). This technique was found more effective in 
soil having high permeability means containing a good ratio of 
sand and gravel (>50%; Morillo and Villaverde, 2017). Though the 
soil washing technique was used effectively, its application resulted 
in the production of wash solution containing a high concentration 
of diverse pollutants and xenobiotics. Soil washing was tested in a 
combination with a few other techniques like Fenton oxidation to 
increase the efficacy of soil washing. A combination of soil 
washing (Sodium dodecyl sulfate as surfactant) and electrolysis 
was tested to remove residual pesticides (Atrazine; dos Santos 
et al., 2015), β methyl cyclodextrin (MCD) in combination with 
sunflower oil was used to remove the organochlorine pesticides 
from the soil (Ye et al., 2014).

Chemical extraction-solvent extraction

The technique is based on the extraction of soil contaminants 
by using supercritical fluid. Extraction using a solvent system like 
methanol has high solvency and recovery. In this method, carbon 
dioxide is passed through contaminated soil and assist 
solubilization of toxic compounds in a solvent system like 
methanol (Bielská et al., 2013). The solvent system is having high 
solvency, and may recover a wide variety of pollutants. Though the 
efficacy of removal of pollutants depends on several factors like 
the type of extraction, and soil properties (pH, organic content, 
etc.). In a selective extraction system, several organic compounds 
were extracted using carbon dioxide as an extraction fluid (Bielská 
et  al., 2013). In an alternative method, Forero-Mendieta et  al. 
(2012) used a combination of carbon dioxide and methanol as a 
solvent and co-solvent system and remove 31 pesticides like 
Iprodione, tetradifon, and acephate with an efficacy of more than 
70%. Supercritical fluid extraction has been used in combination 
with dispersive liquid–liquid micro extraction (DLLM) to detect 
organophosphorus pesticides like Thionazin, Sulfotep, and 
disulfoton in the soil. The pesticide removal was reached up to 
95% with supercritical CO2 under the conditions of 150 bar, 60°C, 
10 min of static extraction and 30 min of dynamic extraction 
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(Naeeni et al., 2011). Veterinary pharmaceutical products and 
fungicides were also detected and recovered from the soil by using 
the solvent extraction technique (Chitescu et  al., 2012). A 
combination of soil washing techniques with solvent extraction 
methods could remove DDT from the soil up to 94% (Mao 
et al., 2013).

Electrokinetics

Electrokinetics, electrokinetic soil processing, or 
electromigration involves the application of a continuous and 
low-intensity current between the electrodes in the soil. Electric 
current causes electrolysis of soil, water and makes acidic solutions 
close to the anode. One of the acid fronts moves from the anode 
to the cathode, which results in the desorption of soil contaminants 
(Gomes et al., 2014). This technique results in the movement of 
soil pollutants and their concentration in a small area (Bocos et al., 
2015). This method causes minimum disturbance in the soil 
environment and is economically feasible. This technique involves 
two processes; electromigration causes the removal of polar 
contaminants (ions) while electroosmosis removes non-polar 
contaminants (dos Santos et al., 2016). This technique is mainly 
used in fine granulometry soils, which have low hydraulic 
conductivity and large specific surface area (Morillo and 
Villaverde, 2017). The pesticides like Molinate and Bentazone 
were removed from the soil by the process of Electrokinetics, 
molinate was removed as catholyte while bentazone was found to 
be present on both of the electrodes (Ribeiro et al., 2011) but for 
the removal of the compounds like Pentachlorophenol (PCP), 
electrokinetics was not found to be very efficient technique and 
required techniques like permeable reactive barriers for efficient 
removal (Li et al., 2011). Electrokinetics could efficiently remove 
the commonly used pesticides 2, 4 D (2,4-dichlorophenoxyacetic 
acid) from the soil and reduced the concentration of 2,4 D in soil 
up to 80% within 60 days of treatment (Risco et  al., 2015). 
Different configurations of electrodes have been tested to increase 
the efficiency of electrokinetics among which the formation of one 
anode and six cathodes was found more efficient than one cathode 
and six anodes (Risco et al., 2016). Solar power energies and wind 
energies were used as an alternative to conventional electric 
energy sources for the electrode to reduce the cost of the operation 
(Souza et al., 2016).

Among all the physiochemical processes described advanced 
oxidation process especially the Fenton technique may 
be considered to be the best method as it may be used for the 
bioremediation of a wide range of contaminants including many 
organic contaminants, it can be used in the area of contaminants 
or out of it. It is environmentally friendly and requires a shorter 
treatment time. It can be operated easily with low operation costs 
(Baldissarelli et al., 2019). But even Fenton oxidation suffers from 
a few limitations as it causes a reduction in soil pH, oxidizes 
harmless organic material of the soil and immobilization Fenton 
technique of inorganic reactive species on the treatment wall 

(Cheng et  al., 2016a). Alternative techniques such as 
biodegradation, and using microorganisms have been used for 
effective decontamination of soil and water.

