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Objective: This study aimed to compare the dynamics of lower and upper genital 

tract microbiota in normal term pregnancy, histological chorioamnionitis 

(HCA), and clinical chorioamnionitis (CCA) patients to provide a reference for 

the diagnosis and treatment of chorioamnionitis (CAM) patients.

Methods: We prospectively collected vaginal and cervical secretions, as well 

as placenta tissues, fetal membranes, and amniotic fluid from normal-term 

pregnant women, HCA and CCA patients. Then, we  performed genomic 

DNA extraction and PCR amplification for all samples. The eligible samples 

were analyzed by 16S ribosomal RNA (16S rRNA) sequencing. Additionally, all 

placenta tissues were histopathologically examined, and neonatal pharyngeal 

swabs and placenta tissues from the HCA and CCA groups were subjected to 

microbial culture.

Results: A total of 85 term pregnant women were enrolled in this study, 

including 34  in the normal group (N), 37  in the HCA group, and 14  in the 

CCA group. A total of 171 qualified samples were analyzed by 16S rRNA 

sequencing. The results suggested that the cervical microbiota was highly 

similar to the vaginal microbiota in normal term parturients, with Lactobacillus 

as the dominant bacterium. Moreover, there was no difference in the alpha 

and beta diversity of vaginal microbiota between the N, HCA, and CCA 

groups at the genus level. Besides, no significant differences were detected 

in cervical microbiome among the three groups. Regarding intrauterine 

microorganisms, the N and HCA groups had similar microbial composition but 

were different from the CCA group. No microbe was detected in the placental 

tissue of normal term parturients, while some microorganisms were found 

in the intrauterine amniotic fluid and fetal membrane samples. Regardless of 

cultivation or 16S rRNA sequencing, an extremely low microbial positive rate 

was detected in HCA and CCA intrauterine samples. Compared to the normal 
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group, Lactobacillus was significantly reduced in the CCA group intrauterine, 

and Ureaplasma and Enterococcus increased with no statistically significant.

Conclusion: The N, HCA and CCA groups had similar composition of vaginal 

and cervical microflora. Some normal-term pregnant women can harbor 

non-pathogenic microbiota in the uterine cavity. Sterile inflammation is 

more frequent than microbial-associated inflammation in term HCA and CCA 

parturients.
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Introduction

Chorioamnionitis (CAM) or intraamniotic infection is a 
common pregnancy complication. It comprehends an 
inflammation or infection of the fetal membrane, amniotic fluid, 
placenta, umbilical cord, or any part of the fetus (Committee on 
Obstetric Practice, 2017). According to the existence of clinical 
manifestations, CAM is divided into clinical chorioamnionitis 
(CCA) and histological chorioamnionitis (HCA; Beck et  al., 
2021). Additionally, CCA is characterized by the following clinical 
symptoms: maternal fever, uterine tenderness, maternal and/or 
fetal tachycardia, maternal leukocytosis, and foul-smelling or 
purulent amniotic fluid (Tita and Andrews, 2010). Moreover, 
HCA (also known as subclinical chorioamnionitis) is more 
common than CCA and is defined by diffuse infiltration of 
neutrophils into the chorioamniotic membranes (Levy 
et al., 2021).

Traditionally, it was assumed that the healthy uterus and 
intrauterine environment (placenta, chorion/amnion, amniotic 
fluid, fetus, and meconium) were sterile during pregnancy, and 
CAM was often associated with bacterial invasion. Currently, the 
concept of the “sterile womb” means that microbes can be acquired 
both vertically (from the mother) and horizontally (from other 
humans or the environment) during and after birth (Funkhouser 
and Bordenstein, 2013). However, due to the development of 
high-throughput sequencing technology, this view has been 
unprecedentedly challenged. First, Aagaard et  al. (2014) have 
demonstrated that the placenta of healthy pregnant women 
harbors a unique low-abundance placental microbiome by 16S 
ribosomal DNA and whole-genome shotgun (WGS) metagenomic 
sequencing. Further, many studies have challenged the sterility of 
the intrauterine environment during pregnancy (Seferovic et al., 
2019; Stinson et al., 2019; Ennamorati et al., 2020; Hockney et al., 
2020; Rackaityte et al., 2020; Mishra et al., 2021). For example, 
Tuominen et al. (2019) have shown that the neonatal oral cavity 
microbiota seems to share common characteristics with the 
microbes in the placenta but not the birth canal, indicating that 
the neonatal oral microbiota might have a prenatal origin. 
Moreover, Rackaityte et al. (2020) studied meconium samples in 
the mid-gestation and found that 18 taxa were enriched in the 

