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In a previous study, we have shown how microbial evolution has resulted in 

a persistent reduction in expression after repeatedly selecting for the lowest 

PGAL1-YFP-expressing cells. Applying the ATAC-seq assay on samples collected 

from this 28-day evolution experiment, here we  show how genome-wide 

chromatin compaction changes during evolution under selection pressure. 

We  found that the chromatin compaction was altered not only on GAL 

network genes directly impacted by the selection pressure, showing an 

example of selection-induced non-genetic memory, but also at the whole-

genome level. The GAL network genes experienced chromatin compaction 

accompanying the reduction in PGAL1-YFP reporter expression. Strikingly, 

the fraction of global genes with differentially compacted chromatin states 

accounted for about a quarter of the total genome. Moreover, some of the 

ATAC-seq peaks followed well-defined temporal dynamics. Comparing peak 

intensity changes on consecutive days, we  found most of the differential 

compaction to occur between days 0 and 3 when the selection pressure 

was first applied, and between days 7 and 10 when the pressure was lifted. 

Among the gene sets enriched for the differential compaction events, some 

had increased chromatin availability once selection pressure was applied and 

decreased availability after the pressure was lifted (or vice versa). These results 

intriguingly show that, despite the lack of targeted selection, transcriptional 

availability of a large fraction of the genome changes in a very diverse manner 

during evolution, and these changes can occur in a relatively short number of 

generations.
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Introduction

Epigenetics is a gene-expression control mechanism that can 
help organismal adaptation to the environment. Built on 
epigenetic mechanisms, Lamarckian theory of evolution has 
received a significant amount of attention in the past two decades 
(Day and Bonduriansky, 2011; Burggren, 2014; Skinner et  al., 
2015). In the framework of Lamarckian evolution, environment 
directly alters phenotype throughout generations (Skinner, 2015), 
and epigenetic mechanisms can act as the facilitator for the 
environment to change phenotypic variation and its inheritance 
(Skinner, 2015).

Epigenetic, or more broadly, nongenetic inheritance can 
be mediated in several ways, including through the inheritance of 
epigenetic states, cytoplasmic factors, and nutrients. In this context, 
nongenetic inheritance could be  advantageous over genetic 
inheritance by circumventing its limitations through the decoupling 
of phenotypic change from the genotype (Bonduriansky and Day, 
2009). The acquired inheritance is a long-term consequence of 
epigenetic memory, defined as the stable propagation of a change 
in gene expression potentially induced by environmental stimuli 
(D’Urso and Brickner, 2014). The importance of epigenetic 
memory has been shown at the single-cell level in cancer 
progression (Meir et al., 2020) and bacterial virulence (Ronin et al., 
2017). Moreover, its dynamics has been modeled (Bintu et al., 2016) 
and their action mechanism on pluricellular organisms has been 
extensively reviewed (Migicovsky and Kovalchuk, 2011; Iwasaki 
and Paszkowski, 2014).

Several studies have focused on nongenetic inheritance across 
generations (Acar et al., 2005, 2008; Tyedmers et al., 2008; Huang, 
2009; Halfmann et al., 2012; Peng et al., 2015; Bódi et al., 2017; 
Chatterjee and Acar, 2018; Xue and Acar, 2018a,b; Stajic et al., 
2019). For example, phenotypic heterogeneity as an evolvable trait 
facilitates adaptive evolution (Bódi et al., 2017). In another study, 
epigenetic gene silencing has been shown to change the 
mechanism and rate of evolutionary adaptation (Stajic et  al., 
2019). Finally, in a gene network setting, work from our laboratory 
provided an example for the role played by epigenetic mechanisms 
on evolution (Luo et al., 2020). We showed the role played by 
epigenetic inheritance in microevolution. Subjecting yeast cells to 
repeated environmental selection based on the PGAL1-YFP 
expression (Acar et al., 2005, 2008, 2010; Elison et al., 2018; Luo 
et al., 2018) over a period of 7 days, we observed gene expression 
reductions for the samples sorted for the lowest YFP expression; 
the expression reductions persisted even after the selection 
pressure was lifted during an additional 21 days period. Epigenetic 
and genetic factors were found to contribute to these persistent 
expression level reductions (Luo et al., 2020).