Chemistry and classification of 
pesticides

Pesticides can be classified by several means depending on the 
origin of the Pesticide, chemical properties, and pest controlling 
capacities. Based on their origin, pesticides may be classified into 
two groups; biopesticides and chemical pesticides. Biopesticides 
may further be  divided into three subgroups, i.e., microbial, 
biochemical and plant-incorporated protectants. Chemical 
pesticides can be classified based on their nature (organic and 
inorganic) and based on ionization properties (ionic and 
non-ionic). In organic and inorganic based classification, 
inorganic pesticides are mainly mineral derivatives while organic 
pesticides may be  divided further into four groups; synthetic, 
plant based, animal based and microorganism based. Synthetic 
organic pesticides are of three types; organophosphates (like 
chlorpyrifos), organochlorine (like Lindane) and carbamates (like 
carbaryl). Plant-based organic pesticides can be divided into two 
subgroups; synthetic (like Allethrins) and natural (like Nicotine). 
Animal-based organic pesticides can be divided into two groups; 
synthetic (Fish oil) and natural (dried blood). Microorganism-
based organic pesticides are of three types; bacterial (Bacillus 
thuringiensis), fungal (Pseudozyma flocculus) and viral 
(Baculovirus; Giri et al., 2021). Based on the classification of their 
ionization properties, pesticides can be divided into two groups; 
ionic and non-ionic pesticides. Ionic pesticides are divided into 
four groups, cationic (like Chlormequat, Diquat), basic (like 
Atrazine, Cyanazine), acidic (like Laxynil, Fenae) and 
miscellaneous (like Cacodylic acid, Terbacil). Non-ionic pesticides 
can be classified into several subgroups, chlorinated HCs (like 
DDT, Lindane), organophosphates (Ethion, Methyl Parathion), 
Dinitroanilines (like Oryzalin, Nitralin), Carbanilate (like 
Chlorpropham, Swep, Barban), Benzonitrile (like Dichlobenil), 
Ester (eg methyl ester of Chloramine), Acetamides (like CCDA), 
Carbothioate (like Molinate), Thiocarbamates (Metam and 
Ferbam), Anilides (Alachlor, Propanil), Urea (cycluron) and 
Methyl carbamates (carbaryl dichromate, Terbutol; Giri 
et al., 2021).

Bioremediation of pesticides

The term bioremediation deals with the methods of 
degradation of pesticides by using the metabolic capacities of 
microbes. In this process, natural or genetically modified microbes 
utilize pesticides for their metabolic activities and convert them 
into environmentally benign metabolites (Karimi et al., 2022). The 
process of bioremediation can be classified into two groups, i.e., 
Bio-stimulation and Bio-augmentation.
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Biostimulation

In the process of biostimulation, microbial activity is 
enhanced by the addition of vitamins, substrate, oxygen and other 
nutrients. The addition of stimulatory nutrients results in swift 
depletion of the available stock of inorganic nutrient and result in 
pesticide degradation (Giri et al., 2021). To stimulate the process 
of biostimulation by microbes, water soluble nutrients like sodium 
nitrate, potassium nitrate, and potassium hydrogen phosphate 
have been added to the fertilizer (Adams et al., 2015). The ratio of 
Nitrogen: Phosphorous is maintained between 1:5 and 1:10 for 
1%–5% N by weight of pesticide for the degradation of pesticides 
but if the site has been contaminated with the different types of 
pesticides. This ratio may not be  sufficient enough for the 
biostimulation process. Fernandes et al. (2018) used Pseudomonas 
species for the degradation of atrazine in the soil at very high 
concentrations. For biostimulation, citrate at 4.8 mg/g of soil was 
used. The addition of citrate stimulated the bioremediation 
process and the efficiency of removal of atrazine was found to 
be 79.00 to 87%.

Bio-augmentation

Bio-augmentation involves the addition of an exogenous 
micro population with the specific remediation efficacy into a 
polluted site. The native microbes are added to the contaminated 
site may be on site or off site to eliminate hazardous compounds. 
The process of bio-augmentation has been used for the 
degradation of a wide range of pollutants like NH3, H2S, organic 
compounds etc. from the soil and water (Hassan et al., 2022). The 
pre-grown microbial culture enhances the microbial population 
at the contaminated site and reduces the clean-up time and cost of 
the operation (Giri et  al., 2021). Wang et  al. (2013) removed 
atrazine from highly contaminated soil (atrazine concentration 
400 mg/kg soil) by using Arthrobacter sp-based bio-augmentation. 
The process displayed up to 90% removal of atrazine from the soil. 
Bacillus cereus was used for the removal of chlorpyrifos 
contamination in the soil and the average degradation was found 
to be 88% within 8 days of the treatment (Farhan et al., 2021). The 
strains of Pseudomonas bacillus subtilis were used in the 
bio-augmentation process and removed 95% of Chlorpyrifos from 
the soil within 15 days of treatment (Gangola et al., 2018).

Dichloro-diphenyl-trichloroethane (DDT) has been banned 
in many countries for its use as a pesticide in agriculture but 
still, in most parts of the world, the residues of DDT are present 
as contaminants in the soil and its detoxification is a challenging 
task. Some fungus like Gloeophyllum trabeum and Daedalea 
dickinson has been used in the degradation of pesticides from 
the soil (Mathur and Gehlot, 2021). A wide range of pesticides 
has been degraded by the process of bio-augmentation using 
microorganisms. Carbofuran was degraded using 
Syncephalastrum racemosum and the rate of degradation was 
around 75% after inoculation of culture in the soil (de Sousa 

Lira and Orlanda, 2020). Cypermethrin was degraded using 
several bacterial strains from Bacillus, Pseudomonas, 
Streptomyces, etc. and by different fungi such as Aspergillus 
niger, Aspergillus terricola, Trichoderma viride (Maqbool et al., 
2016; Bhatt et al., 2019a). Lindane and Parathion were degraded 
by a bio-augmentation process using Paenibacillus 
dendritiformis and Serratia marcescens, respectively, (Jaiswal 
et al., 2022). Various microorganisms, which degrade different 
pesticides, are enlisted (Table 1).

Factors influencing the 
bioremediation process

Bioremediation of pesticides in the soil is a complex process, 
which involves several interdependent interactions within the soil, 
soil to air, soil to water, and characteristics of the pesticides. The 
rate of bioremediation depends upon interdependent 
physiochemical and biological processes, which are regulated by 
several factors.

TABLE 1 Microorganisms involved in degradation of different 
pesticides.