fetal meconium, especially Micrococcaceae and Lactobacillus. This 
view is supported by Mishra et al. (2021) who identified several 
live bacterial strains including Staphylococcus and Lactobacillus in 
fetal tissues, which induced in vitro activation of memory T cells 
in fetal mesenteric lymph node, supporting the role of microbial 
exposure in fetal immune initiation. Whereas, it is debated 
whether the microbiome detected during reproduction, especially 
low-biomass microbial communities, are in fact merely a result of 
contamination and an artifact of the study design (Lauder et al., 
2016; Kim et al., 2017). Besides, increasing studies have shown a 
high incidence of sterile inflammation, that is, when 
microorganisms cannot be detected, in preterm or term CAM 
patients. Thus, the expert panel of the National Institute of Child 
Health and Human Development (NICHD) has proposed a 
descriptive term: “intrauterine inflammation or infection or both,” 
abbreviated as “Triple I,” to replace chorioamnionitis (Higgins 
et  al., 2016). Romero et  al., (2014b) analyzed amniotic fluid 
samples from 135 premature women with intact membranes and 
demonstrated that sterile intra-amniotic inflammation is more 
frequent than microbial-associated inflammation. Additionally, a 
retrospective cohort study has suggested that 24% of preterm CCA 
patients had no evidence of intraamniotic infection or 
inflammation, and 66% had negative amniotic fluid cultures (Oh 
et al., 2017).

A better understanding of the composition and alterations of 
the upper and lower genital tract microbiome might help develop 
better treatment strategies for CAM either in maternal or infants. 
Therefore, this study aimed to: (a) Quantify the bacterial load and 
diversity in the vagina, cervix, and uterine cavity of normal term 
parturients and (b) compare the microbiota composition of the 
upper and lower genital tracts of normal, HCA, and CCA in 
term pregnancy.

Materials and methods

Study design and enrolment

We prospectively collected vaginal and cervical secretions, as 
well as placenta tissue, fetal membranes, and amniotic fluid from 
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term pregnant women who delivered at Beijing Tsinghua 
Changgung Hospital between March 1 and September 30, 2019. 
Before beginning the study, ethical clearance was granted by the 
Ethics Committee of Beijing Tsinghua Changgung Hospital 
(16121-0110). The inclusion and exclusion criteria are presented 
in Table  1. According to the clinical manifestations and 
histopathological examination results, patients were divided into 
the normal pregnancy (N), CCA, and HCA groups. 
Simultaneously, we collected clinical information from electronic 
medical records, mainly including maternal age, body mass index 
(BMI), weight gain during labor, fetal heart rate (FHR), maternal 
peripheral blood white blood cells (WBC), and C-reactive protein 
(CRP), birth weight, and neonatal infection.

Sample collection

Before planning induced labor or cesarean sections, samples 
were taken with the patient’s consent. Vaginal secretions were 
obtained from the lateral wall of the upper 1/3 of the vagina, and 
a cervical swab was taken from 2 to 3 cm inside the cervical canal. 
All intrauterine tissue samples were collected following strict and 
uniform protocols established before the study begins using 
standard operating procedures by a specially trained physician. 
During the operation, samples were taken immediately after 
delivery from participants, and strict aseptic operation was 
performed. Then, samples were placed in sterile ice-cold 
phosphate-buffered saline solution (1 × PBS) and stored at −80°C 
within 1 h. About 2–5 ml of amniotic fluid was absorbed from the 
neonatal oropharynx in a sterile tube for subsequent experiments.

Placental histopathologic examination

At the same time, another placental tissue was collected, fixed 
with 10% neutral buffered formalin, embedded in paraffin wax, 
and stained with hematoxylin and eosin (H&E) for 

histopathological examination. The diagnosis of pathological 
sections was assessed by two gynecological/placental 
histopathologists without knowing the clinical data. As previously 
mentioned, HCA staging was based on the area of neutrophil 
infiltration in the tissue anatomy, and the grading was based on 
the degree of neutrophil infiltration in a particular area (Zheng 
et  al., 2013). Simply speaking, staging is based on the area of 
neutrophil infiltration in tissue anatomy, and grading is based on 
the degree of neutrophil infiltration in a particular area.

Bacterial cultures

Neonatal oropharyngeal swabs and placental grind fluid were 
inoculated on Columbia blood agar plates using the four-zone 
method. Then, blood plates were cultured in aerobic and anaerobic 
environments for 18–24 h, respectively. Colonies were identified 
by matrix-assisted laser desorption ionization time-of-flight mass 
spectrometry (MALDI-TOF MS).

