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Cold seeps are oasis for the microbes in the deep-sea ecosystems, and various 

cold seeps are located along the northern slope of the South China Sea (SCS). 

However, by far most microbial ecological studies were limited to specific 

cold seep in the SCS, and lack of comparison between different regions. 

Here, the surface sediments (0–4 cm) from the Site F/Haima cold seeps 

and the Xisha trough in the SCS were used to elucidate the biogeography 

of microbial communities, with particular interest in the typical functional 

groups involved in the anaerobic oxidation of methane (AOM) process. 

Distinct microbial clusters corresponding to the three sampling regions were 

formed, and significantly higher gene abundance of functional groups were 

present in the cold seeps than the trough. This biogeographical distribution 

could be  explained by the geochemical characteristics of sediments, such 

as total nitrogen (TN), total phosphorus (TP), nitrate (NO3
−), total sulfur (TS) 

and carbon to nitrogen ratios (C/N). Phylogenetic analysis demonstrated that 

mcrA and pmoA genotypes were closely affiliated with those from wetland and 

mangroves, where denitrifying anaerobic methane oxidation (DAMO) process 

frequently occurred; and highly diversified dsrB genotypes were revealed as 

well. In addition, significantly higher relative abundance of NC10 group was 

found in the Xisha trough, suggesting that nitrite-dependent DAMO (N-DAMO) 

process was more important in the hydrate-bearing trough, although its 

potential ecological contribution to AOM deserves further investigation. Our 

study also further demonstrated the necessity of combining functional genes 

and 16S rRNA gene to obtain a comprehensive picture of the population shifts 

of natural microbial communities among different oceanic regions.
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1. Introduction

Methane is a powerful greenhouse gas with a greater influence 
than CO2, and contributes approximately 22% to the global 
warming (Dean et  al., 2018). Marine sediment is the largest 
reservoir of methane containing approximately thousands of 
gigatons (1015 g) of carbon stored beneath the seafloor as marine 
methane hydrates. As one of the largest readily exchangeable 
carbon reservoirs near Earth’s surface1 (Ruppel and Kessler, 2017), 
however it contributes only about 2% of the annual global flux of 
methane to the atmosphere (Cicerone and Oremland, 1988; 
Ruppel and Kessler, 2017). This is largely due to anaerobic 
oxidation of methane (AOM), which consumes nearly 90% 
upward diffusing methane before it was released into the 
hydrosphere and atmosphere (Hinrichs et al., 2000) and is critical 
for controlling the methane flux. By far, sulfate-dependent 
anaerobic methane oxidation (SAMO), denitrifying anaerobic 
methane oxidation (DAMO) and manganese- and iron-dependent 
methane anaerobic oxidation are the types of AOM processes 
found in marine environments (Boetius et  al., 2000; Beal 
et al., 2009).

SAMO is by far the most studied AOM process in marine 
sediments (Martens and Berner, 1974), and catalyzed by a 
consortium of anaerobic methanotrophic archaea (ANME-1/2/3) 
and sulfate-reducing bacteria (SRB) of the genera Desulfosarcina
/Desulfococcus or Desulfobulbus (Lösekann et  al., 2007). More 
recently, bacterium Candidatus ‘Methylomirabilis oxyfera’ 
(‘M. oxyfera’, NC10) coupling AOM to nitrite reduction through 
an intra-aerobic methane oxidation pathway (N-DAMO; Ettwig 
et  al., 2010) and a novel ANME lineage named Candidatus 
‘Methanoperedens nitroreducens’ (ANME-2d) population 
performing nitrate driven AOM pathway (Nr-DAMO; Hu et al., 
2009; Haroon et al., 2013) involved in the DAMO process were 
reported. Those DAMO-associated groups have been identified in 
the sediments along the continental shelf and cold seeps of the 
South China Sea (SCS; Chen et al., 2014; Jing et al., 2020), and 
were proposed to represent a major methane sink (Jing et al., 
2020). The relative importance of DAMO and SAMO seems 
varied with different marine regions, depending on the types and 
availability of substrates, and their ecological contributions to the 
AOM process still need further investigations (Roalkvam et al., 
2011; Jing et al., 2020).