Microorganism Pesticide Source References

Pseudomonas sp. Cypermethrin Soil Tang et al. (2015)

Bacillus cereus Cypermethrin Soil Narayanan et al. 

(2020)

Sphingomonas sp. Allethrin Wastewater Bhatt et al. 

(2020)

Enterobacter sp. Chlorpyrifos Soil Singh et al. 

(2004)

Sphingomonas sp. Oxyfluorfen Soil Keum et al. 

(2008)

Burkholderia sp. Fenitrothion Soil Hong et al. 

(2007)

Acinetobacter sp. Chlorpyrifos Soil Amani et al. 

(2018)

Ochrobactrum sp. Methyl parathion Soil Qiu et al. (2007)

Bacillus pumilus Chlorpyrifos Soil Anwar et al. 

(2009)

Pseudomonas putida Organophosphate Soil Li et al. (2016)

Burkholderia gladioli Prophenofos Soil Malghani et al. 

(2009)

Bacillus aryabhattai Chlorpyrifos Soil Pailan et al. 

(2015)

Bacillus subtilis FZUL-

33

Acephate Soil Lin et al. (2016)

Aspergillus niger Cypermethrin Soil Bhatt et al. 

(2020)

Trichoderma viridae Cypermethrin Soil Maqbool et al. 

(2016)
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Chemical structure of pesticides

The chemical structure of pesticides plays an important role 
in regulating the rate of bioremediation of pesticides. The 
pesticides having polar groups like C-OH, -COOH, etc. on the 
phenyl ring are more susceptible to microbial biodegradation in 
comparison to halogen or alkyl substituents. Even a minor 
alteration in a structural substituent may cause drastic changes in 
microbial susceptibility (Geed et  al., 2016). In the process of 
bioremediation, oxidation and reduction of active functional 
groups result in their conversion to simple molecules like CO2, 
H2O, Nitrate, Phosphate and NH3 (Sharma, 2020). Chlorinated 
hydrocarbons like DDT are more resistant to bioremediation as 
they have low solubility in water and high absorption affinity in 
soil. On the other hand, compounds like 2-4D and Carbofuran 
can be degraded from the soil by microorganisms in a few days 
within the same class of pesticides; a minor group substitution 
may change the susceptibility of pesticides to microbial 
degradation (Geed et al., 2017).

Pesticide concentration

Pesticide concentration in soil is another important factor in 
deciding the rate of degradation of pesticides in the soil. The 
biodegradation rate depends upon the residual concentration of 
pesticide in the soil and it follows pseudo first order kinetics 
(Zaranyika et  al., 2020). The rate of biodegradation decreases 
proportionally with residual concentration of pesticides

 
d P dt K P[ ] = − [ ]/

where, d[P]/dt = pesticide concentration gradient with respect 
to time; K = biodegradation rate constant.

The half life of pesticides may vary from 10 days to 200 days. 
Pesticides like Inceptisol and Ultimo have half life ranging from 
10.1 to 29.2 days while several pesticides like DDT, endosulfan, 
and atrazine have half life varying from 100 to 200 days. The 
residues of less biodegradable pesticides remain adsorbed on soil 
particles so these are not available for microbial degradation (Giri 
et al., 2021).

Soil types

Soil organic content, pH, the concentration of clay material 
and moisture contents are the important factors, which contribute 
to deciding the rate of degradation of pesticides in the soil (Rasool 
et al., 2022). Adsorption of pesticide residues with soil particles 
reduces the bioavailability of pesticides for the microbes and 
increases the half life of the residues (Giri et al., 2021). Water is 
one of the most important factors, which decides the motion and 
diffusion of pesticide molecules for microbial-assisted 

biodegradation. The rate of biodegradation of pesticides is directly 
proportional to soil moisture content and extremely low in dry 
soil (Chowdhury et al., 2008). Soil aeration and oxygen level also 
affect the rate of pesticide degradation as few pesticides like DDT, 
which is fairly stable in aerobic soil but degrades slowly in 
submerged soils (Raffa and Chiampo, 2021). Soil temperature 
produces a great impact on the stability of molecular conformation 
of the pesticides. It affects the solubility and rate of hydrolysis of 
pesticides in soil samples. The optimum soil temperature of 
microbial degradation ranges from 20°C to 40°C as in this range 
of temperature microbes has maximum activity (Singh 
et al., 2022).

The pH of the soil also affects the rate of bioremediation 
of pesticides. The degradation of the pesticides depends upon 
the activity of the enzymes produced by the microorganism. 
The enzymes have a very narrow range of pH for these 
activities. Most of the bacterial enzymes work at soil pH 
between 6.5 and 7.5. Apart from the activity of microbial 
enzymes produced by a microorganism, pH also influences the 
pesticide adsorption, biotic and abiotic degradation processes 
(Rasool et  al., 2022). The degradation of pesticides also 
depends upon the chemical susceptibility toward hydrolysis by 
acidic or basic pH of the soil (Liu et al., 2015). Soil organic 
content also affects the rate of microbial degradation of 
pesticides. Organic contents increase the rate through 
co-metabolism of pesticides. The organic content of the soil 
also acts as a source of nutrients for the soil microbes. 
Therefore, increases the microbial population rapidly and 
results in an increased rate of microbial degradation of the 
pesticides. The rate of bacterial-mediated biodegradation of 
organochloride was increased with the addition of organic 
carbon sources in the soil (Krohn et al., 2021).

It has been deduced that a minimum of 1% of organic content 
should be  present for effective microbial biodegradation of 
pesticides (Huang et al., 2018). In the case of pesticides, which are 
present in low concentrations in the soil, the co-metabolism of 
microbes has proven an effective measure for bioremediation. The 
organic content of the soil contains co-substrate, which facilitates 
co-metabolism of the microbes (Banwart et al., 2014).