Genomic DNA extraction and PCR 
amplification

Microbial community genomic DNA was extracted from 
above mentioned samples (vaginal and cervical secretions, 
placenta, fetal membrane and amniotic fluid) using the TIANamp 
Bacteria DNA Kit (TIANGEN BIOTECH, Beijing, China) 
according to manufacturer’s instructions. The DNA extract was 
checked on 1% agarose gel, and DNA concentration and purity 
were determined with NanoDrop 2000 UV–vis spectrophotometer 
(Thermo Scientific, Wilmington, USA). Then, the hypervariable 
region V3-V4 of the bacterial 16S rRNA gene were amplified with 
primer pairs 338F(5’-ACTCCTACGGGAGGCAGCAG-3′) and 
806R(5’-GGACTACHVGGGTWTCTAAT-3′) by an ABI 
GeneAmp® 9,700 PCR thermocycler (ABI, CA, USA). The PCR 
product was extracted from 2% agarose gel and purified using the 
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union 
City, CA, USA) according to manufacturer’s instructions and 
quantified using Quantus™ Fluorometer (Promega, USA). All the 
amplification products were stored at −20°C for later sequencing.

Illumina read data processing and 
analysis

Purified amplicons were pooled in equimolar and 
paired-end sequenced on an Illumina MiSeq PE300 platform/
NovaSeq PE250 platform (Illumina, San Diego, USA) according 
to the standard protocols by Majorbio Bio-Pharm Technology 
Co. Ltd. (Shanghai, China). The raw 16S rRNA gene sequencing 
reads were demultiplexed, quality-filtered by fastp version 0.20.0 
(Chen et al., 2018) and merged by FLASH version 1.2.7 (Magoč 
and Salzberg, 2011). Operational taxonomic units (OTUs) with 

TABLE 1 Inclusion and exclusion criteria.

Inclusion Exclusion

Singleton pregnant women delivered 

at term in our hospital

Pregnant women who do not receive 

systematic health care and delivery

Intact membranes before delivery Premature delivery

No sexual life history within 3 d 

before delivery

Multiple pregnancies

No history of external vaginal drugs 

and systemic antibiotics within 

2 weeks

Premature rupture of membranes

No infection in other parts of the 

body

Refuse histopathological examination of 

the placenta

Agree to participate in the study and 

sign the informed consent

Infection of other parts of the body
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97% similarity cutoff (Stackebrandt and Goebel, 1994; Edgar, 
2013) were clustered using UPARSE version 7.1 (Edgar, 2013), 
and chimeric sequences were identified and removed. The 
taxonomy of each OTU representative sequence was analyzed 
by RDP Classifier version 2.2 (Wang et al., 2007) against the 
16S  rRNA database (e.g. Silva v138) using confidence 
threshold of 0.7.

Bioinformatics and statistical analysis

SPSS 23.0 (IBM Corporation, USA) software and R (v. 3.5.1) 
was used to process data, measurement data were expressed as 
mean ± standard deviation (x ± s), paired sample means were 
compared using paired T test, multiple sample means were 
compared by one-way ANOVA, and measurement data were 
compared using χ2 test. p < 0.05 was considered statistically 
significant. Biology statistical methods using multivariate 
statistical analysis, including: analysis of variance, rank and 
inspection and ternary phase diagram.

Results

Patient characteristics

A total of 85 term pregnant women were enrolled in this 
study, including 34 in the N group, 37 in the HCA group, and 
14 in the CCA group. The average age of pregnant women was 
30.08 ± 2.77 years old, and the average gestational age was 
39.7 ± 1.0 weeks. At the end of the research, 85 neonates (42 males 
and 43 females) were delivered without neonatal asphyxia or 
perinatal death. Clinical characteristics are shown in Table 2. No 
differences were identified between groups regarding age, 
maternal weight gain, number of deliveries, and birth weight. It is 
apparent from Table 2 that the gestational age of the N group was 
smaller than the CCA and HCA groups, and the BMI of the CCA 

group was higher compared to other groups. Closer inspection of 
the table shows the WBC, CRP of pregnant women, fetal distress, 
neonatal infection, and transfer rate to the neonatal department 
were also higher in the CCA group compared to the N and HCA 
groups, and there was no significant difference between N and 
HCA group.

Pathological examination

All the placentas of 85 pregnant women were sent for 
histopathological examination. Partial pathological results were 
shown in Figure  1, and there were no stage III patients were 
detected in the HCA and CCA groups. In HCA group, 21 patients 
diagnosed stage I and 16 patients diagnosed stage II. Interestingly, 
there were 4 patients had normal placental pathology in CCA 
group. Of the remaining 10 patients, 9 were stage II and 1 was 
stage I.

