
fmicb-13-908845 November 12, 2022 Time: 13:14 # 1

TYPE Original Research
PUBLISHED 16 November 2022
DOI 10.3389/fmicb.2022.908845

OPEN ACCESS

EDITED BY

Margarita Aguilera,
University of Granada, Spain

REVIEWED BY

Shiro Tochitani,
Suzuka University of Medical Science,
Japan
Chiza Kumwenda,
University of Zambia, Zambia

*CORRESPONDENCE

Kristine G. Koski
kristine.koski@mcgill.ca

SPECIALTY SECTION

This article was submitted to
Food Microbiology,
a section of the journal
Frontiers in Microbiology

RECEIVED 31 March 2022
ACCEPTED 10 October 2022
PUBLISHED 16 November 2022

CITATION

Ajeeb TT, Gonzalez E, Solomons NW
and Koski KG (2022) Human milk
microbial species are associated with
infant head-circumference during
early and late lactation in Guatemalan
mother-infant dyads.
Front. Microbiol. 13:908845.
doi: 10.3389/fmicb.2022.908845

COPYRIGHT

© 2022 Ajeeb, Gonzalez, Solomons
and Koski. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Human milk microbial species
are associated with infant
head-circumference during
early and late lactation in
Guatemalan mother-infant
dyads
Tamara T. Ajeeb1,2, Emmanuel Gonzalez3,4,5,
Noel W. Solomons6 and Kristine G. Koski1*
1School of Human Nutrition, McGill University, Montréal, QC, Canada, 2Department of Clinical
Nutrition, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia,
3Canadian Centre for Computational Genomics, McGill Genome Centre, Montréal, QC, Canada,
4Department of Human Genetics, McGill University, Montréal, QC, Canada, 5Gerald Bronfman
Department of Oncology, McGill University, Montréal, QC, Canada, 6Center for Studies of Sensory
Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala

Human milk contains abundant commensal bacteria that colonize and

establish the infant’s gut microbiome but the association between the milk

microbiome and head circumference during infancy has not been explored.

For this cross-sectional study, head-circumference-for-age-z-scores (HCAZ)

of vaginally delivered breastfed infants were collected from 62 unrelated

Mam-Mayan mothers living in eight remote rural communities in the Western

Highlands of Guatemala during two stages of lactation, ‘early’ (6–46 days

postpartum, n = 29) or ‘late’ (109–184 days postpartum, n = 33). At each stage

of lactation, infants were divided into HCAZ ≥ −1 SD (early: n = 18; late: n = 14)

and HCAZ < −1 SD (early: n = 11; late: n = 19). Milk microbiome communities

were assessed using 16S ribosomal RNA gene sequencing and DESeq2 was

used to compare the differential abundance (DA) of human milk microbiota

with infant HCAZ subgroups at both stages of lactations. A total of 503 ESVs

annotated 256 putative species across the 64 human milk samples. Alpha-

diversity using Chao index uncovered a difference in microbial community

richness between HCAZ ≥ −1 SD and HCAZ < −1 SD groups at late lactation

(p = 0.045) but not at early lactation. In contrast, Canonical Analysis of

Principal Coordinates identified significant differences between HCAZ ≥ −1

SD and HCAZ < −1 SD at both stages of lactation (p = 0.003); moreover,

26 milk microbial taxa differed in relative abundance (FDR < 0.05) between

HCAZ ≥ −1 SD and HCAZ < −1 SD, with 13 differentially abundant at each

lactation stage. Most species in the HCAZ ≥ −1 SD group were Streptococcus

species from the Firmicutes phylum which are considered human colonizers

associated with human milk whereas the HCAZ < −1 SD group at late lactation

had more differentially abundant taxa associated with environmentally and
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‘potentially opportunistic’ species belonging to the Actinobacteria genus.

These findings suggest possible associations between brain growth of

breastfed infants and the milk microbiome during lactation. Importantly,

these data provide the first evidence of cross talk between the human milk

microbiome and the infant brain that requires further investigation.

KEYWORDS

human milk, lactation, Guatemala, Indigenous population, infant growth, head-
circumference, microbiome, 16S rRNA gene

Introduction

Human milk is a complex dynamic fluid that contains
both nutrients and non-nutritive bioactive factors to meet the
nutritional and developmental requirements of the growing
infant (Petherick, 2010; Walker, 2010; Andreas et al., 2015). It
also contains a diverse community of commensal and potential
probiotic bacteria that can inoculate the infant gastrointestinal
tract (Fernández et al., 2013; McGuire and McGuire, 2017;
Boudry et al., 2021) and are associated with infant health
(McGuire and McGuire, 2015). Microbiota are involved in
metabolic pathways that contribute to infant growth, such
as harvesting energy (Cani and Delzenne, 2009), synthesizing
vitamins (Kho and Lal, 2018), regulating the immune system,
and development and maturation of both the enteral- and
central nervous system through the gut-brain and brain-gut axes
(Carabotti et al., 2015).

Metagenomic sequencing studies are advancing the
characterization of the diverse bacterial species in human
milk. The latest systematic reviews of studies of the human
milk microbiome using culture independent methods and
different 16S rRNA variable regions concluded that Streptococci
and Staphylococci are the most predominant genera in
human milk (Fitzstevens et al., 2017; Sakwinska and Bosco,
2019). Furthermore, the milk microbiome ecosystem appears
more diverse in terms of bacterial species but more similar
among samples compared to infants’ fecal or oral ecosystems.
This phylogenetic structure revealed the dominance of
Streptococcaceae, with Streptococcus being the dominant genus
in the milk ecosystem (Biagi et al., 2017).

Evidence also supports the link between gut microbiota
and the development of the nervous system that involves
bidirectional communication of neuronal pathways essential
for neurological development and brain growth (Rogers et al.,
2016; Niccolai et al., 2019). Human milk is one of the first
and continuous inoculators of the infant gut microbiota.

Abbreviations: DA, Differentially Abundant; HC, Head-circumference;
HCAZ, Head-Circumference-for-Age-z-Score; LAZ, Length-for-Age-z-
Score; WAZ, Weight-for-Age-z-Score.

Although human milk microbiota is a critical contributor to
establishing infant gut microbiota (Fernández et al., 2013;
McGuire and McGuire, 2017), and the infant consumes up to
10 million microbiota per day (Gomez-Gallego et al., 2016), the
association between human milk microbiome and infant head
circumference, as a measure of brain growth (Cheong et al.,
2008), is yet to be explored.