To track evolution at the gene network level, using networks 
with well-characterized components is a practical necessity for 
faithful interpretation of results as phenotypic evolution itself and 
its root causes are already often challenging to sort out. The GAL 
network in yeast is arguably the most suitable small-scale 
transcriptional gene network to use as an experimental evolution 

model. There is more than half a century of research on the 
genetics and biochemistry of this network, having characterized 
its regulatory and enzymatic components and their interaction in 
the network. The activity of the GAL is often reported by the 
PGAL1-YFP construct integrated into the yeast genome. Galactose 
is taken up by the Gal2 proteins and other hexose transporters. 
The inducer Gal3 is activated by galactose and active Gal3 proteins 
bind to the Gal80 repressor. When Gal80 repressors are bound by 
active Gal3 inducers, Gal4 activators are no longer repressed by 
Gal80, and therefore, they can turn on transcription from the 
GAL1 promoter (Figure 1).

ATAC-seq, transposase-accessible chromatin using 
sequencing, is an in vitro epigenome analysis assay that uses 
transposition of sequencing adaptors into native chromatin 
(Buenrostro et al., 2013). ATAC-seq captures open chromatin 
sites, elucidating single-nucleotide-resolution information about 
chromatin compaction. Since its original development, 
ATAC-seq has been applied to a variety of eukaryotic cell types 
or organisms, leading to the characterization of many different 
cellular processes and phenotypes as a function of chromatin 
accessibility (Friman et al., 2019; Kakebeen et al., 2020; Yang 
et al., 2020; Van Rechem et al., 2021). For example, an improved 
ATAC-seq method was applied to age-enriched yeast cells, 
which led to the discovery that global nucleosome occupancy 
did not significantly change with cellular age (Hendrickson 
et al., 2018b). Recent work from the Shapiro Lab has adapted the 
ATAC-seq method in a prokaryote (Bac-ATAC), showing that 
this technique is able to capture chromosome accessibility and 
compaction even in the absence of fully-fledged chromatin 
(Melfi et al., 2021).

Using ATAC-seq applied on samples collected from an 
evolution experiment, here we  present how genome-wide 

FIGURE 1

GAL network components and architecture. The network is built 
by four regulatory proteins: Gal2 transporter, Gal3 inducer, Gal4 
activator, and Gal80 repressor. The galactose-bound active state 
of Gal3 is denoted by Gal3*. The GAL1 promoter (PGAL1) has 
binding sites for Gal4 activators; unrepressed Gal4 activates the 
PGAL1 as well as other network promoters, except the GAL4 
promoter which is constitutively active. Pointed blue arrows 
reflect activation while blunt red arrows reflect inhibition. 
Network activity is reported using a PGAL1-YFP reporter.
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chromatin compaction dynamically changed throughout 
evolution. We examined chromatin compaction both on the GAL 
network genes that were subjected to selection pressure and the 
rest of the yeast genome. We  analyzed ATAC-seq peaks for 
temporal dynamics during evolution. Results from this study 
suggest that, in response to environmental pressures, eukaryotic 
genomes are much more plastic and interconnected than 
previously thought.

Materials and methods

Strain description, experimental setup, 
and culture growth conditions

One set of the microevolution experiments performed in 
our previous work (Luo et al., 2020) was done using the strain 
WP35 which was a haploid wild-type yeast strain carrying a 
single copy of the PGAL1-YFP reporter in the ho locus; this 
strain had a MATα W303 genetic background. The initial 
(pre-evolution) genotype of the strain used in our current 
study is the following:

MATα, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-
11,15, ho::HIS5-PGAL1-YFP.

During those multi-day microevolution experiments, cell 
populations corresponding to each independent replicate were 
periodically collected/preserved as frozen stocks. For the current 
study, we have revived the L3 replicate (L for Low YFP; Luo et al., 
2020) by streaking its cells on synthetic complete media plates 
containing 2% glucose, followed by plate growth for 48 h. Liquid 
cultures inoculated with those revived cells were grown at 30°C in 
a shaking-incubator (225 rpm) in a volume of 10 ml, in synthetic 
complete media containing 0.1% mannose as a non-inducing sole 
carbon source and grown for 22 h. After this initial liquid growth 
period, GAL1 expression was induced by transferring the cells to 
10 ml fresh synthetic complete media containing 0.1% mannose 
and 0.2% galactose as carbon sources and grown in the shaker-
incubator for another 24 h.

