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Straw mulching and N fertilization are effective in augmenting crop yields. 

Since their combined effects on wheat rhizosphere bacterial communities 

remain largely unknown, our aim was to assess how the bacterial communities 

respond to these agricultural measures. We  studied wheat rhizosphere 

microbiomes in a split-plot design experiment with maize straw mulching 

(0 and 8,000 kg straw ha−1) as the main-plot treatment and N fertilization (0, 

120 and 180 kg N ha−1) as the sub-plot treatment. Bacterial communities in the 

rhizosphere were analyzed using 16S rRNA gene amplicon sequencing and 

quantitative PCR. Most of the differences in soil physicochemical properties 

and rhizosphere bacterial communities were detected between the straw 

mulching (SM) and no straw mulching (NSM) treatments. The contents of 

soil organic C (SOC), total N (TN), NH4
+-N, available N (AN), available P (AP) 

and available K (AK) were higher with than without mulching. Straw mulching 

led to greater abundance, diversity and richness of the rhizosphere bacterial 

communities. The differences in bacterial community composition were 

related to differences in soil temperature and SOC, AP and AK contents. Straw 

mulching altered the soil physiochemical properties, leading to greater bacterial 

diversity and richness of the rhizosphere bacterial communities, likely mostly 

due to the increase in SOC content that provided an effective C source for the 

bacteria. The relative abundance of Proteobacteria was high in all treatments 

and most of the differentially abundant OTUs were proteobacterial. Multiple 

OTUs assigned to Acidobacteria, Chloroflexi and Actinobacteria were enriched 

in the SM treatment. Putative plant growth promoters were enriched both in 

the SM and NSM treatments. These findings indicate potential strategies for 

the agricultural management of soil microbiomes.
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Introduction

Wheat (Triticum aestivum L.) is a vital part of global food 
security; approximately 40% of the world’s population get part of 
their daily nutrients from wheat (Giraldo et al., 2019). Like other 
plants, wheat hosts a diverse microbial community on its 
rhizosphere; the rhizosphere microbial communities are closely 
involved in the cycling of nutrients, plant growth promotion, and 
resource utilization efficiency of plants (Mendes et al., 2013; Pérez-
Montaño et  al., 2014). The rhizosphere microorganisms are 
sensitive to changes in environmental conditions, e.g., to changes 
brought on by agricultural management (Mendes et al., 2013; Bay 
et  al., 2021). Therefore, it is important to understand how 
agricultural management measures affect the wheat rhizosphere 
microbial community and the relationship between the wheat 
rhizosphere microbial community composition and wheat yield.

Straw mulching is a common agricultural practice that can 
alleviate soil degradation caused by long-term synthetic fertilizer 
application and reduce the environmental footprint of food 
production (Sun et al., 2015; Chai et al., 2021). Straw mulching 
improved the soil structure and increased organic C content 
(Blanco-Canqui and Lal, 2007), soil enzyme activity (Zhang et al., 
2016; Akhtar et  al., 2019a), soil water content (Akhtar et  al., 
2019b), and other physicochemical properties in topsoil (Dai 
et al., 2019). However, results on the responses of soil bacteria to 
straw mulching in the topsoil have been inconsistent (Chen et al., 
2017; Liu C. et al., 2020; Qiu et al., 2020; Wang H. H. et al., 2020; 
Yan et al., 2020), possibly due to different planting systems and 
regional differences. For example, mulching affected β-diversity 
but not α-diversity in maize and rice fields in northeast China 
(Wang H. H. et al., 2020; Yan et al., 2020). In rice-maize rotation 
systems on three sites in central to eastern China, mulching 
increased the microbial biomass on every site, but the abundances 
of gram-negative bacteria, gram-positive bacteria and 
actinomycetes were higher under mulching on one site only 
(Chen et al., 2017). In a spring wheat–pea rotation in northwest 
China, without tillage the α-diversity of bacteria was slightly 
higher in the no straw mulching treatment, whereas with tillage, 
the diversity was higher in the mulched treatment (Liu C. et al., 
2020). Thus, even though straw mulching has been shown to 
improve soil quality and crop yield (Dong et al., 2018), its varying 
effects on the rhizosphere communities call for studies at many 
crop-region combinations.