Carriers in bioremediation

To increase the efficacy and rate of bioremediation 
methods of immobilization were introduced. These methods 
limited the mobility of microbes and their enzymes and 
immobilization also enhanced the viability of microbes and 
the catalytic functions of their enzymes. In the process of 
immobilization, the natural activity of microorganisms to 
form biofilm on the surface of various materials was explored. 
Immobilization not only increased the efficacy of the 
bioremediation but also reduced the cost of operation as it 
made multiple uses of biocatalysts possible. It provided a 
stable environment for microbes and reduced the genetic 
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mutations in a microorganism (Mehrotra et al., 2021). Mainly 
five techniques have been used in the process of 
immobilization; these were adsorption, binding on the surface, 
flocculation, entrapment and encapsulation.

Adsorption

In this process, microorganisms are adsorbed on the surface 
of water insoluble carriers by weak bonds. It is a simple and 
economic method but as there is a high probability of cells leaking 
from the carriers to the environment, this method is not 
recommended for the use in case of genetically modified 
microorganisms (Dzionek et al., 2016).

Binding on a surface

In this process, the surface of the carrier is washed with 
buffer, which makes the surface hydrophilic. The microbes 
and enzymes having a negative charge bind with the surface of 
the carrier. In another method of binding; covalent binding, a 
binding agent is required and carriers are chemically activated. 
This method is mainly used for the binding of enzymes 
because binding agents may affect the viability of microbes. As 
the covalent binding is very strong, the leaking of molecules 
(enzymes) is efficiently prevented by covalent bonding (Jiang 
et al., 2022).

Entrapment in the porous matrix

This method has been mainly used in microbial 
bioremediation. As a result of entrapment, microbial cells can 
move within the carrier and prevent the leaking of the cells in the 
environment but allow the exchange of nutrients and metabolites. 
In a heterogeneous carrier system, the population of 
microorganisms is physiologically diverse as the cells located near 
the surface have high metabolic activity. The entrapment method 
has several advantages as it is a non-toxic, economical and highly 
versatile method. It efficiently prevents microorganisms from 
environmental factors. The efficiency of the entrapment method 
depends on the selection of a suitable ratio of the size of pores and 
cell size (Mehrotra et al., 2021).

Encapsulation

In this method, immobilized particles are separated from the 
environment using a semi-permeable membrane. This method 
provides significant protection to microbes against external 
environmental conditions but the limited permeability of the 
membrane may affect the viability of the cells (Priyanka 
et al., 2022).

Materials used for bioremediation

The method to be used for the immobilization process should 
sustain a few properties. It should be non-toxic, economic, stable, 
insoluble and regenerative. Carriers to be used for adsorption and 
binding on the surface should have high porosity (Dzionek et al., 
2016). Carriers can be classified into two groups; natural carriers 
and synthetic carriers. Each group can be  divided into two 
subgroups; organic and inorganic. Natural organic carriers include 
alginates, chitosan, sawdust, charcoal, plant fibers, bagasse, rice 
husk, etc. These carriers contain many functional groups which 
stabilize biocatalysts (Cubitto and Gentili, 2015). Most of these 
materials are waste of the food industries so these are economic 
and biocompatible but they have a low resistance to the 
biodegradation and sensitivity to organic solvent (Paliwal et al., 
2015). They have a very narrow pH range for their stability. 
Synthetic organic carriers like polypropylene, polystyrene, 
polyacrylonitrile, polyvinyl alcohol and polyvinyl chloride have 
several functional groups with diversified properties. The 
macromolecular structure of synthetic organic carriers may 
be regulated as per the desired order of functional groups in the 
chain. Moreover, their porosity, polarity and hydrophobic nature 
can also be  modified. These are commercially available at 
economical prices. Inorganic carriers like magnetite, silica-based 
material, ceramics, porous glass and nanoparticles have high 
chemical, physical and biological resistance. The number of 
functional groups present on these carriers is very less and it 
prevents their sufficient bonding with microorganisms and 
catalysts. Inorganic carriers can be used in the formation of hybrid 
carriers by combining them with natural polymers or synthetic 
nanoparticles (Yunoki et al., 2014).

Nanotechnological interventions in 
bioremediation

Nanotechnology is a branch of science, which deals with 
synthesized particles, which are very small in size (<100 nm). In 
the last few years, nanotechnology has been used in various fields 
like medicine, textiles, optics, etc. The use of nanoparticles and 
application of nanotechnology in agriculture was started at the 
beginning of the 21st century (Fraceto et al., 2016) and more than 
230 nano-products have been used in various agricultural 
operations (Rajput et  al., 2022). Nanotechnology has been 
integrated with the bioremediation process and termed Nano-
bioremediation. Nano-bioremediation targeted cleaning of the 
environment by accelerating bioremediation using nanoparticles 
(Bhatt et al., 2021). Nano-bioremediation is further subdivided 
into two subgroups, i.e., nano-phytoremediation of nanoparticles 
with phytoremediation and microbial nano-remediation (Singh 
et al., 2020; Kumari et al., 2022; Figure 2).

The basic principle of nano-bioremediation is the degradation 
of contaminants using a catalyst as nanoparticles. As the 
nanoparticles are very small in size, it allows them to interact more 
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deeply and have a large surface area as per unit mass, more 
numbers of nanoparticles can come into contact with the 
environment. This enhances the efficacy and the rate of 
bioremediation (Cecchin et al., 2017).