Flow cytometry data acquisition

After the induction period described in the above section, the 
YFP expression distribution of 10,000 cells was measured by flow 
cytometry (FACSVerse, BD), using the FITC-A filter set. To 
minimize potential variations in size and/or morphology of the 
measured cells, we gated them by applying a narrow FCS-SSC 
range corresponding to the densest ~25% of the total cell 
population. We  note that we  did not perform any sorting 
experiments for the current study; cells revived from the frozen 
cultures (frozen on specific days of the evolution experiment for 
a specific experimental replicate) of our previous study (Luo 
et  al., 2020) were analyzed by flow cytometry based on the 
above description.

ATAC-seq sample preparation and 
obtaining the raw data

After the induction period described in the above section, yeast 
cells were prepared for ATAC-seq as described previously 
(Hendrickson et al., 2018a). Briefly, 5 million cells were pelleted 
(2 min/4600 rpm) and washed twice with Spheroplasting Buffer 
(SB: 1 M sorbitol, 40 mm HEPES [pH7.5], 10 mm MgCl2) at room 
temperature, and resuspended in 190 μl of SB + 10 μl of 
Zymolyase-100 T 10 mg/ml dissolved in SB. Cells were incubated 
at 30°C for 30 min with rocking. Spheroplasts were pelleted 
(2 min/4600 rpm), washed twice with SB at room temperature, and 
resuspended in 50 μl of Tagmentation Mix (25 μl Tagment DNA 
Buffer, 22.5 μl nuclease-free water, 2.5 μl Tagment DNA Enzyme1, 
Illumina #20034210). The tagmentation reaction was incubated at 
37°C for 30 min with no shaking or mixing. Later, DNA was then 
purified with the QIAquick PCR Purification Kit (Qiagen #28104) 
following the manufacturer’s protocol, eluted in 11 μl of water, and 
stored at-20°C until ready for PCR. PCR reactions were set up as 
follows: we mixed 25 μl of NEBNext Hi-Fidelity 2X PCR Master 
Mix, 7.5 μl of water, 6.25 μl of universal primer (Ad1, 10 μm), 6.25 μl 
of barcoded reverse primer (Ad2.1-Ad2.12, 10 μm), and 5 μl of 
DNA from the previous step. The primers were HPLC-purified 
after synthesis; their sequences are listed on Supplementary Table S1. 
The thermocycler was programmed as follows: 72°C for 5 min (one 
cycle); 98°C for 30 s (one cycle); 98°C for 10 s, 63°C for 30 s; 72°C 
for 1 min (ten cycles); and hold at 4°C. The amplified libraries were 
cleaned up using Ampure XP magnetic beads (Beckman Coulter 
#A63880), first removing large amplicons (>1,000 bp) using 0.4× 
volume of beads, and later selecting fragments >100 bp using 1.5× 
volume of beads. The latter beads were washed twice with 80% 
ethanol, dried, and resuspended in 22.5 μl of water to elute the 
DNA. The final solution was repurified with the QIAquick PCR 
Purification Kit, eluted in 22 μl of water, and QC-analyzed on a 
2100 BioAnalyzer Instrument (Agilent #G2939B).

After the QC, the libraries were pooled at an equimolar ratio 
for multiplexing and sequenced with a NovaSeq  6000 System 
(Illumina), generating 15 M of 100 bp paired-end reads per sample 
(Yale Center for Genome Analysis, West Haven). The reads were 
barcode-demultiplexed before further analysis.

ATAC-seq data processing

Low-quality reads were removed, and adaptor contamination 
was trimmed using Trim Galore (v0.5.0; Krueger et al., 2018). 
Trimmed reads were mapped to the Saccharomyces cerevisiae 
genome assembly R64 (sacCer3) using Bowtie2 (v2.2.9; Langmead 
and Salzberg, 2012). Peaks were called using MACS2 (v2.1.1; Feng 
et  al., 2012) and annotated using the HOMER program 
annotatePeaks.pl. (v4.10.3; Heinz et  al., 2010). To identify the 
differentially open chromatin regions between specific time 
points, we first pooled the peaks from the two timepoints involved 
by merging the overlapping peaks using BEDTools (v2.30.0; 
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Quinlan and Hall, 2010), then counting the reads located in the 
merged peaks using featureCounts (v1.6.3; Liao et al., 2014), and 
finally identifying the differentially binding regions using DESeq2 
(v1.30.1; Love et al., 2014).