N fertilization, one of the important limiting nutrients for 
plants and microorganisms, is supplied worldwide into terrestrial 
ecosystems (Liu W. B. et  al., 2020). In long-term fertilization 
experiments, the abundance and diversity of bacteria decreased 
with increasing N fertilizer levels (Zhou et al., 2015). According to 
a meta-analysis, N addition decreased microbial diversity and the 
relative abundances of Actinobacteria and Nitrospirae (Wang et al., 
2018). N enrichment affected the composition and functions of 
soil microbial communities and reduced microbial diversity 
(Zhou et al., 2015; Ling et al., 2017); the changes were mainly 
associated with soil pH and soil organic C and total N contents 

(Rousk et  al., 2010; Kong et  al., 2019). While the effect of N 
fertilization on the nutrient contents and soil bacterial 
communities has been demonstrated, the responses of rhizosphere 
bacteria to combined straw mulching and N fertilization has been 
rarely studied.

We studied soil physicochemical properties and wheat 
rhizosphere microbiomes using a split-plot design experiment 
with straw mulching as the main plot treatment and N fertilization 
as the sub-plot treatment. Bacterial communities in the 
rhizosphere were analyzed using 16S rRNA gene amplicon 
sequencing and quantitative PCR. We hypothesized that the N 
fertilization related abundance and diversity decrease would 
be alleviated by straw mulching and expected that higher shoot 
biomass and yield of wheat would be  associated with higher 
abundance and α-diversity of bacteria.

Materials and methods

Experimental design and sampling

The study was conducted at the Renshou experimental base 
(30°04′ N, 104°13′ E) at the College of Agronomy, Sichuan 
Agricultural University, China. The region belongs to the 
subtropical monsoon climatic zone in which the winter wheat-
summer maize rotation system is one of the major agricultural 
production systems. The soil is classified as Regosol in the FAO 
Soil Taxonomy, and the soil texture is loamy clay. At the start of 
the experiment in 2015, the physical and chemical properties of 
the topsoil (0–20 cm) were as follows: pH, 7.82; soil organic C 
content, 9.78 g kg−1; total N content, 0.83 g kg−1; total phosphorus 
content, 0.86 g kg−1; and total potassium content, 13.96 g kg−1.

The experimental design was the same as in our previous 
study (Chen S. H. et al., 2021). Briefly, the split-plot experimental 
design consisted of maize straw mulching treatments in the main 
plot and N fertilization levels in the subplot, with four 30 m2 
(6 m × 5 m) replicate plots and a total of 24 experimental plots. The 
experiment was started in 2015. The straw mulching treatments 
were no straw mulching (NSM) and straw mulching with 8,000 kg 
straw ha−1 (SM). In the SM treatment, the maize residue was 
chopped and spread on the soil surface after the maize harvest at 
the end of August each year. The N fertilization levels were 0 (N0), 
120 (N1) and 180 kg N ha−1 (N2). All the plots were fertilized with 
P at 75 kg P2O5 ha−1 and K at 75 kg K2O ha−1. Winter wheat 
(Triticum aestivum L. cv. Chuanmai104) was sown with no-tillage 
in late October at a basic seedling rate of 2.25 × 106 plant ha−1 with 
20 cm row spacing and 10 cm hole spacing. Wheat was harvested 
the following year in May. The field management was based on the 
local farmers’ management model with no tillage, natural rainfall 
irrigation, and herbicide treatment once before sowing the wheat.

Rhizosphere soils were collected on 20 March, 2019, at the 
anthesis stage of winter wheat. Whole plants were excavated using 
a clean spade and gently shaken to remove the soil not tightly 
attached to the root (Mapelli et al., 2018; Wang Z. T. et al., 2020). 
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The root systems were separated from the plant and collected in 
sterile plastic bags. The rhizosphere soil particles were first 
detached from the roots using the pull and shake method. The 
tightly attached soil was detached by placing the roots in sterile 
tubes containing 9 ml of 9 g L−1 NaCl, vortexing the tubes for 5 min 
and centrifuging at 8000 rpm for 10 min, after which the 
supernatant was discarded and the remaining soil was merged 
with the rhizosphere soil particles (Mapelli et  al., 2018). The 
rhizosphere soil samples were stored at −80°C for 
molecular analysis.