The process of bioremediation involves the use of living 
organisms for the remediation of pollutants. Once nanotechnology 
is integrated with the process of bioremediation, the interaction of 
nanoparticles with living organisms becomes the key factor in 
deciding the efficacy of nano-bioremediation. In a few cases, the 
interaction of nanoparticles and biotic components resulted in 
biocidal and proven harmful to the organisms involved in the 
bioremediation (Juárez-Maldonado et  al., 2019). Therefore, 
evaluation of the interaction of nanoparticles and biotic 
components is the prerequisite of the nano-bioremediation 
process. The efficacy of nano-bioremediation can be influenced by 
several factors like size, shape, chemical nature of the 
nanoparticles, the physiological properties of the organism, pH 
and temperature of the soil, nature of the contaminant, etc. (Tan 
et al., 2018). These factors work directly or indirectly. Temperature, 
pH and media are crucial for the optimal development of 
biological organisms while the direct interaction of nanoparticles 
and organisms regulates various actions like dissolution, 
absorption and biotransformation (Kranjc and Drobne, 2019). 
Nano-bioremediation is a two-step process. In the first 
contaminants are broken down by nanoparticles to a conducive 
level for bioremediation and in the second step; pollutants are 
biodegraded (Cecchin et al., 2017).

Nano-phytoremediation of 
contaminated soil

Nano-phytoremediation is a method for remediation of 
pollutants, and contaminants by using synthesized nanoparticles 
from the plants. Plants are the natural detoxifiers for the soil as 
they absorb diverse types of compounds and detoxify them. 
Phytoremediation is a Greek word, which means restore/remedy 
through plants (Pandya et al., 2022) but phytoremediation has a 
few limitations as slow remediation time and plant waste. 
Nanotechnology has increased the efficacy of remediation of 
contaminated soil and water. Organic contaminants like atrazine, 
molinate and chlorpyrifos have been degraded with nano-sized 
zerovalent irons. Enzymes encapsulated in nanoparticles increased 
the efficiency of bioremediation significantly (Yadav et al., 2017).

There are several factors, which affect the efficacy of nano-
bioremediation. These are the physical and chemical properties of 
compounds, their molecular weight, solubility in the water, soil 
environment (pH, temperature and percentage of organic matter) 
and characteristics of plants (Gulzar and Mazumder, 2022). 
Integration of nanoparticles and phytoremediation is the most 
important step in nano-phytoremediation. The studies indicate 
that the application of nanoparticles detoxified various organic, 
inorganic and metal pollutants from the soil. The use of nano-
zerovalent iron, and magnetite nanoparticles rapidly degraded 
organic pollutants from the soil (Madhura et  al., 2019). 
Nanoparticles of TiO2 (n TiO2) and PEI-copper nanoparticles 

FIGURE 2

Nano-bioremediation: a promising strategy for the remediation of pesticides.
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reduced the half lives of Phenanthrene and atrazine, respectively 
(Li et al., 2016; Kalidhasan et al., 2017). The technique of nano-
phytoremediation worked for a wide range of soil pollutants 
ranging from heavy metals to organic compounds. The application 
of nanoparticles enhanced the uptake of pollutants by plants and 
also improved the stress tolerance capacity of the plants (Pillai and 
Kottekottil, 2016; Souri et al., 2017).

Important factors in the 
interaction of plants and 
nanoparticles

Though there are several factors, which affect the uptake of 
nanoparticles by plants like the type and chemical composition of 
nanomaterial, the size of nanoparticles plays the most crucial role 
in the uptake of the nanoparticles (Schwab et  al., 2016). The 
nanoparticles can be  transported into the plants in two ways; 
Apoplastic transport (transport through xylem vessels), 
Symplastic transport (transport between the cytoplasm and sieve 
plates; Horejs, 2022).

Apart from the size of nanoparticles, the soil temperature is 
also an important factor as it affects the growth substances and 
root lengths (Ahmadpour et al., 2012). The properties of the plants 
also affect the efficacy of nano-bioremediation. For achieving high 
efficiency, a plant should have fast growth, large biomass, a well-
developed root system, high toxicity tolerance limit, high 
accumulation capacity, a non-consumable for animals and easy for 
genetic manipulation. Nanoparticles should be  non-toxic for 
plants and should have the properties to enhance germination, 
root-shoot elongation, enhanced phoenzyme production, 
increased plant growth hormone and capabilities to bind with 
contaminants of the soil (Sajid et  al., 2015). Nano-
phytoremediation technology has been used with natural as well 
as genetically engineered plants. Nanoparticles enhanced plant 
growth and their efficacy in remediation of the soil contaminants. 
These particles increased the production of plant growth hormone 
and enhanced the uptake of soil pollutants by plants (Dimkpa 
et al., 2012; Liu et al., 2016) Nano-zerovalent iron nanoparticles 
were used with plants like Alpinia calcarata Roscoe, Ocimum 
sanctum, Cymbopogon citratus and with all three plants, these 
particles enhanced the remediation efficacy against Endosulfan 
(Pillai and Kottekottil, 2016). Similarly, sialic acid nanoparticles 
increased the phytoremediation efficacy of Isatis cappadocica 
Desv for Arsenic (Souri et al., 2017). Nanoparticles cause many 
physiological changes in the plants, which results in increased 
efficacy of phytoremediation but the effectiveness and safety of the 
nanoparticles are decided by several factors like chemical 
composition, size, shape, stability, concentration, and surface 
coating and reactivity of the nanoparticles. The efficacy of 
nanoparticles may vary from plant to plant also (Varma and 
Khanuja, 2017; Yang et  al., 2017). Nano-phytoremediation 
technology has few limitations such as most of the experiments 
have been conducted at microcosm levels so extensive studies are 

required. Formation of aggregation is a common phenomenon 
with nanoparticles so studies to modify their surfaces to enhance 
the sustainability of nanoparticles are essentially required and in 
last the toxicity of various nanoparticles for the soil and the 
environment needs to be evaluated.