Gaussian process test for dynamic 
time-course data and clustering

Standardized ATAC-seq counts for each peak (identified by 
MACS2) were fitted to a Gaussian process regression model (Yang 
et al., 2016) with a radial basis function (RBF) kernel plus a white 
noise kernel to represent a dynamic model, and a pure white noise 
kernel to represent the static model, respectively. A stringent χ2 
test with one degree of freedom was applied to the log-likelihood 
ratio (LR) statistics, with ( )LR 2ln ,ˆ ˆ= - -RBF STATICL L  where 
ˆRBFL  and ˆSTATICL  are the maximum likelihoods for the 

Gaussian process model and a static model, respectively (Yang 
et al., 2020). A value of p of 0.05 was deemed significant, but just 
25/3515 peaks (0.71%) fulfilled this stringent criterion. A more 
inclusive threshold of LR < −0.25 was applied to ATAC-seq peaks 
prior to clustering, representing 7.8% of the total (274/3515). 
These ATAC-seq peaks were clustered using a Gaussian process 
mixture model (Hensman et al., 2013). This analysis was done by 
adapting a code previously produced (Yang et  al., 2020) and 
applying it to our data. Parts of the used code are written in R (R 
Core Team, 2021), using the ‘gptk’ package (Kalaitzis et al., 2014), 
and others are written in Python, using the GPy (Sheffield 
Machine Learning Software, 2012) and GPclust (Hensman et al., 
2014) libraries, besides the ones included in the Anaconda data 
science toolkit (Anaconda Inc., 2020). The original code can 
be  found at the following site: https://github.com/Manchester 
Bioinference/IntegratingATAC-RNA-HiC/tree/master/ATACseq

Statistical analysis of peak composition

We computed the percentages of each kind of transcriptional 
units mapped to our ATAC-seq peaks (mRNA, tRNA, or other), 
as well as their location within the transcriptional unit (TSS, TES, 
exon, or intergenic region), and for the fraction of peaks identified 
as dynamic. We compared the percentages of each class in the 
dynamic peaks vs. the percentage on rest of the peaks by 
computing a Z score for two population proportions by the 
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respective proportions of each population for a particular class, p  
is the combined proportion of that class, and n1  and n2  are the 
total number of peaks in each population. The associated 
two-sided value of p was calculated with the Z distribution and the 
change was considered significant if the value of p ≤ 0.05.

Over-representation analysis of dynamic 
peaks

We explored if any gene set was overrepresented among the 
peaks clustering in each of the dynamic categories we  have 
identified, using as input the SGD gene IDs associated with the 
peaks within each category using WebGestalt (Liao et al., 2019). 
We  have selected Saccharomyces cerevisiae as the organism of 
interest and ORA as the analysis method. We explored the three 
Gene Ontology functional domains (Biological Process, Molecular 
Function, and Cellular Component) as well as the KEGG pathways 
database, keeping the values for the advanced parameters at their 
default levels. Those gene sets with a False Discovery Rate (FDR) 
smaller or equal to 0.1 were considered significant, which in our 
case was none.

Gene set enrichment analysis of 
ATAC-seq peaks corresponding to 
differential compaction on consecutive 
time points

We performed comparisons of the ATAC-seq peaks observed 
in time-consecutive samples using DESeq2 as described above. 
For those comparisons with a large number of differentially 
changed peak values, we have used the SGD gene ID associated 
with each peak and the log2-fold change across samples for those 
peaks displaying significant changes (padj < 0.05) as input for 
performing GSEA using WebGestalt (Liao et al., 2019). For genes 
that were associated with multiple peaks, each peak was separately 
considered and compared across time points and accounted in the 
GSEA. We have selected Saccharomyces cerevisiae as the organism 
of interest and GSEA as the analysis method. We explored the 
three Gene Ontology functional domains (Biological Process, 
Molecular Function, and Cellular Component) as well as the 
KEGG pathways database, keeping the advanced parameters at 
their default levels; we  selected to obtain the top5 categories 
positively or negatively enriched in each of the domains/database. 
Those gene sets with a False Discovery Rate (FDR) smaller or 
equal to 0.1 were considered significant.