Soil physico-chemical analysis

Air-dried soil was used for physical–chemical analysis. Soil 
pH was determined in a 1:2.5 soil/water mixture. Soil organic C 
(SOC) was determined using potassium dichromate oxidation 
external heating method. Soil total N (TN) and available N (AN) 
were determined using the alkaline hydrolysis diffusion method 
and semi-micro Kjeldahl method, respectively (Lu, 1999). Soil 
available phosphorus (AP) was extracted using sodium 
bicarbonate and measured using the molybdenum blue method 
(Lu, 1999). Soil available potassium (AK) was extracted using 
ammonium acetate and determined with flame photometry (P7 
Double Beam UV–Visible Spectrophotometer; MAPADA Inc. 
Shanghai, China; Lu, 1999). Soil extractable ammonium (NH4

+) 
and nitrate (NO3

−) were extracted with 2 mol L−1 KCl and 
determined colorimetrically (Liu C. et al., 2020). To estimate the 
average temperature of soil, the temperature of soil at 10 cm depth 
was measured from 8 a.m. to 20 p.m. every 2 h with a moisture and 
water potential meter (em50g, Decagon Devices Inc. Pullman, 
USA) when collecting soil samples.

DNA extraction and sequencing

DNA was extracted from 0.5 g fresh soil using a DNeasy 
Powersoil kit (Qiagen, Manchester, UK) following the 
manufacturer’s instructions. The concentration and purity of the 
extracted DNA was assessed using a Nanodrop spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA) and agarose gel 
electrophoresis. The DNA samples were stored at −20°C until 
further processing.

The copy number of the 16S rRNA gene was determined 
using real-time quantitative PCR (qPCR) on a ABI7500 Fast 
Real-Time PCR System (Applied Biosystems Inc., USA). 16S 
rRNA gene fragments were amplified in triplicate using 
primers 319f (5′-ACTCCTACGGGAGGCAGCAG-3′) and 
primer 806r (5′-GGACTACHVGGGTWTCTAAT-3′; Walters 
et  al., 2011). Amplification was done in a 20 μl reaction 
including 10 μl SYBR Green Master Mix (Applied Biosystems, 
USA), 0.25 μl (10 μM) of each primer, 1 μl (1-10 ng) DNA 
template or 1 μl sterilized distilled water in the negative 
control, and 8.5 μl double distilled water (ddH2O). 

Amplification was initiated by denaturation at 95°C for 5 min, 
followed by 40 cycles of denaturation at 95°C for 15 s, 
annealing at 60°C for 30s, extension at 72°C for 30 s, and 
reading the plate at 80°C.

The standards for qPCR were made by cloning a bacterial gene 
fragment amplified as described above using pmD®18-T Vector 
(TaKaRa, Dalian, China) according to manufacturer’s instructions 
Plasmid DNA was extracted using a Plasmid Miniprep Kit 
(BIOMIGA, Santiago, USA), and the plasmid concentration was 
measured with a spectrophotometer (Nanodrop 2000, Thermo 
Scientific, Wilmington, USA). As the sequences of the vector and 
PCR inserts were known, bacterial gene copy number was 
calculated directly from the concentration of extracted plasmid 
DNA. Standard curves were generated using triplicate dilution 
series of plasmid with a cloned target gene, from 103 to 109 copies 
of the template. PCR efficiency was 91.3% with R2 value of 0.999 
and slope of −3.55. No amplification was detected in the 
negative controls.

The V3-V4 region of bacterial 16S rRNA gene was amplified 
from the soil DNA extracts using the primers 319F and 806R with 
7-bp barcodes specific for the samples for multiplex sequencing. 
The amplification reaction mixture contained 5 μl of Q5 reaction 
buffer (5×), 5 μl of Q5 High-Fidelity GC buffer (5×), 0.25 μl of Q5 
High-Fidelity DNA Polymerase (5 U μl−1), 2 μl of dNTP (2.5 mM), 
1 μl of each forward and reverse primer (10 μM), 2 μl of DNA 
template, and 8.75 μl of ddH2O. The amplification conditions 
were initial denaturation for 2 min at 98°C, 25 cycles of 
denaturation at 98°C for 15 s, annealing at 55°C for 30 s and 
extension at 72°C for 30 s, and a final extension for 5 min at 
72°C. PCR products were purified using Agencourt AMPure XP 
Beads (Beckman Coulter, Indianapolis, IN, USA), quantified 
using the PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, 
USA), and pooled in equimolar concentrations. Amplicons were 
sequenced using paired-end 2 × 300 bp sequencing on Illumina 
MiSeq at Shanghai Personal Biotechnology Co., Ltd. (Shanghai, 
China). The sequences have been deposited in the NCBI 
Sequence Read Archive database under the accession 
number SRP297976.