The neonatal period is characterized by rapid brain
growth (Huttenlocher and Dabholkar, 1997; Knickmeyer
et al., 2008; Tau and Peterson, 2010) that coincides with
the maturation of the gut microbiota (Yatsunenko et al.,
2012). Investigations have revealed that the gut microbiota
is involved in the modulation of brain development during
infancy and neonatal period through a complex bidirectional
communication microbiota-brain axis network (Borre et al.,
2014; Diaz Heijtz, 2016; Gonzalez-Santana and Heijtz, 2020),
suggesting early life as a sensitive period for microbiota-
gut-brain interactions (Yatsunenko et al., 2012; Cryan et al.,
2019). Germ-free mice studies have shown that Lactobacillus
families communicate with the brain through the vagus nerve
(Buffington et al., 2016; Sgritta et al., 2019), which may
be one of the most direct routes though which microbiota
communicate with the brain (Fülling et al., 2019), but the
precise mechanism is not fully understood. Another potential
microbiota-brain-axis mechanism is the gut hormone signaling
(Heijtz et al., 2011) whereby the hypothalamic–pituitary–
adrenal axis through release of adrenocorticotropic hormone
and glucocorticoids modulate the intestinal epithelial barrier
and immune responses and subsequently gut microbiota
composition (Cryan et al., 2019; Gonzalez-Santana and
Heijtz, 2020). However, the precise mechanisms and signaling
pathways involved in the microbiota-gut-brain interaction of
the developing brain during early life are not fully understood.
Establishing associations between microbiota and early life brain
development might have important implications for early brain
development.

In this cross-sectional study, we aimed to compare the
association of the human milk microbiome of breastfeeding
Guatemalan mothers with their infants’ head-circumference-
for-age-z-score (HCAZ) as a proxy measure of brain growth

Frontiers in Microbiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2022.908845
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-908845 November 12, 2022 Time: 13:14 # 3

Ajeeb et al. 10.3389/fmicb.2022.908845

(Cheong et al., 2008). We compared the diversity and differential
abundance (DA) of the human milk microbiome between
infants with HCAZ ≥ −1 SD vs. HCAZ < −1 SD during
both early lactation (6–46 days postpartum) and late lactation
(109–184 days postpartum). We also aimed to identify milk
microbiome species that are differentially abundant between
infant HCAZ subgroups, to better understand the association
between the human milk microbiome and brain development in
early life as an important growth variable that may influence the
neurodevelopmental outcomes in lactating mother-infant dyads
living in the remote Western Highlands of Guatemala.

Materials and methods

Study setting, recruitment and ethics

This was a cross-sectional study that was conducted in
eight rural Mam-Mayan communities of the Western Highland
departments of Quetzaltenango between June 2012 and January
2013 (Chomat et al., 2015).

The Mam-Mayan community constitutes the fourth largest
Mayan population in Guatemala) (Instituto Nacional de
Estadística, 2003). Even though mothers were recruited from
eight distinct remote communities to minimize the possibility
of exchanging microbes among one another, these eight Mam-
Mayan communities were characterized by dispersed houses.
These communities had high rates of poverty (68% extreme
poverty and 19% poverty) and food insecurity (62%) (Escobar,
2009; Chomat et al., 2015). Mam-Mayan are known to comply
with WHO recommendations to exclusively or predominantly
breastfeed for the first 6 months of the infant’s life (Wren et al.,
2015; World Health Organization [WHO], 2017).

Lactating mothers were recruited by community health
workers using a participatory action research approach (Cargo
and Mercer, 2008). Recruitment methods included home visits,
loudspeaker announcements, and word-of-mouth invitations
(Chomat et al., 2015). All mothers delivered vaginally and nearly
100% of mothers exclusively or predominantly breastfed their
infants for 6 months. Mothers with infants < 4 days or with
milk volumes insufficient for analysis, mothers treated with
antibiotics or who had a non-singleton birth were excluded
(Wren et al., 2015). A previous study in our population
revealed that sub-clinical mastitis was associated with a low
head circumference (Wren-Atilola et al., 2019). Thus, mothers
with sub-clinical mastitis (milk Na:K > 0.6) were also excluded.
Inclusion criteria were mother-infant dyads aged 6–46 days and
109–184 days postpartum.

The study was a collaboration between McGill University
and the Center for Studies of Sensory Impairment, Aging, and
Metabolism, a research organization based in Guatemala. Both
ethics boards approved the study. In addition, permissions were
obtained from community leaders and the local authorities

of the Ministry of Health. A fully informed written consent
(thumbprint if unable to sign) was obtained from women if they
wished to participate, and all mothers were informed of their
rights to withdraw from the study at any time.

Human milk sample collection

Milk samples were collected during the day in a 3-h time
window between 9 a.m. and 12 p.m. from a single, unilateral
breast milk sample, from the breast that was not last used to
feed the infant ensuring that foremilk was collected from all
mothers, which can minimize the variation in milk composition.
Only manual expression was used for milk collection, which
exclusively involves hand expression of breast milk, without the
use of a breast pump. Milk samples were collected by a trained
midwife, who used hand sanitizer before and after collection
(Wren et al., 2015). The nipple and areola of the breast, not
recently used for breastfeeding, were cleaned with 70% ethanol
prior to sample collection into sterile 60 ml plastic vials and
stored on ice immediately. In the field laboratory, milk samples
were partitioned, stored at −30◦C before being shipped to
McGill University in two separate shipments (Li et al., 2016).

Infant anthropometry

According to standardized procedures and as described
in the detailed methodology previously published, infant
measurements were taken by two trained Guatemalan
nutritionists (Chomat et al., 2015). In brief, infant recumbent
supine length (cm) was measured thrice using an infantometer
(SECA 210) and recorded to the nearest 0.5 cm. The mean
was calculated and considered the final value. Infant weight
(kg) was measured using a digital infant scale (SECA 354)
and rounded to the nearest 100 g. Head circumference
(cm) was measured thrice using a head circumference baby
band (SECA 212). All infant anthropometric measures
were completed on the same day of milk sample collection.
Infant age was either calculated using date of birth recorded
on the maternal health card or obtained from the mother
in the absence of a health card. Infant length-for-age
z-score (LAZ), weight-for-age z-score (WAZ), and head
circumference for age z-score (HCAZ) were calculated as
indicators of infant growth status using the World Health
Organization Anthro software. To assess head-circumference
(HC), infant HCAZ was calculated as an indicator of brain
development at early and late lactation using the World
Health Organization Anthro software (3.1) (World Health
Organization [WHO], 2006). Due to the low prevalence of
microcephaly (HCAZ < −2 SD) in our population, we used
the cut-off point of HCAZ < −1 SD to categorize the infant
with low HC. Based on HCAZ, infants were classified into
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two groups at two stages of lactation: head-circumference
HCAZ ≥ −1 SD (n = 18) and low or mild impairment in
head-circumference HCAZ < −1 SD (n = 11) in early lactation
and HCAZ ≥ −1 SD (n = 14) and HCAZ < −1 SD (n = 19) in
late lactation.