Results

Laboratory evolution of the yeast 
genome under selection pressure

As part of our recent study, we  performed a 28-day-long 
laboratory evolution experiment by subjecting wild-type yeast 
cells expressing PGAL1-YFP to repeated environmental selection in 
the form of daily sorting. During the first 7 days, the cells were 
sorted daily based on the lowest 5% of the YFP expression, and 
were regrown in the same environment until the next day’s sorting 
activity. We  saw varying degrees of reductions in reporter 
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expression at the end of the 7-day selection period (Luo et al., 
2020). These expression reductions persisted for most of the 
biological replicates during an additional 21-day-long selection-
free growth period, showing the stable nature of the expression 
changes as a result of the selection pressure.

Cloning a second reporter, PTEF1-mCherry or PGAL1-mCherry, 
in the same strain carrying the PGAL1-YFP cassette and performing 
YFP sorting experiments on both strains led to no change in the 
expression level of mCherry in the PTEF1-mCherry strain, but 
significant reduction in the mCherry expression level in the PGAL1-
mCherry strain. Therefore, the reduced expression originally 
observed was found to be due to factors in the GAL network 
rather than global factors that could be expected to also affect the 
expression from PTEF1-mCherry. We further found that the local 
chromatin environment of the reporter cassette had a significant 
effect on the observed phenotype (Luo et al., 2020).

To understand how genome-wide chromatin compaction 
states changed during the course of evolution, we  applied the 
ATAC-seq assay on samples revived from different days of our 
evolution experiment, including days 0, 3, 7, 10, and 28. The 
revived expression distributions also displayed the previously-
observed expression reduction between days 0 and 7, and stability 
between days 7 and 28 (Figures 2A,B).

Global chromatin compaction analysis of 
the evolving yeast genome under 
selection pressure

We detected ATAC-seq peaks mapping to all GAL network 
genes across most of the time points (Figures  3A,B; 
Supplementary Files 1, 2). Chromatin around the GAL2 and 
GAL10 genes became significantly less compact between days 0 
and 3, with the reverse trend observed for GAL2, GAL7, and 
GAL10 between days 3 and 7. Note that the GAL10 peak was 
assigned to the promoter region, so it could be equally assigned to 
GAL1 as both genes share a bidirectional promoter (Lohr, 1997; 
Elison et al., 2018).

Altogether, we  detected 3,515 significant ATAC-seq peaks 
(Figure 4A, Supplementary File 1), and most of them localized at 
the promoter/TSS regions (Supplementary Figures S1, S2, S3A). 
To understand if there were any temporal peak dynamics, 
we applied a Gaussian process mixture model. By applying a very 
stringent χ2 test on the log-likelihood ratio (LR) after fitting the 
dynamic and static models on the data, just 25 peaks (0.71%) 
could be considered to have a dynamic trend (value of p <0.05). 
We  then used a more permissive threshold of LR < −0.25 to 
consider a particular fit to be dynamic, leading to the identification 
of a total of 274 peaks (7.8%). Among those peaks with temporal 
dynamics, their location within the transcriptional unit was 
further analyzed and we found them to be overrepresented in the 
promoters (value of p = 3.54E-04, Supplementary Figure S3A). 
Intriguingly, tRNA transcriptional units were overrepresented in 
the fraction of dynamic peaks compared to the whole detected 

peak population (value of p = 9.74E-03, Supplementary Figure S3B). 
Those dynamic peaks could further be clustered in six categories 
based on their specific dynamic behavior (Figure  4B; 
Supplementary File 1). We identified the genes associated with 
each category and wanted to see if any gene set was particularly 