Cold seeps are formed by the expulsion of subsurface fluid 
into the seabed (Paull et al., 1984), and rich in methane and 
hydrogen sulfide (Jørgensen and Boetius, 2007). Various cold 
seep sites have been detected on the northern slope of the 
SCS. Among them, only Haima and Site F are currently active 
(Feng and Chen, 2015). The Xisha trough is located in the BSR 
(Bottom-simulating reflectors, geophysical indicator for gas 
hydrate) area and is gas hydrate-bearing areas of the northern 
SCS, though no cold seeps are formed currently (Zhang et al., 
2019). Based on the 16S rRNA gene, the microbial communities, 
especially ANME, have been investigated with high-throughput 
sequencing in Haima (Niu et al., 2017; Zhang et al., 2020) and 

Site F (Cui et al., 2019). As for the SAMO-associated functional 
groups, ANME, methanogens and/or SRB have been reported in 
Haima (Jing et al., 2020; Xu et al., 2021; Guan et al., 2022) and 
Site F (Feng and Chen, 2015; Zhang et al., 2017; Du et al., 2018; 
Li et al., 2021). In addition, microbial groups involved in DAMO 
process were also identified in the cold seeps and the Xisha 
trough in the SCS (Chen et al., 2014; Jing et al., 2020). However, 
by far all the molecular microbial ecological studies have been 
limited to one specific cold seep in the SCS, thus lack of 
comparisons among different regions, particularly considering 
different functional groups as a whole.

In the present study, we  collected sediment samples from 
deep-sea cold seeps and the Xisha trough in the SCS to investigate 
the biogeography of microbial communities, with particular 
interest in the representative functional groups, e.g., the ANME-2d 
subcluster, NC10 bacteria and SRB. This study could be better 
elucidated the spatial variation of the microbial community 
structure, diversity and associated impacting factors among 
different regions.

2. Materials and methods

2.1. Sample collection

Pushcore sediment samples were collected from two cold 
seeps (Haima: 16°43’N, 110°28′E; Site F: 22°6’N, 119°17′E) and 
the Xisha Trough (18°18’N, 114°08′E) located on the continent 
shelf of the SCS (Figure 1) during cruise TS07 by R/V “Tan Suo Yi 
Hao” in June 2018 as described previously (Jing et al., 2020). In 
total, nine stations were sampled, as follows: SQ_54, SQ_79 and 
SQ_81 (from Haima), SQ_62, SQ_63, and SQ_64 (from Site F), 
and SQ_82, SQ_84 and SQ_87 (from the Xisha Trough). The 
surface sediments around 0–4 cm were sliced and then 
immediately stored at −80°C until further analysis. In situ 
hydrographical parameters (i.e., temperature, depth and location) 
were recorded during sampling using the manned submersible, 
SHENHAI YONGSHI.

2.2. Chemical analysis of the sediments

Chemical parameters of sediments, including total carbon 
(TC), total nitrogen (TN), total phosphate (TP), total sulfur (TS), 
nitrate, and ammonia of each site, were measured at the Institute 
of Mountain Hazards and Environment, Chinese Academy of 
Sciences (Chengdu, Sichuan, China), according to Wang et al. 
(2016). In total, approximately 5 g sediment was used for chemical 
analysis. Briefly, nitrate and ammonia were detected with a 
colorimetric auto-analyzer (SEAL Analytical AutoAnalyzer 3, 
Germany) after 2 M KCl treatment and double qualitative filter 
paper. TC and TN were determined by over drying the sediments 
at 105°C and then using an element analyzer (Elementar vario 
Macro cube, Germany). TS were measured by an inductively 
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coupled plasma-optical emission spectroscopy (ICP-OES; 
PerkinElmer Optima 8,300, United States). TP was measured with 
nitric-perchloric acid using the molybdate colorimetric method 
with a UV2450 (Shimadzu, Japan) after digestion of the sediment 
(Murphy and Riley, 1962).