16S rRNA gene amplification and
sequencing

A DNeasy Blood and Tissue mini kit from Qiagen
was used to extract DNA from 1 ml of milk in
accordance with the manufacturer’s protocol by Genome
Quebec. For PCR, the universal eubacteria primers
27F/533R (27F: AGAGTTTGATCCTGGCTCAG, 533R:
TTACCGCGGCTGCTGGCAC) were used for the amplification
of the variable regions V1–V3 consisting of ∼526 bp based
on the Escherichia coli 16S rRNA gene (Cabrera-Rubio et al.,
2012; Mediano et al., 2017; Lackey et al., 2019). The primers
were chosen because of their high coverage of most genera
currently considered “core” in human milk, including the
genus Cutibacterium (Hunt et al., 2011; Jost et al., 2013).
Genome Quebec conducted amplification at McGill University.
The amplification conditions have been previously described
(Gonzalez et al., 2021).

Microbial data processing

Genome Quebec at McGill University conducted the
amplification, and sequencing was performed using Illumina
MiSeq. The amplification process was previously described
(Gonzalez et al., 2021). The ANCHOR pipeline was chosen
for amplicon sequence processing. The platform was designed
for improved species-level microbial identification using direct
paired-end sequences, which helps to substantially improve
the sequence resolution of 16S rRNA gene amplification data;
furthermore, it uses integrated multiple-reference database
annotation to enhance the interpretation of complex, non-
reference microbiomes (Gonzalez et al., 2019). In brief, Mothur
(Schloss et al., 2009) was used to align and dereplicate
sequences. The databases NCBI 16S rRNA RefSeq, NCBI non-
redundant nucleotide, SILVA, and the Ribosomal Database
Project were used to annotate ESVs using BLASTn with
criteria of > 99% for identity and coverage. Due to the high
standard of curation, priority was given to NCBI 16S rRNA
RefSeq, when 100% identity and coverage hits returned across
multiple databases. Amplicons with low counts (<36) were
binned to high-count ESVs at a low threshold of > 98%
identity/coverage. Taxonomy annotation, particularly species
calls, should be considered putative even when sharing
100% sequence identity to a single species due to database
errors.

Bioinformatics

To address sparsity issues, only ESVs with at least 3 counts
in 3 different samples from a same group of comparison
were conserved. No data normalization was performed for
alpha-diversity. rlog normalization (rlog function in Phyloseq
R package) was used for data transformation in beta-diversity
analysis (Gonzalez et al., 2021).

Alpha-diversity evaluates human milk microbiome
communities within samples, which was measured using
Phyloseq R package with R Studio software (version 1.4.1106)
(McMurdie and Holmes, 2013). Six different alpha-diversity
metrics were used to estimate and compare microbial richness
within samples (Observed, Chao-1, Shannon, Simpson, Inverse
Simpson, and Fisher). And thereafter comparing microbial
richness between HCAZ infant groups was done using t-tests on
the richness measures. ACE and Chao-1 were used to account
for taxonomies that were undetected due to low abundance. We
used Observed to calculate the total number of unique ESVs
per sample. To account for equitability in sample distribution
Shannon index was used, and for the species dominance we
used Simpson. Fisher was used to account for uncertainty in
richness estimations.

Beta-diversity was determined to evaluate differences
in human milk microbiome communities between the
HCAZ ≥ −1 SD and HCAZ < −1 SD at both early and
late lactation. To evaluate and visualize the differences
between the four different groups, constrained ordination was
employed based on Bray-Curtis dissimilarity computed on
rlog-transformed counts using Canonical Analysis of Principal
Coordinates (CAP). ANOVA-like permutation statistical test
was used for the significance of the different constraints.
DESeq2 procedure (Love et al., 2014) was used to evaluate
differentially abundant taxonomic units between HCAZ ≥ −1
SD and HCAZ < −1 SD groups to identify statistical differences
between microbial communities. DESeq2 identifies significant
differences between groups while considering the library size.
Difference in abundance between microbial communities tested
with a false discovery rate (FDR < 0.05) were considered
significant.

Results

Characterization of Guatemalan
mother-infant dyads

Maternal and infant characteristics are summarized in
Table 1. Maternal characteristics which were divided by infant
HCAZ ≥ −1 SD and HCAZ < −1 SD, revealed no significant
differences in either early or late lactation for age, height, weight,
BMI, parity, or breastfeeding practices.
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Infant characteristics by HCAZ are summarized in Table 1.
HC measurements differed between infant HCAZ groups.
HCAZ differed between infant subgroups at both stages of
lactation (p < 0.001) and as expected, infant head-circumference
was higher in the HCAZ ≥ −1 SD (−0.17 ± 0.53) compared to
the HCAZ < −1 SD (−1.43 ± 1.32) in early lactation and in
late lactation [HCAZ ≥ −1 SD (−0.20 ± 0.39) vs. HCAZ < −1
SD (−1.80 ± 1.28)]. Weight-for-age-z-score (WAZ, means SD)
differed between infants with HCAZ ≥ −1 SD (−0.46 ± 0.72)
and those with HCAZ < −1 SD (−1.17 ± 0.73) (p = 0.028) but
only in early lactation. LAZ did not differ by subgroups at either
stage of lactation.

Human milk microbiome community

A total of 503 ESVs were assembled and captured
3,551,788 sequences reads across all 64 human milk samples
(Supplementary File 1). The identified 503 ESVs annotated 256
species (81.2% of reads), 129 genera and 9 family or higher taxa
as well as 109 which could not be identified at > 99% similarity
(in both identity and coverage) to any known taxa, thus, they
were termed Unknowns. Although there were 109 Unknown
taxa, these taxa had generally low abundance and contributed
to only 6.5% of the total ESVs (Figure 1). The 256 ESVs
annotated as putative species had an average BLASTn return

TABLE 1 Population characteristics of mothers and infants at 2 stages of lactation (x̄ ± SD or %).