A

B

FIGURE 2

Microevolution experiment with selection of the cells with low 
YFP expression. (A) PGAL1-driven YFP expression distributions of 
the revived yeast cells grown in 0.1% mannose & 0.2% galactose 
synthetic complete media, indicating the fraction of cells 
expressing different levels of YFP with cell fractions indicating 
normalization to the total number of cells plotted in each panel. 
The expression distributions correspond to the different days of 
the original evolution experiment. The green rectangle represents 
the selected/sorted population at each time point, corresponding 
to the lowest 5% of the YFP-ON cells. The peak left to the gray 
dashed line corresponds to OFF expression state of the bistable 
GAL network. (B) Mean PGAL1-YFP expression of the ON cells was 
measured on selected days of the microevolution experiment. 
Blue diamonds represent the values of each replicate. The red 
dashed line represents the moment when selection pressure was 
lifted.
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enriched on those categories by performing Over-Representation 
Analysis (ORA) on each of the categories. While we explored the 
biological process, molecular function, and cellular component 
domains of the Gene Ontology as well as the KEGG pathways, 
we did not find any gene set significantly overrepresented in any 
of the categories. Also, no gene set was enriched when we inputted 
into ORA the genes associated with the 274 dynamic peaks 
we identified (data not shown).

Next, we compared each ATAC-seq peak’s value between 
consecutive days, and identified the significantly differential 
peaks (padj < 0.05). Most of the significant chromatin compaction 
changes occurred between days 0 and 3 when the selection 
pressure was first applied (898 differentially compacted peaks, 
Figure 5A), and then between days 7 and 10 when the selection 
pressure was lifted (1864 differentially compacted peaks, 
Figure 5C). Among these significant compaction differences, the 
fraction of peaks experiencing increases in chromatin 
compaction was roughly the same as the fraction of peaks 

experiencing decreases in chromatin compaction (Figure  5; 
Supplementary File 2), indicating that the chromatin did not 
change its compaction state uniformly across the genome. Only 
ten genes were found to have altered chromatin compaction 
between days 3 and 7 (while the selection was present), with 
three of them belonging to the GAL network (GAL2, GAL7, and 
GAL10; Figures  3B, 5B). Regarding the remaining seven 
transcriptional units identified, one codes for alanine tRNA, five 
of them code for uncharacterized or dubious ORFs (YFL063W, 
YHR217C, YLL066W-B, YLL065W, YLR081W, and YML122C), 
and the last one for the plasma membrane permease GIT1 
which mediates uptake of glycerophosphoinositol and 
glycerophosphocholine. Between day10 and day28, during 
which no selection pressure was applied, just 2 transcriptional 
units were found to have differential accessibility, the hexose 
transporter HXT7 and a dubious ORF unlikely to code for a 
protein (YKR040C). Nonetheless, the fold-change in chromatin 
accessibility on those transcriptional units was quite low 
(~0.5  in log2 scale), indicating that there is no appreciable 
change on chromatin compaction between the two time points.

Gene set enrichment analysis on the 
differentially compacted chromatin loci

To find out the gene sets associated with the differentially 
compacted chromatin loci between the days displaying most of 
the significant compaction changes, we  performed Gene Set 
Enrichment Analysis (GSEA) between datasets corresponding to 
days 0 vs. 3, and days 7 vs. 10. We explored gene sets corresponding 
to the biological process, molecular function, and cellular 
component domains of the Gene Ontology as well as the KEGG 
pathways. Normalized enrichment scores for the top5 gene sets 
with increased or decreased chromatin compaction between these 
datasets were calculated (Figure 6; Supplementary Figures S4–S6; 
Supplementary Table S2). Corresponding to the significantly 
enriched gene sets, there were categories such as ‘mitochondrial 
gene expression’, ‘methylation’, ‘RNA modification’, and ‘generation 
of precursor metabolites and energy’, meaning that the changes in 
chromatin compaction affected a wide range of processes and 
pathways within the cell. Interestingly, some of the gene sets that 
have been identified as increased between the Day0 vs. Day3 
comparison were decreased in enrichment between the Day7 vs. 
Day10 comparison (or vice versa); ‘methylation’ in the GO term 
Biological Process domain and ‘glycolysis/gluconeogenesis’ 
among the KEGG pathways categories can be  given as two 
examples. Such ‘reversible’ gene sets were present in each of the 
GO term domains and KEGG pathways, but those categories were 
not always significantly enriched at the FDR level. Nonetheless, 
the fact that the same enrichment categories are found on the 
opposite ends of the spectrum (from high to low levels of 
chromatin accessibility) both at the beginning and end of the 
selection process is very intriguing, even if not all categories were 
scored with a significant FDR. We note that the reversibility is not 