Microbiologic cultures

In the HCA group, the negative rate of neonatal pharyngeal 
swabs was 83.3% (5/6), and no bacteria could be cultured from 
placenta tissues (0/11), and Escherichia coli and Enterococcus 
faecalis were detected in positive pharyngeal specimens. Next, in 
the CCA group, the negative rate for neonatal specimens was 
58.3% (7/12) and for placental tissues was 64.3% (9/14). Similar to 
the HCA group, except the above two bacteria, the CCA group 
also cultured Streptococcus agalactiae, Enterococcus faecium 
and Corynebacterium.

Analysis of 16S rRNA sequencing

A total of 85 × 5 (425) samples were collected during the 
research, of which 171 were qualified (few of them detected with 

TABLE 2 Characteristics of participants.

N (34) HCA (37) CCA (14) P

Age, mean ± SD (y) 30.56 ± 3.11 29.81 ± 2.62 29.64 ± 2.27 NS

Body mass index, median ± SD (kg/m2) 21.54 ± 4.83 21.73 ± 2.92 24.69 ± 3.66 <0.05 ac

Weight gain in pregnancy (kg) 14.09 ± 5.17 13.83 ± 3.90 12.82 ± 4.87 NS

Primiparous women, n (%) 25 (73.53%) 32 (86.49%) 14 (100%) NS

Gestational age (weeks) ± SD 39.4 ± 1.1 39.9 ± 0.8 40.1 ± 0.8 <0.05ab

Fetal distress n (%) 2 (5.9%) 2 (8.1%) 9 (64.3%) <0.05 ac

Birth weight, g ± SD 3439.26 ± 457.23 3451.35 ± 353.54 3584.64 ± 326.01 NS

Transfer to neonatal department, n (%) 0 (0.0%) 3 (8.1%) 7 (50.0%) <0.05 ac

Neonatal infection, n (%) 0 (0.0%) 1 (2.7%) 7 (50.0%) <0.05 ac

Maternal CRP (mg/L) 8.51 ± 12.89 12.93 ± 13.94 20.26 ± 11.41 <0.05a

Maternal WBC (*109/L) 9.43 ± 3.47 10.92 ± 4.27 13.45 ± 2.82 <0.05 ac

a, N compared to CCA. b, N compared to HCA; c, HCA compared to CCA.
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bacterial DNA) for 16S rRNA sequencing (Table 3). The optimized 
sequence number was 8,678,452, the total number of bases was 
3,709,462,018, and the average length was 427 bp, which were 
included in subsequent analysis. Herein, we analyzed the samples 
of placentae, fetal membranes, and amniotic fluid together, which 
are collectively referred to as intrauterine samples (marked as Up). 
Additionally, vaginal and cervical specimens were abbreviated as 
‘V’ and ‘C’, respectively.

As can be  seen from Figure  2A, the alpha diversity test 
(Shannon index) showed that the intrauterine bacterial diversity 
significantly increased compared to the vagina and cervix 
(p < 0.001). And there was no difference in the alpha diversity of 
vaginal microbiota between the N, HCA, and CCA groups at the 
genus level. Similarly, no significant differences were found 
between the N and HCA groups when the richness of the cervical 

microbiota was evaluated. The cervical microorganisms in the 
CCA group presented a clear downward trend compared to the N 
group (Figure 2A). The Principal Coordinates analysis (PCoA) 
showed that vaginal and cervical samples were clustered together 
with concentrated distribution and high similarity, while the 
intrauterine flora distribution was different from the other two 
groups with large dispersion and considerable differences, 
indicating that there were significant differences between 
intrauterine bacteria and vaginal and cervical bacteria (Figure 2B). 
The above groups of vaginal microbiota were clustered together 
and were highly similar (p = 0.39). Besides, no significant 
differences were detected in the cervical microbiome among the 
three groups (p = 0.88), indicating that there was no meaningful 
difference in the composition of cervical microbiome. Regarding 
the changes in intrauterine microorganisms, the normal and HCA 

A B

C D

E F

FIGURE 1

Placental histopathology chorioamnionitis (H&E × 200): (A) Stage I grade I, (B) Stage I grade II, (C) Stage I grade III, (D) Stage II grade I, (E) Stage II 
grade II, (F) Stage II grade III.

TABLE 3 Distribution of eligible and qualified samples.