Microbial nano-bioremediation

It is the process in which nanoparticles are used with soil 
microbes to enhance biodegradation processes. Microorganisms 
can uptake the metal ions and reduce them. In this process, the 
metal ions are converted into nanoparticles. Microbial enzymes 
along with the metals form useful nanoparticles for nano-
bioremediation (Pandey, 2018). Microbial nano-bioremediation 
is a two-phase process, which involves abiotic and biotic processes 
(Usman et al., 2020). In the first phase, nanoparticles enter the 
system and particles of pollutants undergo varieties of the 
processes like adsorption, absorption, dissolution and 
photocatalysis (Abebe et al., 2018). In the second phase, several 
biotic processes like biostimulation and biotransformation remove 
these particles from the system (Desiante et al., 2021). The second 
phase (biotic phase) plays a very important role in the 
bioremediation of pollutants. Microbial nano-bioremediation has 
been used for a variety of pollutants like inorganic and organic 
(Figure 3). Nanoparticles involved in the microbial degradation 
and enlisted in Table 2.

Microbial nano-bioremediation for heavy 
metals

Heavy metals are increasing in the environment and soil due 
to anthropogenic activities and disturbed biogeochemical cycles. 
Heavy metals like Pb, As, Cd, etc. not have any well-defined 
function in the biological system but they have a toxic effect on 
the biotic component of the environment even in the low 
concentration (Bist and Choudhary, 2022). In acidic soil with low 
nutrient levels, the toxicity of heavy metals increases (Liu et al., 
2018). Heavy metals generate reactive oxygen, which damages the 
macromolecules (proteins and nucleic acids) of microorganisms 
and plants (Bist and Choudhary, 2022). Immobilization of heavy 
metal molecules is the most common technique used for their 
bioremediation (Suman et  al., 2018). Nanoparticles including 
bio-organic nanoparticles (synthesized using biological 
organisms) have been used in the removal of heavy metals from 
the soil Bio-organic nanoparticles such as silver nanoparticles 
produced in Morganella psychrotolerans have been used for the 
remove of heavy metals (Arif et al., 2016; Enez et al., 2018). Iron 
oxide nanoparticles coated with polyvinyl pyrrolidone (PVP) are 
used with Halomonas sp. (gram-negative bacteria) for the 
bioremediation of lead and cadmium (Alabresm et  al., 2018). 
Magnetic nanoparticles of Fe3O4 coated with phthalic acid treated 
with S. aureus were used for bioremediation of Cu, Ni and Pb. The 
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efficiency of these particles was 83%–89% for Cu2+, 99.4%–100% 
for Pb2+ and 92.6%–97.5% for Ni2+. It was observed that the 
functional group present on the microbial surface and core of 
nanoparticles played an important role in the removal of heavy 
metals (Mahmoud et al., 2016). Heavy metals resistant bacteria 
B. cereus and L. macroides in combination with zinc oxide were 
used for the remediation of Cu, Cd, Cr and Pb. It was deduced that 
zinc oxide nanoparticles along with B. cereus could remove these 
metals efficiently (Baragaño et al., 2020). The strain of B. cereus 
(XMCr−6) reduced Cr+6 to Cr+3. The reduced Cr+3 exhibited affinity 
to the bacterial cell surface and by reacting with oxygen formed 
Chromium oxide nanoparticles as a byproduct (Laslo et al., 2022). 
Selenium nanoparticles in combination with probiotic bacteria 
(L. casei) were used for cadmium-contaminated land and water 
treatment. The efficiency of cadmium absorption was found 65% 
with L. casei, which was significantly higher than L. casei alone 
(43%–78%; Dong et al., 2013).

In the approach of bio-organic nanoparticle synthesis, heavy 
metals pollutants can be used by selective microbes followed by 
their removal from the environment and yielding value for the 
waste. In this approach, Enterococcus faecelis was used for the 
removal and recovery of lead. The lead nanoparticles were 
synthesized by bacteria in extracellular and intracellular modes. 
The size of these nanoparticles was ~10 nm. These particles 
exhibited high catalytic efficiency and reduced 5.0 μmol Cr+6 in 
12 h (Cao et al., 2020).

In anaerobic sludge, tellurium nanoparticles were synthesized 
by supplementation with riboflavin in the presence of Rhodobacter 

capsulates using polluted tellurite Te4+ oxy anions present in the 
wastewater (Ramos-Ruiz et al., 2016). These findings indicate that 
nano-bioremediation may be effectively used for the remediation 
of heavy metals toxicity.

Nano-bioremediation of organic 
pollutants

Organic pollutants mainly persistent organic pollutants 
have negative impacts on human and environmental health. 
Therefore, the remediation of these compounds from the soil 
is essential. Magnetic nanoparticles in combination with 
Rhodococcus engthropolis caused the desulfurization of 
dibenzothiophene (DBT; Ansari et al., 2009). Bimetallic (Pd/
nFe) nanoparticles were used in combination with 
Sphingomonas wittichii for bioremediation of NBR.2, 3, 7, 
8-tetrachlorodibenzo-p-dioxin hydrocarbons (Bokare et al., 
2012). The silica nanoparticles biofunctionalized with the 
lipid bilayer of Pseudomonas aeruginosa were used to clean up 
PAH(benzo[a] Pyrene). The membrane lipids of Pseudomonas 
played a role to enhance the sequestration of PAH (Wang 
et al., 2015). The grapheme oxide nanoparticles along with the 
laccase enzyme of Trametes versicolor were studied for 
biodegradation of PAH and were found to be  effective in 
remediation of PAH (Patil et al., 2016). Alcaligenes faecelis in 
combination with iron oxide nanoparticles improved the 
degradation of hydrocarbon compounds of crude oil 

FIGURE 3

Nano-particles mediated removal of toxic pollutants from the soil.

https://doi.org/10.3389/fmicb.2022.982611
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Singh and Saxena 10.3389/fmicb.2022.982611

Frontiers in Microbiology 11 frontiersin.org

contamination (Oyewole et al., 2019). Sphingomonas strain 
NM05 has been used for the degradation of 
hexachlorocyclohexane (HCH). Once the strain was treated 
with Pd/FeO bimetallic nanoparticles, the degradation efficacy 
of the strain was enhanced ~2 folds (Singh R. et al., 2013). The 
peroskite (LaFeO3) nanoparticles with proteobacteria were 
used for the degradation of organic contaminants in marine 
sediments (Hung et  al., 2021). Nanoparticles not only 
enhanced the remediation efficacy of microbes but are also 
used for the improvement of soil health. Silicon nanoparticles 
have been reported to improve the soil microflora and 
biomass. These particles enhanced the growth of rhizospheric 
microbes (Rajput et al., 2022).