A

B

FIGURE 3

ATAC-seq results on peaks mapped to the GAL network genes. 
(A) ATAC-seq peak value of those peaks mapping to the GAL 
network genes that have been detected across all time points. 
Solid circles represent the values corresponding to each 
replicate, while the smooth line represents the average value at 
each time point. Each gene’s common name is indicated in the 
figure panel. (B) Swarm plot showing the log2-fold change on 
each of the ATAC-seq peaks mapping to the GAL network genes, 
comparing samples of consecutive time points. Each peak’s 
associated gene is indicated by a label (note that GAL4’s 
associated peak was not detected in the last two time points). 
Significantly differential peaks (padj < 0.05) are plotted either in 
blue (if increased in the latter time point) or in red (if increased in 
the former time point).
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a global behavior applicable to all genes. It is only achievable by 
certain genes or gene sets, with other enriched gene sets not 
displaying reversible behavior across the different periods of the 

evolution experiment. We  expect future research to 
mechanistically uncover the beneficial impact of displaying 
reversibility by certain gene groups.

A

B

FIGURE 4

Identification of the ATAC-seq peaks displaying temporal dynamics. (A) Doughnut chart representing all significant peaks observed from the ATAC-
seq assay. Among them, a small fraction displays significant (value of p > 0.05) temporal dynamics as defined by a Gaussian process mixture model, 
but by applying a log-likelihood ratio-based criteria with LR < −0.25, ~7.8% of the peaks could be considered to have dynamic behavior. The dynamic 
peaks could be clustered into six categories, depending on their specific dynamic behavior. (B) Plots showing each category’s dynamic behavior 
defined by the Gaussian process mixture model mean and SD (represented by the thick smoothed line and shaded ribbon), as well as each 
clustered peak count value across time (thin lines). The number on the top-right corner indicates the number of peaks included in each cluster.
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Discussion

In a previous study, based on a daily selection/enrichment of 
a particular gene expression state, we performed a microevolution 
experiment and observed sustained reductions on gene 
expression that turned out to be  contributed by epigenetic 
changes on key GAL network components (Luo et al., 2020). 
Using the ATAC-seq assay to directly explore genome-wide 
chromatin compaction states, here we  report chromatin 
compaction state changes associated with the previously-
observed expression reductions. Less accessible chromatin 
accompanied the reduced GAL expression profiles of the evolved 

yeast populations. Despite the expected nature of this result, 
which also validate the application of the ATAC-seq assay, many 
loci with no relation with the GAL network surprisingly displayed 
changes in their chromatin compaction states.

Throughout the microevolution, a small fraction of the 
chromatin displayed dynamic behavior regarding the changes on 
its compaction state. This was experienced by genes that were not 
functionally related to each other, nor physically close at the DNA 
strand level, suggesting that this behavior was randomly formed. 
From a gene’s “selfish” perspective under selection pressure 
(Dawkins, 1976; Ågren, 2016), this may constitute a bet-hedging 
strategy adopted by some genes in order to be better adapt to 

A B

C D

FIGURE 5

Genes with differentially compacted chromatin between consecutive time points. (A–D) Volcano plots comparing each ATAC-seq peak’s value at 
consecutive time points as a log2 fold-change. Significantly differential peaks (padj < 0.05) are plotted either in blue (if increased in the latter time 
point) or in red (if increased in the former time point). The blue and red numbers indicate the number of genes with significantly altered chromatin 
compaction between each time point.
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environmental changes, either to their own benefit or to the 
benefit of the whole organism.

An interesting outcome of our study is that the genome-
wide chromatin compaction changes do not occur 
synchronously with the changes on the phenotype under 
artificial selection, but apparently in response to the selection 
pressure itself. With Day7 being the day on which the selection 
pressure was lifted, among the time points for which we have 
collected ATAC-seq data (Day0, Day3, Day7, Day10, and 
Day28), the vast majority of significant changes on chromatin 
compaction were detected between Day0 and Day3, and 
between Day7 and Day10, precisely after the selection pressure 
was applied and lifted. On the other hand, between Day3 and 
Day7 (when selection pressure was still being applied) and 

between Day10 and Day28 (when selection pressure was no 
longer applied), the number of peaks displaying significant 
changes was negligible (Figure  5). The lack of changes in 
chromatin compaction state between the two final time points 
(Day10 and Day28) also serves as an internal control, as in 
these two selection-free regimes, one would not expect to see 
changes in chromatin compaction; this observation supports 
the validity of the changes we have observed across the earlier 
time points.