Bioinformatics

Sequences were processed using QIIME2 2019.41 with 
modifications as described in the official tutorials. The unique 
sequences were clustered at 98% sequence identity and, after 
removal of chimeras, the 826,884 high-quality sequences from 24 
samples were reclustered into operational taxonomic units 
(OTUs) at 97% identity. After removing singletons, taxonomy was 
assigned to OTUs using the classify-sklearn naïve Bayesian 
taxonomy classifier in feature-classifier plugin (Wang et al., 2007) 
against the SILVA Release 132 Database (Quast et al., 2013).

1 https://docs.qiime2.org/2019.4/tutorials/
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TABLE 1 Physicochemical properties of wheat rhizosphere soil in the straw mulching and N fertilization treatments.

Treatments pH
SOC TN AN NH4

+-N NO3
−-N AP AK

(g kg−1) (g kg−1) (mg kg−1) (mg kg−1) (mg kg−1) (mg kg−1) (mg kg−1)

NSM N0 8.02a 9.12a 0.87b 57.3b 1.84b 6.58c 7.51b 164b

N1 8.06a 9.71a 1.02a 63.3a 3.54a 12.46b 8.41a 174a

N2 8.04a 9.64a 1.03a 64.2a 3.78a 14.54a 8.26a 171a

Mean 8.04 9.49 0.97 61.6 3.05 11.2 8.06 170

SM N0 8.01a 13.62ab 0.94b 61.5c 2.85b 5.58c 8.44b 198a

N1 7.98a 12.98b 1.05a 64.5b 4.36a 9.23b 9.19a 203a

N2 8.06a 13.9a 1.08a 69.3a 4.45a 10.91a 9.44a 201a

Mean 8.02 13.5 1.02 65.1 3.89 8.6 9.02 200

  F-value and significances

pH SOC TN AN NH4
+-N NO3

−-N AP AK

M 0.83 158.23** 65.13** 341.59** 91.90** 222.44** 23.90* 1688.10**

N 0.77 1.56 128.06** 50.32** 223.96** 280.95** 26.72** 6.75*

M × N 1.94 2.97 2.6 3.85 1.75 11.42** 1.13 1.00

NSM, no straw mulching; SM, straw mulching; N0, no N; N1, 120 kg N ha−1; N2, 180 kg N ha−1; SOC, Soil organic C; TN, Total N; AN, Available N; NH4
+-N, Ammonium N; NO3

−-N, 
Nitrate N; AP, Available phosphorus; AK, Available potassium. Values (mean ± SD, n = 4) followed by different superscript letters in a column indicate statistically significant differences 
between N fertilization levels within mulching treatments (P < 0.05). ** and * indicate statistically significant differences between mulching (M) treatments and N (N) treatments at 
P < 0.01 and p < 0.05, respectively.

Statistical analysis

Differences in soil properties were tested using two-way 
ANOVA followed by Fisher’s Least Significant Difference (LSD) 
test in SPSS 26 (IBM, Armonk, New  York, USA). α-diversity 
indices were visualized using Origin2017 (Origin, OriginLab Inc. 
MA, USA) and tested using Kruskal Wallis test and Dunn’s test as 
a post hoc test. Taxonomic compositions were visualized using 
MEGAN (Huson et  al., 2011) and GraPhlAn (Asnicar et  al., 
2015). β-diversity was visualized using principal coordinate 
analysis (PCoA) in the R package “vegan” in R v.4.1.0 (Oksanen 
et al., 2019; R Core Team, 2020). Differences in β-diversity were 
tested using repeated measures permutational multivariate 
analysis of variance (PERMANOVA) based on Bray–Curtis 
dissimilarity (Bray and Curtis, 1957; Anderson et  al., 2008). 
Differential abundance analysis at OTU level was done using 
Linear Discriminant Analysis (LDA) Effect Size (LEfSe; Segata 
et al., 2011).2 OTUs with an LDA score ≥ 2.0 were considered 
differentially abundant. The relationships between soil properties 
and bacterial communities were tested based on Bray-Curtis 
dissimilarities, using distance-based redundancy analysis (RDA) 
with 9,999 permutations in the vegan R package in R v.4.1.0. The 
relationships between the soil microbial features and soil 
properties were tested using Mantel test in the ggcor package in 
R v.4.0.5.3 The correlations among α-and β-diversities and soil 
characteristics were calculated and visualized using the corrplot 
package in R.4