Characteristics Early lactation Late lactation

HCAZ≥−1
SDa

HCAZ<−1
SDa

P-valueb HCAZ≥−1
SDa

HCAZ < −1 SDa P-valueb

n 18 11 14 19

Maternal

Age, yrs 23 ± 6 23 ± 5 >0.9 23 ± 6 22 ± 8 0.9

Height, cm 146 ± 5 146 ± 5 0.6 147 ± 5 148 ± 5 >0.9

Weight, kg 51 ± 7 50 ± 6 0.5 53 ± 10 51 ± 8 0.5

BMI, kg/m2 23.7 ± 2.3 23.4 ± 3.9 0.8 24.5 ± 4.1 23.4 ± 3.3 0.6

Parity, % 0.9 0.3

Primiparous 44 36 64 33

Multiparous 56 64 35 67

Breastfeeding Practices, % 0.8 0.2

Exclusive 50 55 43 53

Predominant 50 45 14 32

Mixed − − 43 16

SCM, Na:K 0.42 ± 0.08 0.40 ± 0.06 0.2 0.38 ± 0.12 0.40 ± 0.07 0.9

Infant

Age, d 23 ± 10 23 ± 12 0.7 147 ± 17 139 ± 22 0.2

Sex, % 0.7 0.8

Male 56 64 57 53

Female 44 36 43 47

Head-Circumference, cm 36.09 ± 1.03 34.51 ± 1.87 0.01 41.55 ± 0.97 39.28 ± 1.49 <0.001

HCAZ −0.17 ± 0.53 −1.43 ± 1.32 <0.001 −0.20 ± 0.39 −1.80 ± 1.28 <0.001

Weight, kg 3.78 ± 0.47 3.38 ± 0.51 0.027 6.69 ± 0.53 6.08 ± 0.71 0.013

WAZ −0.46 ± 0.72 −1.17 ± 0.73 0.028 −0.57 ± 0.62 −1.15 ± 1.07 0.056

Underweight 0.1 0.001

WAZ ≥ −1 SD 78.95 50 83.33 29.41

WAZ < −1 SD 21.05 50 16.67 70.59

Length, cm 50.2 ± 2.1 49.1 ± 2.1 0.2 61.57 ± 2.06 58.89 ± 3.06 0.018

LAZ −1.50 ± 0.98 −2.03 ± 0.78 0.2 −1.40 ± 1.11 −2.33 ± 1.42 0.068

Stunting 0.5 0.1

LAZ ≥ −1 SD 26.32 10 27.78 5.88

−1 SD > LAZ > −2 SD 42.11 50 44.44 35.29

LAZ < −2 SD 31.58 40 27.78 58.82

aMean (SD); n/N (%). bWilcoxon rank sum test; Wilcoxon rank sum exact test; Fisher’s exact test; Pearson’s Chi-squared test. HCAZ ≥ − 1SD, head-circumference; HCAZ< − 1SD, low
or mild impairment in head-circumference.
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FIGURE 1

Human milk microbiome community. (A,C) The number of ESVs at different taxonomy level showing that sequences annotated at species level
account for 81% of the ESVs. (B) The total abundance at each taxonomy level.

for identity at 99.8% and for coverage at 99.99%. At a phyla
level, the most prevalent bacteria were from Proteobacteria,
followed by Firmicutes, and Actinobacteria. The most abundant
species across all samples were Streptococcus_salivarius_6
and Novosphingobium_clariflavum_1 contributing to 9.53%
and 7.66% of amplicons, respectively. Of the 256 ESVs
annotated putative species, 25 taxa comprised 62.84% of the
sequenced amplicons (Figure 2). Two of these dominant taxa
were the species Stenotrophomonas_maltophilia. Although
this species was previously isolated from human and raw
milk (Spencer, 1995), in the 2004 SENTRY Antimicrobial
Surveillance Program among pediatric patients isolates,
Stenotrophomonas_maltophilia was among the top 15 frequently
observed pathogens isolated from North America and Latin
America (Fedler et al., 2006; Brooke, 2012). Only one of the
25 dominant taxa, Pseudomonas_MS_2, was differentially
abundant in the HCAZ ≥ −1 SD in late lactation.

Microbial diversity
Of the six alpha-diversity metrices used to measure human

milk microbiome communities, only Chao1 index revealed

significant differences in microbial community richness between
HCAZ ≥ −1 SD and HCAZ < −1 SD in late lactation
(p = 0.045), but not at early lactation (Figure 3 and
Supplementary File 2). Microbial diversity between samples
(i.e., beta-diversity) evaluated differences in human milk
microbiome communities between the HCAZ ≥ −1 SD
and HCAZ < −1 SD at both early and late lactation.
Canonical Analysis of Principal Coordinates (CAP) analysis
identified significant differences between HCAZ ≥ −1 SD and
HCAZ < −1 SD at both stages of lactation (p < 0.002) and that
also were distinct from one another (Figure 4).

Differential abundance in early lactation
During early lactation, DA analysis using DESeq2 identified

13 milk microbiome taxa as significantly different in DA
(FDR < 0.05) between HCAZ ≥ −1 SD and HCAZ < −1
SD groups. Interestingly, all except one of the 12 differentially
abundant taxa were in the HCAZ ≥ −1 SD, revealing a
higher more differentially abundant taxon in the normal
HCAZ group. These taxa were annotated as species (12 ESVs)
and genera (3 ESVs). The majority of these differentially
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FIGURE 2

Human milk microbiome community overview. (A) The total microbial community colored at phylum level. (B) Cumulative abundance of the 25
most abundant ESVs across samples.