Algae mediated 
nano-bioremediation

Phyto-nanotechnology is an efficient, cost-effective and 
eco-friendly strategy, which is extensively used for the 
remediation of toxic compounds from the ecosystem (Gole 
et al., 2022). This technology involves the plant based synthesis 
of nanoparticles with almost no risk to the ecosystem and 
humans. Various types of metal nanoparticles like silver, 
palladium and gold have been synthesized with algae 
belonging to different groups such as Chlorophyceae, 
Cyanophyceae, Phaeophyceae and Rhodophyceae. Algae are 
the largest photoautotrophic group of microbes, having the 
potential to act as nano-machineries for the metallic 
nanoparticles. The fabrication of algae based nanoparticles is 
less time consuming process (Khanna et al., 2019). Algae have 
several properties like high potential of metal uptake, easy to 
handle and harvest, low cost, low toxicity, which make them 
suitable to serve as nano-factories (Sharma et al., 2015). Silver 
nanoparticles were produced using number of brown algae 
species such as Cystophora moniliformis, Gelidiella acerosa and 
Padina pavonica (Azizi et al., 2014) while other species like 

Cystoseira baccata, Dictyota bartayresianna, Ecklonia cava, and 
Sargassum wightii have been used in the fabrication of gold 
nanoparticles (AuNPs). Similarly Phormidium valderianum 
and S. platensis are also responsible for the AuNPs biosynthesis 
(Iravani et al., 2017). Algal species such as Cylindrospermum 
stagnale, Spirulina platensis, Plectonema boryanum, and 
Microchaete diplosiphon have been reported for the synthesis 
of AgNPs having varied morphologies (Husain et al., 2015). 
Various algae have been recognized for the remediation of 
toxic compounds and heavy metals from the wastewater 
(Goswami et al., 2021). Studies showed that the microalgae 
from Chlorellaceae family removed heavy metals such as lead, 
copper, and selenium from the wastewater (Oyebamiji et al., 
2019). Microalgae have the ability to remove the toxic heavy 
metals from the acid mine drainage, which facilitate the 
inhibition of direct discharge of acid mines into the water 
bodies that may lead to the damage to aquatic habitat as well 
as create serious environmental pollution (Samal et al., 2020). 
The synthesis of nanoparticles and the algae mediated 
bioremediation belong to same process, which occur 
simultaneously (Dahoumane et al., 2016). Recently Chlorella 
vulgaris, a green microalgae was reported for the efficient 
removal of Au(I) and Au(III) complexes (He and Chen, 2014). 
The metal uptake potential of Nannochloropsis oculata was 
evaluated from the acid mine drainage. The result revealed 
that 99% of copper content was removed by N. oculata 
(Martínez-Macias et al., 2019). Furthermore, a microalga such 
as Chlorella kessleri was used for the removal of heavy metals 
from wastewater (Sultana et al., 2020). Studies have showed 
that microalgae have potential to remove heavy metals from 
the wastewater. However extensive research is required in this 
aspect to enhance the remediation efficiency and complete 
utilization of the biomass. Various studies have reported the 
wastewater treatment by the immobilization of microalgae 
biomass, which is considered as an effective technique for the 
remediation of the heavy metal (Cheng et  al., 2019). The 
consortium of microalgae has attracted interest of the 

TABLE 2 Role of different nanoparticles in microbial and pesticide degradation.

Nanoparticles Function References

Bacillus subtilis immobilized on Ferric oxide Degradation of azo dyes (80%) Nadi et al. (2019)

Calcium oxide Degradation of Glyphosate Cabrera-Penna and Rodríguez-P’aez (2021)

Copper oxide Dye degradation and inhibit the growth of pathogenic bacteria Nwanya et al. (2019)

DP-ZnO NPs Degradation of Methylene blue and eosin yellow Rambabu et al. (2021)

Ferric oxide Degradation of Textile effluent Fouda et al. (2021)

Halomonas immobilized with magnetic 

nanoparticles

Removal of Palladium Cao et al. (2020)

Iron oxide Removal of different heavy metals from wastewater Mahanty et al. (2020)

Magnetite Degradation of Phenazopyridine Gholizadeh et al. (2021)

Manganese-Titanium oxide Degradation of Acetaldehyde Karafas et al. (2019)

MZnO/TiO2-Fe3O4 Degradation of Chlorpyrifos Saljooqi et al. (2020)

Silver oxide nanoparticles Removal of methylene blue Shah et al. (2019)
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researchers to remove heavy metals for the wastewater 
treatment. The heavy metals such as nickel, cadmium and lead 
have been removed from the wastewater using the consortia 
of microalgae (Abdel-Razek et al., 2019).