2 http://huttenhower.sph.harvard.edu/lefse/

3 https://github.com/houyunhuang/ggcor

4 https://github.com/taiyun/corrplot

Results

Soil physicochemical analysis

The contents of soil organic C (SOC), total N (TN), 
NH4

+-N, available N (AN), available P (AP) and available K 
(AK) were higher in the mulched treatment (SM) than in the 
non-mulched (NSM) treatment (p < 0.05; Table 1). The contents 
of TN, AN, NH4

+-N, NO3
−-N and AP were higher in the 120 

(N1) and 180 kg N ha−1 (N2) treatments than in the 0 kg N ha−1 
(N0) treatment (p < 0.05; Table 1). The SOC, TN, AN, NH4

+-N, 
AP and AK contents were lowest in NSMN0 and highest 
in SMN2.

Abundance and composition of bacterial 
community

The 16S rRNA gene copy numbers ranged from 1.4 × 108 
to 7.4 × 108 per g soil, with the lowest and the highest numbers 
in the NSMN0 and SMN2 treatments, respectively (Figure 1). 
The abundance and diversity of the rhizosphere bacterial 
communities were greater with than without mulching 
(p < 0.05; Figures 1, 2; Supplementary Tables S1–S4). The N 
fertilization level did not affect diversity. In line with the 
higher diversity with mulching, the number of identified 
genera was greater with mulching (67) than without (20) 
(Supplementary Table S4). In the PCoA, the rhizosphere 
bacterial communities from mulched and not mulched 
treatments were clearly separated along the PCoA axis1 that 
explained 88.1% of the variation in community composition 
(Figure 3). The communities in SMN1 were separated from 
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those in SMN0 and SMN2 along PCoA axis2 that explained 
4.6% of the variation. In line with the PCoA, the communities 

in the SMN0, SMN1 and SMN2 treatments were different 
from those without mulching and different from each other 
(Supplementary Table S6).

The relative abundances of phyla Proteobacteria and 
Bacteroidetes were high in all treatments and those of 
Acidobacteria, Actinobacteria and Chloroflexi in the mulched 
treatments (Figure  4A; Supplementary Table S3). The relative 
abundances of genera Pelomonas, Ralstonia, Ochrobactrum and 
Vibrionimonas were approximately 1% or less with mulching and 
ranged from over 40% to over 6% without mulching (Figure 4B; 
Supplementary Table S4).

Characteristic taxa in the bacterial 
communities

The effect of straw mulching and N fertilization on individual 
taxa was assessed using LEfSe. In the differential abundance 
analysis, 154 and 35 OTUs had LDA scores >2.0 in the SM and 
NSM, respectively (Supplementary Table S5), and were 
considered as differentially abundant. Most of the differentially 
abundant OTUs in SM were assigned to Proteobacteria (51), 
Actinobacteria (22), Acidobacteria (16) and Chloroflexi (14), and 
in NSM to Proteobacteria (20) (Supplementary Table S5). The 
taxa characterizing the treatments with LDA score > 4 included 
class Subgroup 6 belonging to Acidobacteria and proteobacterial 
order MND1 in the SMN0 treatment, phylum Bacteroidetes and 
actinobacterial order Micromonosporales in the SMN1 

FIGURE 1

The abundance of bacteria gene copies in wheat rhizosphere 
soil under straw mulching and N fertilization treatments. M, 
mulching treatment; N, N fertilization treatment. M × N, the 
interaction of straw mulching and N fertilization NSM, no straw 
mulching; SM, straw mulching; N0, no N; N1, 120 kg N ha−1; N2, 
180 kg N ha−1. Data shown as mean ± S.D. ** statistically significant 
difference (p < 0.01). Different letters above columns indicate 
statistically significant difference (p < 0.05) between N fertilizer 
levels within NSM and SM.