Sample N (n, %) HCA (n, %) CCA (n, %) Total (n, %)

Vaginal 34 (49.3%) 37 (48.8%) 14 (53.8%) 85 (49.7%)

Cervical 28 (40.6%) 25 (32.9%) 9 (34.6%) 62 (36.3%)

Placenta 0 5 (6.6%) 1 (3.8%) 6 (3.5%)

Fetal membrane 3 (4.3%) 0 0 3 (1.8%)

Amniotic fluid 4 (5.8) 9 (11.8%) 2 (7.7%) 15 (8.8%)

Total 69 76 26 171
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groups were clustered together, while the CCA group was 
dispersed from the other two groups, implying that the 
composition of intrauterine bacteria in CCA was different from 
the other two groups and had its uniqueness (Figure 2B).

Next, the number of common and unique operational 
taxonomic units (OTUs) among these three groups is represented 
by a Venn diagram (Figure 3A). The number of OTUs in the N 
group was the highest and decreased with the aggravation of 
inflammation. The vaginal and cervical microbiota in the N group 
were similar at the genus level and mainly composed of 
Lactobacillus, followed by Gardnerella, Atopobium, and 
Streptococcus. Additionally, a significant decrease in Lactobacillus 

was detected in the utero accompanied by an increase in 
Gardnerella, Staphylococcus, Methylobacterium and other bacteria 
(Figure 3B). Unlike the N and HCA groups, the intrauterine flora 
of the CCA group was dominated by Ureaplasma spp. and 
Enterococcus spp.

Further studies were conducted at the species level on lower 
and upper genital tract of pregnant women in these three 
groups by clustering heatmap analysis. The results, as shown in 
Figure 4A, denote that the vagina and cervix of pregnant women 
had the highest abundance of L. crispatus and L. iners in all 
groups, while Lactobacillus sharply decreased in the utero of 
HCA and CCA groups. These differences in species can also 

A B

FIGURE 2

The diversity of the upper and lower genital tract microbiome were sequenced using 16S rRNA. (A) Alpha diversity was calculated using the 
Shannon diversity index in N, HCA, and CCA groups. (B) Beta-diversity was visualized using Principal Coordinate analysis (PCoA). The first two 
principal coordinate axes, which together explain 64.05% of variation, are shown. (*0.01 ≤ p < 0.05; **0.001 ≤ p < 0.01; ***0.0001 ≤ p < 0.001).

A B

FIGURE 3

(A) Venn diagrams indicating the number of OTUs in the N, HCA, and CCA groups by 16S rRNA sequences; (B) Stacked bar graph showing the 
relative abundance of bacterial 16S rRNA sequences at genus level in N, HCA, and CCA groups.
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be  seen in Figure  4B. In the LEfSe analysis, significant 
differences in intrauterine microbial abundances were observed 
among these three groups. L. iners (LDA score = 5.3, p = 0.027). 
and L. jensenii (LDA score = 4.2, p = 0.02) were over-represented 
in HCA group on the specises level; Cnuella spp. (LDA 
score = 4.0, p = 0.03) and Asinibacterium spp. (LDA score = 4.0, 
p = 0.03) were over-represented in CCA group on the genus 
level. The most interesting aspect of Figure  4B is that 
Gardnerella spp. levels were significantly higher in the uterine 
cavity of group N (LDA score = 4.9, p = 0.017). Furthermore, the 
Wilcoxon rank-sum test was used to analyze the intrauterine 
differential microbiota of each group. No significant disparity 
was found between the N and HCA groups (Figure  4C). 
Additionally, Lactobacillus spp. (p = 0.04) and Staphylococcus 
spp. (p = 0.04) were notably increased in the N group compared 
to the CCA group, while Ureaplasma spp. and Enterococcus spp. 

were higher in the CCA group but without no statistical 
significance (p > 0.05; Figure 4D).

Discussion

The vaginal microbiota can be categorized into one of five 
major community state types (CSTs), of which four community 
state types are dominated by Lactobacillus, namely: CST-I 
(L. crispatus) CST-II (L. gasseri) CST-III (L. iners) and CST-V 
(L. jensenii; Ravel et al., 2011). Due to the substantial increasing 
circulating estrogen levels in pregnancy, the physicochemical 
environment and microecological flora of the vagina also change 
accordingly (Kohlhepp et al., 2018). What’s more, high estrogen 
status during pregnancy is associated with proliferation of vaginal 
epithelial cells and glycogen deposition, which is more conducive 