FIGURE 3

Human milk alpha-diversity (richness) at early and late lactation
stages. Comparing head-circumference-for-age-z-score
HCAZ ≥ −1 SD (early: n = 18; late: n = 14) and HCAZ < −1 SD
(early: n = 11; late: n = 19). Alpha diversity Chao1 index was
significantly different (t-test, p = 0.05) between HCAZ ≥ −1 SD
and HCAZ< −1 SD at late lactation.

abundant taxa in the HCAZ ≥ −1 SD group belonged to
the Firmicutes genus and included Lactobacillus_iners_1
(FC = 22.4), Anaerococcus_2 (FC = 22), Lactobacillus_gasseri_1
(FC = 12.2), Staphylococcus_epidermidis_7
(FC = 6.4), Streptococcus_sp_strain_F0610 (FC = 5.6),
Streptococcus_mitis_7 (FC = 3.9), Streptococcus_MS_8

(FC = 3.2), and Streptococcus_MS_15 (FC = 2.6). Proteobacteria
had four differentially abundant taxa in the HCAZ ≥ −1
SD group. These were Proteobacteria_MG_1 (FC = 22.6),
Brevundimonas_MS_1 (FC = 9.1), Pantoea_agglomerans_1
(FC = 6.4), and Paracoccus_MS_1 (FC = 6.4). Furthermore, the
two taxa; Proteobacteria_MG_1 and Lactobacillus_iners_1 were
uniquely associated with the HCAZ ≥ −1 SD group. None of
the differentially abundant taxa in the HCAZ ≥ −1 SD in early
lactation belonged to the Actinobacteria, whereas the only one
differentially abundant species Kocuria_palustris_1 (FC = 6.7)
in the HCAZ < −1 SD belonged to the Actinobacteria genus
(Figure 5A).

Differential abundance in late lactation
In contrast, in late lactation, there was a shift to

more differentially abundant species in the HCAZ < −1
SD group. Ten species were differentially abundant
in the HCAZ < −1 SD group, revealing more
differentially abundant taxa in the infant group with
mild impaired HCAZ. Four of these taxa belonged to
the Actinobacteria genus including Kocuria_palustris_1
(FC = 5.6), Corynebacterium_tuberculostearicum_1
(FC = 6), Leucobacter_MS (FC = 22.8), and
Corynebacterium_segmentosum_1 (FC = 23.9).
Other differentially abundant species included
Staphylococcus_epidermidis_7 (FC = 18.7) and
Turicibacter_sanguinis_1 (FC = 22.6) from the Firmicutes genus
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FIGURE 4

Constrained ordination (CAP) analysis of milk microbial communities present between head-circumference-for-age-z-score (HCAZ ≥ −1 SD)
and HCAZ < −1 SD at early and late lactation stages. ANOVA-like permutation test showed significant differences between groups at both
stages of lactation (p = 0.003). (A) Circles represent sample density relative to each group. (B) CAP distance biplot showing individual samples
colored by groups and vectors (in red) corresponding to the variable loadings (i.e., variable contribution). The black crosses represent the
geometric centre of each group.

FIGURE 5

Differentially abundant (DA) ESV associated to head-circumference-for-age-z-score (HCAZ). (A) Early lactation: 12 ESVs were significantly more
abundant in HCAZ ≥ −1 SD (n = 18; left side) and 1 ESV in HCAZ < −1 SD (n = 11; right side). (B) Late lactation: 3 ESVs significantly more
abundant in HCAZ ≥ −1 SD (n = 14; left side) and 10 ESVs in HCAZ < −1 SD (n = 19; right side). Species are colored and grouped by phylum. The
dashed red line represents a limit beyond which ESVs were only quantified in a single group.

and Curvibacter_2 (FC = 10) and Erythrobacter_1 (FC = 23)
from the Proteobacteria genus in addition to two Unknown
taxa [Unknown_21 (FC = 22.6) and Unknown_38 (FC = 22.7)].
Three differentially abundant species were uniquely associated
with HCAZ < −1 SD in late lactation. These species

were Leucobacter_MS, Corynebacterium_segmentosum_1,
and Turicibacter_sanguinis_1. On the other hand, only
three differentially abundant species were identified in
the HCAZ ≥ −1 SD at late lactation. These species were
Cutibacterium_acnes_1 (FC = 3.9), Pseudomonas_MS_2
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(FC = 5), and Streptococcus_mitis_10 (FC = 4) all of which
belong to the Proteobacteria genus (Figure 5B).

Discussion

Most recent papers that discussed the relationship
between human milk and early life brain development
had highlighted the role of hormones and neural growth
factors (Kim and Yi, 2020) or discussed the role of human
milk exposure in promoting cortical indices and improving
neurocognitive outcomes (Sullivan et al., 2022). However,
there exists a lack of consensus on nutrients in human
milk that contribute to brain development (Walfisch et al.,
2013; Lockyer et al., 2021). In this study, we explored the
association between infant HCAZ and shifts in the human milk
microbiome. Six novel findings emerged. First, alpha-diversity
differed between HCAZ ≥ −1 SD and HCAZ < −1 SD in
late lactation, but not early lactation. Second, beta-diversity
based on canonical analysis of principal coordinates identified
significant clusters of microbiota by HCAZ at both stages of
lactation. Third, in early lactation more differentially abundant
species were identified when HCAZ ≥ −1 SD, with most
belonging to the Firmicutes genus, but there were two taxa,
Proteobacteria_MG_1 and Lactobacillus_iners_1 that were
uniquely associated with the HCAZ ≥ −1 SD group; in
early lactation, only Kocuria_palustric_1 was differentially
association with HCAZ < −1 SD. Fourth, in late lactation,
there was a general shift to more differentially abundant
species in the HCAZ < −1 SD group, with Leucobacter_MS,
Corneybacterium_segnentosum_1, and Turicbacter_sanquins_1
uniquely associated with HCAZ < −1 SD. Lastly, there were
two Unknown taxa in the HCAZ < −1 SD at late lactation,
which may underscore the importance of Unknown taxa and
their potential role on infant head growth before 6 months of
age. Collectively, our findings show that the HCAZ ≥ −1 SD
group had more differentially abundant species of human origin
whereas in late lactation the HCAZ < −1 SD group had more
differentially abundant environmental species associated with
soil, water, and animal sources.

Diversity of human milk microbiome
and head-circumference

The association between milk microbiota and HC growth
in early infancy has not been widely explored, however, a few
studies have described an association between gut microbiome
and HC in premature infants. One study among Indian children
living in urban slums reported an association between increased
microbial alpha-diversity and greater HC (Huey et al., 2020).
Another study in Brazil, compared microbiome diversity in
meconium between infants with early HC catch-up growth

(<6 months) and infants with late HC catch-up growth
(>6 months). They reported greater microbial diversity and a
higher abundance of Acinetobacter in meconium from infants
with late HC catch-up growth that was independent of infant
weight (Terrazzan Nutricionist et al., 2020). Some of these
results were consistent with our findings, as we also found HC to
be associated with human milk alpha-diversity in late lactation.
However, in contrast to both studies, we observed significant
differences with beta-diversity between HCAZ infant groups at
both stages of lactation as we found more differentially abundant
species of the Acinetobacter in the HCAZ ≥ −1 SD group in
early lactation.