These findings point toward a model where the cell 
population is ‘aware’ of the selection process, triggering a 
‘wave’ of chromatin remodeling changes, with first one 
occurring upon the application of the selection pressure and 
another one when the selection is over (Figure 7). However, 
the question of how a non-communicating single cell in a 
well-mixed population might become aware of this selection 
is not trivial. Using the same growth media and conditions, 
the only difference between a cell experiencing the under-
selection and selection-free periods was that in the former, a 
narrow gate (based on PGAL1-YFP expression) was imposed to 
sort cells, while in the selection-free period, this gate was 
much wider to sort the whole population. It is possible that 
cell-to-cell variability in chromatin compaction is actually 
greater at the single-cell level than what we measured here at 
the population level (validation of this is challenging as single-
cell ATAC-seq (Cusanovich et  al., 2015) does not exist for 
yeast yet). Assuming that there is a high degree of noise 
associated with the chromatin compaction state, if specific 
YFP expression ranges are associated with certain chromatin 
compaction states, then sorting cells at a narrow YFP 
expression range would remove the rest of the population 
variability from the sample, resulting in a distinct chromatin 
compaction state during the selection period for the 
subpopulation being repeatedly selected. Once the sorting-
gate gets wider to cover the whole population during the 
selection-free regime after the 7th day, all the original 
variability of the population would be captured again; despite 
the lower PGAL1-YFP expression, this would lead to another 
chromatin compaction profile similar to the one of the initial 
population before the selection pressure or sorting was 
applied. This ‘wave’ model matches what we  observed 
experimentally using population-level ATAC-seq.

The two waves of chromatin changes appear to be opposite 
to each other, at least partially; among the gene set categories 
enriched when chromatin compaction was increased upon 
enforcing selection pressure, some became decreased in 
compaction once the selection was lifted. This would suggest 
that those categories changed their chromatin compaction 
during the time when the selection was present, returning to 
their basal state afterward. By displaying a degree of 
reversibility on the gene set categories experiencing chromatin 
compaction changes, the evolving system also showed a type 
of memory; actually, memory was already present in the 
system due to the stably-maintained low GAL expression 

FIGURE 6

GSEA on differentially compacted loci on the KEGG Pathways 
domain. Gene Set Enrichment Analysis (GSEA) on the 
differentially available chromatin loci comparing Day0 vs. Day3 
and Day7 vs. Day10 (the two comparisons displaying most of the 
significant changes genome-wide). The bar plots show the 
normalized enrichment score for the top5 gene sets with 
increased (blue) and decreased (orange) chromatin availability in 
the latter time point. Dark colors indicate an FDR ≤ 0.1 for the 
indicated gene set, while pale colors indicate an FDR > 0.1. Gene 
sets that have been identified as increased in the Day0 vs. Day3 
comparison and decreased in the Day7 vs. Day10 comparison (or 
vice versa) are indicated with an asterisk (*).
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levels throughout the after-selection period, as previously 
reported (Luo et al., 2020).

The gene set categories representing the genes whose 
chromatin compaction state significantly changed are very 
diverse and apparently not related to each other, suggesting that 
those changes arise randomly, possibly as a result of the cells 
trying to generate variability to better adapt to the selection 
pressure. In this case, while all those genome-wide chromatin 
changes had a neutral effect on the phenotype under selection, a 
population could try to maximize survival in a competitive 
environment by utilizing all available tools to produce variability; 
epigenetic mechanisms and phenotypic changes rooted by 
epigenetics play an important role in that process, as well as 
genetic mutations (Day and Bonduriansky, 2011).

Our work represents an example to how environmental 
selection of a particular trait can be accompanied by a plethora 
of unexpected changes, in this case at the chromatin compaction 
level. Future studies focusing on the real-time evolution of 
microbial populations would show the generality of our findings 
and provide insights into the physiological relevance of the 
genome-wide chromatin compaction changes experienced by 
eukaryotic genomes.
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