A

C D

B

FIGURE 4

(A) Heatmap of upper and lower genital tract microbiota in the N, HCA, and CCA groups showing relative abundances of bacterial taxa per sample 
(columns). Reads were aggregated at the species level, which are shown as the different rows. (B) LEfSe analysis identified the microbes whose 
abundances significantly differed among N, HCA, and CCA groups. The findings with regards to family, genus and species are shown in the plot. 
Only species-level differences are shown in the legend. (Light yellow nodes indicate microbial taxa that are not significantly different in any of the 
different groups or have no significant effect on the differences between groups; different color nodes indicate microbial taxa that are significantly 
enriched in the corresponding groups and have a significant effect on the differences between groups). Analysis of intrauterine differential 
microbiota between N and HCA group (C) or between N and CCA group (D). (The X-axis represents different subgroups, and the Y-axis represents 
the average relative abundance of a genus in different subgroups).
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to the dominance of Lactobacillus (Taddei et al., 2018). Similar to 
non-pregnant women, the vaginal microbiota of normal pregnant 
women is also dominated by Lactobacillus spp., and this 
homeostasis is stable throughout whole pregnancy (Romero et al., 
2014a; McMillan et al., 2015). In our research, the vaginal flora of 
normal term pregnant women was consistent with previous 
studies. This Lactobacillus-led physiological state can resist the 
invasion of pathogenic microorganisms, reduce the chance of 
upper genital tract infection during term delivery, and maximize 
protecting the health of maternal and infants (Fettweis et al., 2019; 
Serrano et al., 2019).

Very little was found in the literature on the research of the 
cervical microbiome during pregnancy. Previously published 
studies disclose that the cervical microbiology group is analogous 
to the vaginal microbiome, mainly composed of Lactobacillus and 
Gardnerella (Smith et al., 2012). Aagaard et al. (2012) also detected 
that the cervical microbiota of women in the third trimester of 
pregnancy may be similar to non-pregnant women. In the present 
study, we demonstrated that the cervical microbiota was highly 
similar to the vaginal microbiota in normal term parturients, with 
Lactobacillus as the dominant bacterium (Figures  3B, 4A). 
Meanwhile, in the alpha and beta diversity analyzes, no statistical 
differences were detected in the diversity and composition of 
vaginal and cervical microbiota. The high consistency of these two 
parts provided a theoretical basis for the collection of genital tract 
specimens of pregnant women in clinical work. That is, the 
relatively simple operation and low risk of upper 1/3 vaginal 
secretion sampling can replace cervical secretion in clinical work.

Recently, researchers have shown an increased interest in the 
microecology of different parts of the human body due to the 
development of next-generation sequencing. The two most widely 
used culture-independent methods are 16S rRNA amplicon and 
shotgun metagenomic sequencing (Malla et al., 2018). Shotgun 
metagenomics allows indiscriminate sequencing of all DNA 
material in a sample, which can provide species-level assignment, 
and can provide direct evidence of functional variation in genes 
of existing strains. In present study, 16S sequencing was selected 
mainly because of its cost-effective characters and higher 
sensitivity to samples with human cells. In addition, it is focused 
on the dynamics of upper and lower genital microbiota in CAM 
patients rather than the relationship between microbiota and 
function. Besides the studies on the intrauterine microbiome 
mentioned in the introduction, many studies have been conducted 
on multiple mammals and reconfirmed the existence of a 
microbiome in the placenta (Younge et al., 2019; Yu et al., 2019; 
Zakošek Pipan et  al., 2020; Bi et  al., 2021). The debate about 
whether the intrauterine environment is sterile has gained 
prominence with many arguing that bacterial DNA contamination 
from sampling sites, clinical or laboratory environments, as well 
as reagents and consumables, can greatly influence the results of 
microbiota studies, especially for low-biomass specimen types 
(Salter et  al., 2014). Consequently, several investigators have 
examined the effects of strict controls for contamination on 
subsequent sequencing demonstrating a sterile intrauterine 