Some studies corroborate the hypothesis that better
neurodevelopment and head growth might be achieved via
a favorable gut microbiota. One study found that preterm
infants who received a daily dose (10–15 g) of medically graded
bee honey (a source of oligosaccharides) had an increased
colonization with Bifidobacterium bifidum compared to control
and this colonization was associated with increased head
circumference after 2 weeks (Aly et al., 2017). In randomized,
double-blind, placebo-controlled trial of extremely low birth
weight infants, supplementation with Lactobacillus reuteri
promoted HC growth rate during the first month of life
(Wejryd et al., 2019). Another study found that after 1 year of
supplementation with a symbiotic that included Lactobacillus
species and fructo-oligosaccharides, the odds of HC < 10%
were lower in the supplemented group compared to the control
group (Varal et al., 2018). This association between Lactobacillus
and improved HC is consistent with our findings. In our
study at early lactation, Lactobacillus_gasseri_1 was differentially
abundant in the HCAZ ≥ −1 SD group. Lactobacillus_iners_1
has been associated with probiotic, antioxidant activity, and
antimicrobial activity against various pathogens (Gunyakti and
Asan-Ozusaglam, 2019) and it was uniquely associated with the
HCAZ ≥ −1 SD group in our study.

On the other hand, potentially pathogenic species also
have been associated with infant gut microbial composition
in preterm infants. Infant gut microbiota that is characterized
by a high abundance of Proteobacteria has been associated
with “dysbiosis” (Monira et al., 2011; Barrett et al., 2013;
Shin et al., 2015). Consistent with our findings, infants with
HCAZ ≥ −1 SD had fewer differentially abundant species from
Proteobacteria compared to Firmicutes and Actinobacteria.
Together, these findings would suggest that specific microbial
variations may be associated with HCAZ.

Differentially abundant taxa and infant
head-circumference

DA analyses using DESeq2 identified species that differed
between infants with HCAZ ≥ −1 SD group and infants with
HCAZ < −1 SD group at both stages of lactation.
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Early lactation
During early lactation, differentially abundant species in

human milk microbiome of infants with the HCAZ ≥ −1
SD were mainly normal human colonizers that included
two species belonging to the Lactobacillus genus. These two
were Lactobacillus_gasseri_1 and Lactobacillus_iners_1; both
are common inhabitants of a healthy vaginal flora (Alonzo
Martínez et al., 2021). Additionally, Lactobacillus_gasseri_1
is found in milk and has strains with known probiotic,
antioxidant, and antimicrobial activity against various
pathogens (Gunyakti and Asan-Ozusaglam, 2019). The
second LAB was Lactobacillus_iners_1. Lactobacillus_iners_1
has also been associated with probiotic, antioxidant activity,
and antimicrobial activity against various pathogens (Gunyakti
and Asan-Ozusaglam, 2019), although some have reported
its presence in both healthy and dysbiotic vaginal microbial
communities (Macklaim et al., 2013; Marconi et al., 2020;
Zheng et al., 2021). Lactobacillus_iners is known to have a
gram-variable morphology with an unusually small genome
(ca. 1 Mbp), suggesting that Lactobacillus_iners could have
clonal variants associated with both healthy and dysbiotic
vaginal environments (Petrova et al., 2017). In our analysis,
Lactobacillus_iners_1 in our human milk samples was uniquely
associated with the HCAZ ≥ −1 SD infants supporting our
observation of its positive association with increased head
circumference in early lactation. Others have also reported that
supplementation with members of Lactobacillus genera were
associated with improved HC during the first month (Wejryd
et al., 2019), and lower odds of smaller HC (Varal et al., 2018).
Thus, the presence of 2 differentially abundant Lactobacillus
species in the milk of mothers of infants with HCAZ ≥ −1 SD
in early lactation is consistent with these earlier reports and
further highlights the importance Lactobacillus with improved
HC during early lactation.

Other differentially abundant species in the HCAZ ≥ −1 SD
group included human commensal bacteria that demonstrated
both, protective and stabilizing roles, and potential roles
in human infections. These differentially abundant taxa
included Staphylococcus_epidermidis_7, and Anaerococcus_2.
Staphylococcus_epidermidis is considered a normal colonizer
of human skin and mucous membranes (Otto, 2009). It
has been reported as ubiquitous in humans, and as a
common inhabitant of healthy human milk environment
(Heikkilä and Saris, 2003; Martín et al., 2007) where it may
balance the epithelial microflora and serve as a reservoir of
resistance genes (Otto, 2009). However, some have described
Staphylococcus_epidermidis as an opportunistic species (Coates
et al., 2014), given that it has been isolated from maternal
milk of mothers diagnosed with mastitis (Delgado et al., 2009).
Similarly, Anaerococcus_2, is an uncharacterized species with
several members found in the human vagina, on skin, and
in nasal cavities, but it can be involved in human infections
(Song et al., 2007; Pépin et al., 2011; Dione et al., 2018).

However, human milk is suggested to have the non-virulent
strains of these species in early lactation (Soeorg et al., 2017).
Researchers have demonstrated that Staphylococcus_epidermidis
strains genetically similar to those in human milk can replace
more virulent strains in the infant gut, suggesting that human
milk may play a protective role through the introduction of
less-pathogenic strains that could outcompete more virulent
strains in the infant gut. This speculation is that gut colonization
with virulent strains could be reduced by the mothers’ milk
during the first month of life (Soeorg et al., 2013, 2017). This
observation suggests the healthy presence of these species acting
as early gut colonizers of term infants, and that as commensal
bacteria may contribute to early brain growth, as was the case
with our HCAZ ≥ −1 SD group.