2.3. DNA extraction and PCR 
amplification

Triplicate samples at each station were used for DNA 
extraction and combined for subsequent PCR reaction and 
sequencing. Genomic DNA in the sediment (~0.5 g) was extracted 
according to the instruction manual of PowerSoil DNA Isolation 
Kit (MO BIO Laboratories, Inc., Carlsbad, United States). The 
extracted DNA was quantified with a NanoDrop  2000 
Spectrophotometer (Thermo Scientific, Thermo Fisher Scientific, 
Corp.) and the quality was checked via gel electrophoresis. The 
DNA samples were stored at −80°C until further processing.

The V3-V4 region of bacterial 16S rRNA gene (468 bp) was 
amplified by PCR using the primers of 338F 
(5’-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′- 
GGACTACHVGGGTWTCTAAT-3′; Liu et al., 2016), while that 
of archaeal 16S rRNA gene (462 bp) was amplified with primers of 
340F (5’-CCCTAYGGGGYGCASCAG-3′) and 806R 
(5’-GGACTACVSGGGTATCTAAT-3′; Takai and Horikoshi, 
2000). Nested PCR was used for amplification of the mcrA gene 
(363 bp) of Methanoperedens-like archaea (ANME-2d; Vaksmaa 
et al., 2017), the pmoA gene (386 bp) of M. oxyfera-like bacteria 
(NC10 bacteria; Luesken et al., 2011), and the dsrB gene (350 bp) 

of Desulfosarcina-like sulfate-reducing bacteria (DSRB; 
Rampinelli et al., 2008). The information of specific PCR primers 
for above functional genes are listed in Table S1. PCR products 
were examined with SYBR Safe stained 1.2% agarose gels. The 
paired-end sequencing of the all amplicons were then performed 
with an Illumina HiSeq PE250 sequencer (Novogene Co., Ltd.).1

2.4. Processing and analysis of the 
sequencing data

To obtain high-quality sequencing data and improve the 
accuracy of subsequent bioinformation analysis, adapters at both 
ends of the sequences were removed firstly using the q2-cutadapt 
plugin after demultiplex; Then, the DADA2 (v1.16) plug-in of 
QIIME2 v2020.2 was used to filter, dereplicate, identify chimeric 
sequences, and merge Paired-end (PE) reads (Callahan et  al., 
2016). PE reads were merged with a minimum length of 12 bp 
overlap and the representative sequences were picked. The unique 
amplicon sequence variants (ASVs) table was filtered out by 
q2-filterfeature after removing the ASVs with frequencies less than 
10. The resulting representative ASV sequences for functional 
genes (mcrA, pmoA and dsrB) were used to calculate phylogenetic 
trees for subsequent analyses.

Taxonomic classification of 16S rRNA (bacteria and archaea) 
was processed using the q2-classifysklearn algorithm, and the 
SILVA (V.132) database was used as a reference with a threshold 

1 www.novogene.com

FIGURE 1

Location of the sampling stations in the South China Sea.
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of 0.8. Annotations were obtained after removing contamination 
using the q2-feature-table plugin and visualized by the q2-taxa-
barplot plugin. The ASVs annotated as mitochondria, chloroplasts, 
or eukaryotes were also removed using the qiime taxa filter-table 
and qiime taxa filter-seqs plugins of QIIME2. To detect potential 
biomarkers, linear discriminant analysis (LDA) effect size (LEfSe) 
statistical analysis was performed on the Galaxy platform (Segata 
et  al., 2011).2 For the prediction of functional and metabolic 
profiles of the bacterial and archaeal community based on the 16S 
rRNA gene sequences, the recently developed open-source R 
package Tax4Fun (Asshauer et al., 2015) was used with the short 
reads mode disabled along with the SILVA database 123 
as required.