FIGURE 2

α-diversity of bacterial communities in wheat rhizosphere soil under straw mulching and N fertilization treatments. M, mulching treatment; N, N 
fertilization treatment. M × N, the interaction of straw mulching and N fertilization. NSM, no straw mulching; SM, straw mulching; N0, no N; N1, 
120 kg N ha−1; N2, 180 kg N ha−1. **, statistically significant difference (p < 0.01).
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A B

FIGURE 4

Bacterial community composition in wheat rhizosphere soil under straw mulching and N fertilization treatments. (A), phylum level; (B), genus level. 
NSM, no straw mulching; SM, straw mulching; N0, no N; N1, 120 kg N ha−1; N2, 180 kg N ha−1.

treatment, class Gemmatimonadetes in the SMN2 treatment, 
genera Ochrobactrum (Proteobacteria) and Vibrionimonas 
(Bacteroidetes) in the NSMN0 treatment, proteobacterial genera 
Pelomonas and Ralstonia in the NSMN1 treatment and 
proteobacterial order Pseudomonadales and genera Acinetobacter, 
Phyllobacterium and Rhizobium in the NSMN2 treatment 
(Figure 5).

Relationships among bacterial 
parameters, soil properties, and wheat 
yield and biomass

There was a significant correlation between most soil 
properties (p < 0.05), but none of the other properties correlated 
with soil pH (Figure 6). The differences in rhizosphere bacterial 
community composition were related to differences in soil 
temperature and SOC, AP and AK contents (p < 0.01; Figure 7). 
Soil temperature and SOC and AK contents correlated strongly 
(0.5  ≤  r < 0.75, p < 0.01), and AP, AN, NH4

+-N and NO3
−-N 

contents weakly (0 < r < 0.5, p < 0.05 or 0.01) with the α-diversity 
and β-diversity in the Mantel test (Figure  6). Similarly, 
Simpson diversity and the number of observed species correlated 
positively with wheat shoot biomass and yield (Table  2; 
Supplementary Figure S1). The abundance of 16S rRNA gene 
correlated positively with wheat shoot biomass and yield (p < 0.01).

Discussion

Straw mulching and N fertilization promote wheat yield, yet 
their combined effects on wheat rhizosphere bacterial communities 
remain largely unknown. Straw mulching is beneficial in 
maintaining soil health (Akhtar et  al., 2019b). In our study, 
mulching affected both the composition and diversity of the 
bacterial communities. Straw mulching provides a C source for the 
soil microbes, allowing them to proliferate and diversify 
(Maarastawi et al., 2018). The additional nutrient input provided 

FIGURE 3

Principal coordinate analysis (PCoA) of microbial community 
composition in wheat rhizosphere soil under straw mulching and 
N fertilization treatments. NSM, no straw mulching; SM, straw 
mulching; N0, no N; N1, 120 kg N ha−1; N2, 180 kg N ha−1.
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by the straw (Chen et al., 2017) may have led to the observed higher 
diversity and richness in the mulched treatment. In bulk soils, the 

α-diversities of bacteria were lower after long-term N fertilization 
(Zhou et al., 2015; Zeng et al., 2016). In a long-term N fertilization 
experiment, Wang et al. (2019) found that fertilization affected the 
α-diversity in the bulk soil but not in the rhizosphere. Similarly, in 
maize rhizosphere N fertilization affected root endophytic but not 
rhizospheric bacterial communities (Miranda-Carrazco et  al., 
2022). In agreement, in our study the diversities in the rhizosphere 
were similar across N fertilization levels. The difference in the 
response to N fertilization between bulk and rhizosphere soils may 
be due to the differences in their structural and physicochemical 
properties (Lorenz et al., 1994; Whalley et al., 2005). In line with 
our hypothesis, compared with sole N fertilization, straw mulching 
combined with N fertilization was more conducive to promote 
bacterial α-diversity and the increase of wheat yield in our study.