environment (Leiby et al., 2018; de Goffau et al., 2019; Kuperman 
et al., 2020; Olomu et al., 2020; Winters et al., 2022). Furthermore, 
de Goffau et al. (2021) re-analyzed the data from Rackaityte et al. 
(2020) and provided evidence that the identification of 
Micrococcus in fetal gut samples was contaminated and several 
findings were caused by an unrecognized batch effect. In our 
study, no microbe was discovered in the placental tissue of 34 term 
normal pregnant women by 16S rRNA sequencing, which is in 
line with the above perspective. However, some microorganisms 
were detected in the intrauterine amniotic fluid and fetal 
membrane samples in normal group, among which Lactobacillus 
spp. was still the dominant bacterium, accounting for 45.77% 
(Figure  3B). Apart from Lactobacillus spp., there are also 
Gardnerella spp., Staphylococcus spp., Methylobacterium spp. and 
other bacteria. It is worth noting that the gonadal hormones 
strongly influence the overall structure and function of vaginal 
microbiota. On the other hand, microbiota also affect the release 
and functions of hormones that modulate various physiological 
functions, such as the circadian rhythms (Kennaway, 2005; Sciarra 
et  al., 2020). More importantly, numerous evidence on the 
correlation between the vagina microbiota and the development 
of infertility and Polycystic ovarian syndrome (PCOS), and the 
variation of its constitution might be useful marker of pregnancy 
outcomes (Heil et al., 2019; Venneri et al., 2022). Data from several 
studies suggest that gut dysbiosis and circadian rhythm disorder 
are associated with obesity, metabolic syndrome and inflammatory 
bowel disease. However, the formation mechanism of gut 
microbial rhythm, the dynamic dialog between microbes and the 
host remain unclear and require further investigation (Samuelson 
et al., 2019; Wang et al., 2022).

Herein, the inflammatory indexes CRP and WBC were 
significantly increased in the CCA group, as well as the incidence 
of abnormal FHR monitoring, while no difference was detected 
between the HCA and normal groups. Moreover, the proportion 
of neonatal transfer rate and incidence of neonatal infection was 
notably higher in the CCA group than in the other two groups. 
Therefore, we propose that the postoperative histopathology for 
the diagnosis of CAM is not reliable in term pregnancy, and 
recommend that the diagnosis and delivery management should 
be based on clinical indicators. As stated by the NICHD expert 
panel, maternal fever alone should not automatically lead to the 
diagnosis of infection (or CAM) and antimicrobial treatment 
(Higgins et al., 2016). Meanwhile, researchers have searched for 
either antenatal or postnatal potential biomarkers to guide 
neonatal management. A recent meta-analysis suggested that 
there is insufficient evidence to support the use of CRP, 
procalcitonin, or IL6  in maternal blood for HCA diagnosis in 
PPROM (Etyang et al., 2020). As for other diagnostic indicators, 
Myntti et  al. (2016) have demonstrated that increased lactate 
dehydrogenase and decreased blood glucose in amniotic fluid are 
connected with HCA by amniocentesis in 70 women with 
suspected intraamniotic infection. Another study has speculated 
that metalloproteinase (MMP-8) in amniotic fluid is a sensitive 
index for the diagnosis of microbial invasion of the amniotic 
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cavity (Chaemsaithong et al., 2018). However, amniocentesis is an 
invasive procedure, which would also increase the risk of infection. 
Furthermore, given the correlation between genital tract 
microbiota and hormones, hormonal evaluation may also be a 
predictor of CAM. Except the positive correlation between E2 
serum concentration and Lactobacillus abundance mentioned 
above, there are many other hormone and flora correlations 
reported in the literature. For example, Prevotella show a strong 
positive correlation with testosterone and negative associations 
with estradiol concentrations (Kumar, 2013); Gemella was 
detected as positively related with both FSH and LH (Sabo et al., 
2020); a negative correlation was found between Aerococcus, 
Atopobium and LH hormone (Ling et  al., 2010). Hence, 
we propose that parturients should be comprehensively evaluated 
for clinical symptoms, laboratory examination (WBC, CRP, or sex 
hormones), and fetal heart monitoring in the clinic.

It has long been thought that the diagnosis and progression 
of CAM were inextricably linked to infection, especially 
ascending infections. Previous studies have found that the 
placental microbiota is influenced by inflammation, with some 
oral and urogenital commensal bacteria playing a key role in 
CAM etiology (Prince et al., 2016). In a follow-up study, Hockney 
et al. (2020) confirmed that HCA is associated with infection and 
increased the bacterial load in a dose–response relationship. 
Common microorganisms in female genital tract infections 
include Group B Streptococcus, E. coli, Bacillus, E. faecalis, 
U. urealyticum, M. hominis, and bacterial vaginosis (Tibaldi et al., 
2016). Moreover, several reports have shown that Ureaplasma 
spp. is the most prevalent pathogen in early-preterm birth or late-
preterm (Sweeney et  al., 2016; Matasariu et  al., 2022). A 
prospective cohort study also detected Mycoplasma and/or 
Ureaplasma in 81% (29/36) of the vaginal secretions of preterm 
pregnant women (Paramel Jayaprakash et  al., 2016). As can 
be  seen from the samples, whether culture or 16S rRNA 
sequencing detected only a low percentage of positive rates. The 
most interesting finding was that the frequency of HCA is higher 
than that of CCA with positive bacterial cultures (37.8% in HCA 
group; 21.4% in CCA group). Therefore, we  assume that 
histological and microbiological evidence of inflammation or 
infection may not always accompany one another. Similar to the 
above study, in the samples for which bacterial DNA could 
be detected, Ureaplasma spp. was higher in both the HCA and 
CCA groups than the normal group, especially in the CCA group. 
Furthermore, Romero et  al. (2019) have conducted a cross-
sectional study of women with intra-amniotic infection with 
intact membranes, and the results implied that the bacteria in the 
infected amniotic fluid were mainly Sneathia, Ureaplasma, 
Prevotella, Lactobacillus, Escherichia, Gardnerella, 
Peptostreptococcus, Peptoniphilus and Streptococcus, many of 
which were not cultured from the amniotic fluid samples. These 
results were highly similar to our current results for the 
intrauterine microbiota. The opportunistic pathogen Ureaplasma 
has been found in the urogenital tract and amniotic fluid of 
asymptomatic healthy and symptomatic women (Rumyantseva 