Other differentially abundant species identified as both
normal human colonizers and ambiguous species belonged to
the Streptococcus genus were also associated with HCAZ ≥ −1
SD. Species previously isolated from the oral cavity and the
respiratory tract included Streptococcus_sp_strain_F0610, and
Streptococcus_mitis_7. Streptococcus_mitis is recognized as
oropharynx bacteria (Kilian et al., 2014) and is found in the
infant oral microbiome within few days after birth (Pearce
et al., 1995). Two other ambiguous Streptococcus taxa were
identified. First, Streptococcus_MS_8 which could represent
either Streptococcus_mitis or Streptococcus_pseudopneumoniae.
The second, Streptococcus_MS_15 which could
represent two species, either Streptococcus_mitis or
Streptococcus_pneumoniae; Streptococcus_pneumoniae is
one of the leading causes of highly pathogenic infections
(Kilian et al., 2014), while Streptococcus_pseudopneumoniae
is an overlooked pathogen emerging as the causative agent
of lower-respiratory-tract infections (Garriss et al., 2019).
Streptococcus_pneumoniae and Streptococcus_mitis represent
two opposing lifestyles that have evolved in parallel and can
coexist in harmony with their host (Kilian et al., 2014).

The presence of environmental and plant bacteria in
human milk have been previously identified and is common
(Togo et al., 2019), especially in rural agricultural and hunter-
gather communities where there is human interaction with
the environment (Blum et al., 2019). Some differentially
abundant species in the HCAZ ≥ −1 SD group were
environmental species. Among them were the ambiguous
taxon Paracoccus_MS_1. Paracoccus species include a bright
orange color, caused by the synthesis of large amounts of
carotenoids (Harker et al., 1998). Paracoccus_MS_1 was
either Paracoccus_marcusii or Paracoccus_carotinifaciens.
Paracoccus_marcusii significantly improved the growth,
elevated antioxidant property, decreased intestinal permeability,
and suppressed the expression of some inflammatory genes
in aquatic animal studies (Yang et al., 2015; Xue et al., 2020).
It also has probiotic properties (Kalathinathan and Kodiveri
Muthukaliannan, 2021), which might explain its presence
in milk. Some microbial species in the human milk possess
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probiotic properties (Dallal et al., 2021), where they utilize
the human milk oligosaccharides (Marcobal and Sonnenburg,
2012) resulting in modulation of the infant gut microbiota
composition and prevention of pathogen colonization (Bode,
2015). Paracoccus_carotinifaciens, which has been also isolated
from soil (Tsubokura et al., 1999) produces a carotenoid mixture
containing the antioxidant carotenoid astaxanthin (Hayashi
et al., 2021) that when supplemented showed protective effects
on cognitive function in adults (Hayashi et al., 2018). This
functionality and its association with the presence of Paracoccus
species in the milk of mothers having infants with HCAZ ≥ −1
SD would support a protective functional role in infant brain
development. However, this association requires further
investigation.

Interestingly, other environmental bacteria were
generally considered non-pathogenic; however, they might
be opportunistic pathogen for immunocompromised
humans. These taxa included: Brevundimonas_MS_1
and Pantoea_agglomerans_1. Brevundimonas_MS_1, is
an ambiguous species that could be one of two species,
Brevundimonas_vesicularis or Brevundimonas_nasdae.
Brevundimonas_nasdae has been reportedly isolated from an
Indian lake (Rao and Kumar, 2014). Brevundimonas_vesicularis
which is ubiquitously found in the environment in soil and
water, rarely causes infection in humans; however, it can
become an opportunistic pathogen in immunocompromised
humans (Ryan and Pembroke, 2018; Stabler et al., 2018).
Pantoea_agglomerans_1 is a plant bacterium that is not
a human-pathogen, however, it is also known to cause
opportunistic human infections (Cruz et al., 2007; Dutkiewicz
et al., 2016). However, the presence of these environmental
bacteria in human milk and their associations with infant brain
growth during early lactation have never been explored and
may require further exploration.

In early lactation, the milk of mothers with infants having
HCAZ < −1 SD had only one differentially abundant species;
Kocuria_palustris_1. Kocuria spp. inhabit the normal skin and
mucous membrane of the mouth and the digestive and the
genital tracts of human and animals (Stackebrandt et al., 1995).
However, Kocuria_palustris_1 was first isolated from cattails
in a river tributary (Kovács et al., 1999) and subsequently in
rice (Kaga et al., 2009), soil (Caliz et al., 2011), and marine
sponges (Martín et al., 2013). Formerly, Kocuria spp. were
considered non-pathogenic and were rarely associated with
human infections (Kandi et al., 2016) but are now considered as
pathogenic. Research has highlighted the significance of Kocuria
in causing infections in pediatric patients (Chen et al., 2015)
and they are now being considered as potential pathogens
in immunocompromised and pediatric patients (Chen et al.,
2015; Moreira et al., 2015). In our study, Kocuria_palustris_1
was differentially abundant in the HCAZ < −1 SD group
at both stages of lactation, indicating an association between

Kocuria_palustris_1 and HCAZ < −1 SD that spans the first 6
months postpartum.

Late lactation
The HCAZ ≥ −1 SD group in late lactation had three

differentially abundant species. Two of them were normal
human colonizers of the skin, oral cavity, gastrointestinal, and
genitourinary tract; Streptococcus_mitis_10 (Pearce et al., 1995;
Mitchell, 2011), and Cutibacterium_acnes_1 (Elston et al., 2019).
The third one was the ambiguous species Pseudomonas_MS_2,
which is one of two soil species Pseudomonas_putida (Volke
et al., 2020) or Pseudomonas_hutmensis (Xiang et al., 2019).

In contrast to the human milk microbiome in early
lactation, in late lactation more differentially abundant taxa
were associated with infants having HCAZ < −1 SD
compared to infants with HCAZ ≥ −1 SD. Several of
these taxa were environmental and potentially opportunistic
species. As with early lactation, Kocuria_palustris_1 was
identified in the milk of mothers during late lactation and
associated with low head circumference at 4–6 months. Other
environmental species isolated from aqueous environments
included Curvibacter_2 (Ding and Yokota, 2004, 2010), and
Erythrobacter_1 (Jung et al., 2012; Wu et al., 2012; Li et al.,
2017; Yoon, 2017). Moreover, in our study population
2 other environmental species were uniquely associated
with the HCAZ < −1 SD group in late lactation; these
included Turicibacter_sanguinis_1 and the ambiguous species
Leucobacter_MS. Turicibacter_sanguinis_1 has been isolated
from animal feces and skin (Cuív et al., 2011; Maki et al.,
2020). Leucobacter_MS could be either Leucobacter_komagatae
or Leucobacter_aridicollis. Both have been isolated from
contaminated plant and water environments (Morais et al.,
2004; Saimmai et al., 2012).