Fungi mediated 
nano-bioremediation

Fungi are the eukaryotic microorganisms, which include 
molds, yeasts, mildews and mushrooms (Duhan et  al., 2017). 
Fungi act as biocatalysts and are used in bioremediation as they 
can survive in intense conditions as well as elevated concentration 
of heavy metals (Dixit et  al., 2015). In green nanotechnology, 
nanoparticles are synthesized using fungi, which play a pivotal 
function in the removal of toxic compounds and organic 
pollutants (Singh et al., 2018). In recent times, the synthesis of 
metal nanoparticles from fungi has gained a big interest of 
researchers around the world (Sunny et  al., 2022). There are 
several advantages of metal nanoparticles synthesized using fungi 
such as higher capacity of metal uptake, simple and low cost 
fabrication, tolerant against metals, high scalability, highly stable 
(Yadav et al., 2015).

Various fungus like Fusarium, Verticillium, Penicillium, and 
Aspergillus have been used as potential candidates for the metallic 
nanoparticles synthesis (Ovais et al., 2018). Studies have reported 
that metals like gold, silver, titanium, platinum, selenium, 
palladium and silica can be  utilized for the fabrication of 
nanoparticles (Gholami-Shabani et al., 2016). Silver nanoparticles 
(AgNPs) synthesized from F. oxysporum are different in features 
from those synthesized with Aspergillus fumigates (Alves and 
Murray, 2022). Studies have reported the synthesis of AgNPs 
using Coriolus versicolor and Trichoderma reesei (Vahabi et al., 
2011; Deniz et al., 2019). The gold nanoparticles (AuNPs) have 
been synthesized using Cylindrocladium floridanum fungus 
(Narayanan and Sakthivel, 2011). Platinum nanoparticles were 
synthesized using the N. crassa fungus and Fusarium oxysporum 
was used for fabrication of silica nanoparticles (Castro-Longoria 
et al., 2012). The selenium nanoparticles have been synthesized 
from Mariannaea sp. (Zhang et al., 2019). The green synthesis of 
the nanoparticles from different fungus has led to a significant 
application in the remediation of hazardous organic pollutants 
through the adsorption of heavy metals (Gaur et al., 2014). The 
kind of metal, environmental factors and fungal biomass affect 
the capacity of biosorption (Dhankhar and Hooda, 2011). Studies 
have showed the proficient adsorption, immobilization capacity 
and chelation activity of heavy metal ions by arbuscular 
mycorrhizal fungi (Upadhyaya et  al., 2010). Various fungal 
species like Allescheriella sp., Botryosphaeria rhodina sp., 
Stachybotrys sp. exhibited the metal-binding capability (Benjamin 
et al., 2019). The synthesis of AgNPs from Rhizopus oryzae have 
several ecological uses like wastewater treatment (Zhang et al., 
2014) and adsorption of pesticides (Das et al., 2012). Fungi like 
Fusarium solani have higher tolerance against few heavy metals 

like cadmium, nickel and lead, also have better capacity of 
nanoparticles synthesis (Rasha, 2017). The extremophilic fungi 
have significant ability and application in nano-bioremediation 
of heavy metals due to ability to survive in severe conditions, 
which makes them significant for the purpose of nano-
bioremediation (Bahrulolum et al., 2021). The marine fungi were 
assessed for their potential of bioremediation as well as the 
ecological importance (Thatoi et al., 2013). The degradation of 
pentachlorophenol was observed by Trichoderma harzianum 
(Vacondio et al., 2015). The heavy metals like CdCl2, CuSO4, Pb 
and ZnSO4 could not affect the growth of Cryptococcus sp., a 
psychrophilic fungus (Singh M.P. et al., 2013).

Nanoparticles in combination with white-rot fungi (WRF) 
have immense potential of bioremediation (He et al., 2017). 
Studies have reported the remediation of toxic contaminants 
from wastewater and good stability of WRF-magnetic 
nanoparticles due to proficient immobilization. Antibiotics 
like sulfonamide have been reported to be  degraded by 
Echinodontium taxodii-Fe3O4 nanoparticles (Shi et al., 2015). 
The remediation of cadmium and 2,4-dichlorophenol was 
achieved through immobilization of Phanerochaete 
chrysosporium along with titanium oxide nanoparticles (Chen 
et al., 2013) P. chrysosporium along with Fe2O3 nanoparticles 
revealed degradation of phenols (Huang Z. et  al., 2017). 
Likewise, selenium nanoparticles in combination with 
Phanerochaete chrysosporium reported effective remediation 
of zinc (Espinosa-Ortiz et al., 2016). Similarly P. chrysosporium, 
with silver nanoparticles showed enhanced removal of Cd2+ 
and 2,4-dichlorophenol (Zuo et  al., 2015; Huang Z. et  al., 
2017). Therefore, it can be concluded that nanoparticles in 
combination with fungi resulted in an increased rate of 
remediation. Hence more studies and research should 
be  conducted for development of such effective strategies 
using ecological microbiology and nanotechnology.

Conclusion

The various reports available on pesticide contamination 
of soil indicate that the level of pesticides in the soil is 
increasing day by day, which is affecting human, soil and 
environmental health. Hence pesticides should be  used 
rationally, especially in the underdeveloped and developing 
countries where an efficient monitoring system is lacking. In 
case of real need, the preference should be  given to the 
application of pesticides, which have short half life and high 
biodegradability. To improve soil health, crop rotation 
programs and the use of organic manure should 
be implemented more effectively. Though there are various 
techniques used for the remediation of soil pesticide 
contamination, most of these techniques have their limitations. 
The various experiments conducted with the integration of 
nanoparticles with the bioremediation process have shown 
promising potential but more extensive research and 

https://doi.org/10.3389/fmicb.2022.982611
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Singh and Saxena 10.3389/fmicb.2022.982611

Frontiers in Microbiology 13 frontiersin.org

experimentation are required in this area. Various 
nanoparticles studied have enhanced the efficacy of the 
bioremediation but the safety of the nanoparticles for the 
environment and the food chain is still a matter of concern. 
Therefore, extensive research is required in the area of the 
safety analysis of nanoparticles.
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