et al., 2019). Due to its high requirements for culture in vitro and 
slow growth, traditional culture detection is very complicated 
(van der Schalk et al., 2020). Thus, we hypothesized that this 
opportunistic pathogen not only causes premature labor but also 
plays a key role in term CAM. Hence, it is necessary to consider 
Ureaplasma infections when cephalosporin antibiotics are 
ineffective in CAM parturients in clinical practice, and a nucleic 
acid test should be used to improve the detection rate.

Moreover, Combs et  al. (2014) have found that intra-
amniotic inflammation is connected with adverse pregnancy 
outcomes regardless of the detection of microorganisms. In 
other words, despite the etiology, inflammation is a major driver 
of CAM. One retrospective study has shown that the term CCA 
is a syndrome that might be caused by intra-amniotic infection 
(63%) and sterile intra-amniotic inflammation (5%). 
Additionally, a considerable number of patients have no evidence 
of intraamniotic infection or inflammation (Romero et  al., 
2021). Besides, Roberts et al. (2012) have suggested that CAM 
might be  a non-infectious inflammatory process. Thus, the 
activation of the maternal immune state at term might lead to 
similar changes in the placenta. Infection is inflammation caused 
by the invasion of bacteria, viruses, fungi or other pathogens, 
while inflammation is a basic pathological process in which the 
tissue with vascular system reacts to various injury factors. 
Increasing evidence has shown that inflammation without 
microorganisms might be elicited by activation of endogenous 
danger signals derived from cellular stress or necrosis, known as 
damage-associated molecular patterns (DAMPs) or alarmins 
(Romero et al., 2011). Furthermore, a recent study compared 
sterile intra-amniotic inflammation and those with intra-
amniotic infection via RNA sequencing, confirm that the 
immune response in sterile inflammation is notably different and 
milder than microbial-induced inflammation (Motomura et al., 
2021). Nevertheless, to date, there is no approved treatment for 
sterile intra-amniotic inflammation. Meanwhile, Galaz et  al. 
(2021) used a mouse model of HMGB1-induced sterile 
inflammation and demonstrated that betamethasone treatment 
prevents preterm birth but does not reduce neonatal mortality. 
In addition, a recent study had proved that intravenous 
clarithromycin could reduce the intensity of sterile inflammation 
in patients with PPROM by monitoring IL-6 concentrations 
(Kacerovsky et al., 2020). Future studies should consider the 
mechanisms of intrauterine inflammation and focus on the 
treatment of sterile inflammation.

In current study, we  not only analyzed the intrauterine 
microbiota in normal and CAM patients but also comprehensively 
considered its trend in the upper and lower genital tracts from a 
macroscopic perspective. However, our research also has some 
limitations. First, negative control samples (operating room 
environment, surgical instruments, and DNA extraction kits) 
were not subjected to 16S sequencing because no DNA of 
acceptable quality was extracted. Second, our sample size was 
small and experiments with larger samples are required to further 
prove our current results.
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Conclusion

In summary, some normal-term pregnant women can harbor 
non-pathogenic microbiota in the uterine cavity. Additionally, 
sterile inflammation is more frequent than microbial-associated 
inflammation in full-term HCA and CCA patients. Besides, 
we  recommend a combined evaluation of clinical symptoms, 
laboratory examination, and FHR monitoring to diagnose CAM 
at term. Finally, it is necessary to determine a sensitive biomarker 
in the diagnosis of CAM in future studies.
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