Other differentially abundant species in the HCAZ < −1
SD group were human colonizers with potential
pathogenicity. Among them was Staphylococcus_epidermidis_7.
Staphylococcus_epidermidis is a normal human skin and milk
colonizers (Heikkilä and Saris, 2003; Martín et al., 2007;
Otto, 2009), however, it has been isolated in mastitis cases
(Delgado et al., 2009). Although Staphylococcus_epidermidis
in human milk has the ability to replace virulent strains in
the infant gut during early lactation (Soeorg et al., 2013,
2017), this observation has not been examined in the later
stage of lactation. Other differentially abundant human
colonizers with potential pathogenicity belonged to the genus
Corynebacterium which accounts for 30% of the total bacterial
inhabitants of human skin (Council et al., 2016). It is a
genus with some species that can induce inflammation, skin
conditions (Altonsy et al., 2020), and it has been frequently
isolated during bovine mastitis (Watts et al., 2001). The first
Corynebacterium was Corynebacterium_tuberculostearicum_1,
which colonizes the human skin and mucosal surfaces and has
been frequently isolated from clinical specimens mostly related
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to the respiratory infections (Hinić et al., 2012) and also has
been associated with breast abscesses (Mule et al., 2018) and
mastitis (Paviour et al., 2002). The second Corynebacterium
species was Corynebacterium_segmentosum_1, which was
uniquely associated with the HCAZ < −1 SD group in late
lactation; it is a gastric microbiota that was suggested, among
other gastric species, to negatively affect enteric nervous system
modulation via neurogenic inflammatory process (Han et al.,
2019). Because the enteric nervous system associated with
cognitive function may be regulated by the inflammatory
effects of the microbiota (Konturek et al., 2011), the presence
of Corynebacterium_segmentosum_1 in the milk of mothers
having HCAZ < −1 SD infants might suggest an association
between milk microbial species and head growth through the
gut microbiota-brain axis.

In addition, the HCAZ < −1 SD had two differentially
abundant ESVs that were poorly characterized at late
lactation. These were dominated by unknown sequences,
including: TrueUnknown_21 (97% similar to Prevotella
melaninogenica) and TrueUnknown_38 (98% similar to
Sphingobium yanoikuyae), which is a soil bacteria (Cunliffe
and Kertesz, 2006; Kou et al., 2018). These findings suggest the
important potential roles of poorly characterized and unknown
bacteria associated with HC, highlighting the substantial
amount of knowledge is yet to be discovered regarding the
role of human milk microbiome in infant growth and brain
development.

Strengths and limitations

Our study has some limitations. First, the cross-sectional
design of our study cannot establish causation between the
human milk microbiome and infant HCAZ. Second, this study
might be under-powered. Third, due to the lack of studies
that associate the human milk microbiome with infant growth
parameters, the exploratory nature of this study, and the
potential significant biological role of some species despite their
low abundance, low-count taxa were included in our study, but
require further investigation. Fourth, we used the eubacteria
primers 27F/533R. Although 27F/533R primers are often used
in human milk studies and have high coverage of “core” genera
including, Cutibacterium (Hunt et al., 2011; Jost et al., 2013;
Jiménez et al., 2015; Lackey et al., 2019; Gonzalez et al., 2021), it
might not amplify species within the Bifidobacterium, which is a
“core” human milk genus (Klindworth et al., 2013) but there is
insufficient sequence variation to discriminate between closely
related taxa (Johnson et al., 2019). Known inconsistencies do
exist in the perceived “core” genera of human milk microbiota
commonly identified in healthy mothers (Jeurink et al., 2013;
Fitzstevens et al., 2017).

Despite these inconsistencies, V1–V3 sequencing has
produced comparable results to the full-length 16S rRNA

V1–V9 in the human gut microbiome samples at species-
level and was shown to be highly informative when used in
conjunction with an appropriate identity threshold (Johnson
et al., 2019). In our study, we used the ANCHOR pipeline, which
provided high-resolution analysis for species-level microbial
identification (Gonzalez et al., 2019) in conjunction with > 99%
identity and coverage threshold. Thus, ESV-based approaches
may potentially resolve species-level diversity in the human milk
microbiome, when compared to higher level annotation (i.e.,
phyla, family, or genera level) (Johnson et al., 2019), making it
a strength of our study. However, we understand that, because
many species remain poorly characterized and mistakes exist
in major repositories, species should be considered putative
even when single species sequences share 100% 16S rRNA gene
fragment similarity (Gonzalez et al., 2019, 2021). In addition,
given the milk microbiome community changes by the stage of
lactation (Gonzalez et al., 2021) and our study was of a cross-
sectional design, the milk sample collections at two points of
lactation allowed us to establish the association between milk
the microbiome and the infant HCAZ. The homogeneity of
our cohort might have been an asset and because our healthy
mothers did not have sub-clinical mastitis and did not take
antibiotics, we minimized the effect on the milk microbiome
ecosystem. However, we cannot infer if the milk microbiome
was the only determinant factor for the HC growth.

Conclusion

In conclusion, we observed that the milk microbiome of a
cohort of unrelated Guatemalan mothers was associated with
infant HCAZ at both early and late lactation. DESeq2 identified a
total of 26 differentially abundant species between HCAZ ≥ −1
SD and HCAZ < −1 SD during early and late lactation. In early
lactation, the HCAZ ≥ −1 SD group had more differentially
abundant Streptococcus species, with several human colonizers.
However, there were some potentially pathogenic species that
emerged. In late lactation, the HCAZ < −1 SD group had
more differentially abundant species, with several of them
of environmental origin or having potential pathogenicity.
To our knowledge, this is the first study to explore the
association between the human milk microbiome and infant
HCAZ during lactation. These insights collectively highlight
need to continue to investigate the role of milk microbiome
in infant growth.
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SUPPLEMENTARY FILE 1

A total of 503 ESVs were assembled and captured 3,551,788 sequences
reads across all 64 human milk samples. The identified 503 ESVs
annotated 256 species (81.2% of reads), 129 genera and 9 family or
higher taxa as well as 109 which could not be identified at > 99%
similarity (in both identity and coverage) to any known taxa, thus, they
were termed Unknowns.

SUPPLEMENTARY FILE 2

Six alpha-diversity metrices used to measure human milk microbiome
communities, only Chao1 index revealed significant differences in
microbial community richness between HCAZ ≥ −1 SD and HCAZ < −1
SD in late lactation (p = 0.045).
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