Several soil environmental factors, for example, pH, nutrient 
content and temperature, affect bacterial community composition 
and growth (Pietikainen et al., 2005; Li et al., 2014; Wang et al., 
2017; Cheng et al., 2019). Zhao et al. (2019) suggested that C 
input and organic C content are critical for determining the 
bacterial community structure. The addition of straw increased 
SOC content and provided energy for microbial growth in low-C 
soil (Xiao et al., 2016). Similarly, in our study the SOC content 
was the main factor associated with differences in the wheat 
rhizosphere bacterial community composition. As the soil 
microbial communities are mainly C, not N limited (Soong et al., 
2019), it is likely that the higher SOC content in the mulched 

FIGURE 5

Differentially abundant taxa in wheat rhizosphere soil under straw 
mulching and N fertilization treatments. Detected using linear 
discriminant analysis effect size analysis. NSM, no straw 
mulching; SM, straw mulching; N0, no N; N1, 120 kg N ha−1; N2, 
180 kg N ha−1.

FIGURE 6

Relationship between bacterial α-diversity and β-diversity and soil environmental factors. SOC, Soil organic C; TN, Total N; AN, Available N; 
NH4

+-N, Ammonium N; NO3
−-N, Nitrate N; AP, Available phosphorus; AK, Available potassium.
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FIGURE 7

The relationships between environmental factors and bacterial communities in wheat rhizosphere soil under straw mulching and N fertilization 
treatments. NSM, no straw mulching; SM, straw mulching; N0, no N; N1, 120 kg N ha−1; N2, 180 kg N ha−1. SOC, Soil organic C; TN, Total N; AN, 
Available N; NH4

+-N, Ammonium N; NO3
−-N, Nitrate N; AP, Available phosphorus; AK, Available potassium. ** indicates statistically significant 

difference at p < 0.01.

TABLE 2 The correlations of bacteria α-diversity and gene abundance 
with biomass and wheat yield.

Index Simpson Observed 
species

Bacterial gene 
abundance

Shoot biomass 0.62** 0.63** 0.87**

Yield 0.51** 0.50* 0.91**

** and * indicate statistically significant correlation at p < 0.01 and p < 0.05, respectively.

treatment provided an effective C source for the bacteria. In 
previous studies the bacterial community composition correlated 
with the soil AP and AK that were possibly released into the soil 
due to the decomposition of the straw (Peng et al., 2016; Liang 
et al., 2020). In agreement, AP and AK contents were among the 
key factors related to differences in community composition in 
our study. In addition, the community composition correlated 
with soil temperature that was lower in the mulched treatment, 
possibly due to the effect of mulching on the soil albedo which is 
known to decrease the soil temperature (Kader et al., 2019).

As in Zhang et al. (2017), the Proteobacteria comprised the 
largest part of the relative abundance in all treatments. Most of the 

differentially abundant OTUs were proteobacterial as well. Overall, 
mulching resulted in a greater number of enriched OTUs than N 
fertilization. Multiple OTUs assigned to Acidobacteria, Chloroflexi 
and Actinobacteria, i.e., phyla considered key groups in the 
decomposition of organic matter in soil and of great significance in 
C turnover (Banerjee et al., 2016; Lewin et al., 2016), were enriched 
in the mulched treatment, further suggesting that the differences in 
rhizospheric communities were due to the availability of C. Among 
the most discriminative taxa in the mulched treatment, Acidobacteria 
Subgroup 6 includes putative plant growth promoters (PGP; Chen 
L. et al., 2021). All but one, the genus Vibrionimonas, of the most 
discriminative taxa in NSM were proteobacterial; the taxa included 
genus Ralstonia, a potential plant pathogen (Peeters et al., 2013), and 
taxa with possible plant growth promoting properties. The genera 
Acinetobacter and Phyllobacterium and order Pseudomonadales 
include P-solubilizing strains, and in addition to N fixation ability, 
IAA production is one of the characteristics of genus Rhizobium 
(Badenoch-Jones et al., 1982). Even though the not mulched soils 
were characterized by both PGP and pathogenic taxa, together with 
the higher abundance and diversity in the mulched treatment, the 
results implied that the mulching generally improved soil health.
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Conclusion

In line with our hypothesis, straw mulching for four years 
mulching increased the diversity and abundance of the bacterial 
communities in wheat rhizosphere. The straw mulching affected the 
composition of rhizospheric bacterial communities, likely mostly 
due to the increase in SOC content that provided an effective C 
source for the bacteria. The results offer valuable information for 
soil management strategies to shape the composition and function 
of soil bacterial communities in agroecosystems.
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