Alpha diversity (Shannon and Chao1 indices) and beta 
diversity were generated with QIIME 2 using q2-diversity, then 
visualized using box plots and non-metric multidimensional 
scaling (nMDS) plots at the class level. Pearson’s correlation 
coefficients were calculated to identify a possible differentiation of 
the communities under the constraint of environmental factors, 
and assess correlations between environmental variables and 
community variability. ANOSIM (analysis of similarities) was 
used to analyze the similarities of the microbial community 
compositions among different regions at the class level.

2.5. Phylogenetic analysis of functional 
genes

A phylogenetic analysis of functional gene (mcrA, pmoA and 
dsrB) sequences was performed using Mega X (Kumar et al., 2018). 
Reference sequences were retrieved from GenBank database using 
nucleotide tool BLAST, Popset, and Batch Entrez at NCBI.3 The 
gene sequences were aligned using the ClustalW algorithm of Mega 
X (Kumar et al., 2018). After testing the best substitution model, 
phylogenetic trees were constructed using the maximum likelihood 
method with the substitution model (Tamura-Nei model for mcrA, 
Tamura 3-parameter model for pmoA and dsrB) with a bootstrap 
value of 1,000. The phylogenetic tree was visualized and edited 
through ITOL (V2.0; Letunic and Bork, 2006).

2.6. Quantitative PCR

The abundance of the functional genes (mcrA, pmoA and 
dsrB) was quantified using the Bio-Rad System (Bio-Rad Inc., 
United States) and TB Green Premix® Ex Taq II (Takara Bio Inc., 
Shiga, Japan) with primers McrA159F/McrA345R (Vaksmaa et al., 
2017), cmo182F/cmo568R (Luesken et al., 2011) and DSRp2060F/
DSR4R (Geets et al., 2006) respectively. The specific information 
for all the qPCR primers were listed in Table S1. Standard curves 

2 http://huttenhower.sph.harvard.edu/LEfSe/

3 http://www.ncbi.nlm.nih.gov

were constructed using a series of tenfold dilutions of the standard 
plasmids (known copy number) containing the targeted genes. 
Triplicate qPCR reactions were performed for each sample with 
double-distilled water as a negative control, and the gene copy 
number was normalized to the quantity of the gene.

3. Results

3.1. Geochemical characterization of the 
sediments

The Xisha trough was located in between the two seep regions, 
and geographically closer to Haima (Figure 1). The highest contents 
of TN (0.09% ~ 0.17%) and TC (0.67% ~ 1.27%) were found in 
Haima (Table 1). The carbon to nitrogen ratios (C/N; 6.87 ~ 8.30) 
were higher in the cold seeps than in the trough, and the highest 
values were found at Stn. SQ64 in Site F. The concentration of NH4

+ 
(9.49 ~ 17.10 mg/kg) was highest at Stn. SQ64  in the Site F and 
lowest at Stn. SQ81  in the Haima. The highest and lowest 
concentration of NO3

− (1.01 ~ 1.41 mg/kg) was detected at respective 
Stns. SQ87 and SQ82 in the Xisha trough. TP (477.01 ~ 1,071.21 mg/
kg) was significantly higher in Site F, especially at Stn. SQ64. In 
general, Site F contained high concentrations of TP, NH4

+ and C/N 
ratio, whereas Haima had high TN and TC contents.

3.2. Diversity and structure of bacterial 
and archaeal communities

The sequencing process yielded 460,109 quality reads for 
bacterial 16S rRNA gene and 549,475 quality reads for archaeal 
16S rRNA gene from 9 stations (Table S2). A total of 9,251 ASVs 
from bacterial 16S rRNA gene and 5,234 ASVs from archaeal 16S 
rRNA gene were identified in all nine samples. The bacterial ASVs 
were classified into 18 phyla and 34 classes, and the archaeal ASVs 
were classified into 9 phyla and 9 classes (Figures  2A,B). The 
average alpha diversity (Shannon) of bacterial community at the 
class level was significantly higher than that of archaeal community 
in the three regions, especially in the Site F and the Xisha trough 
(p < 0.01, Figure 2C). NMDS analysis of bacteria and archaea at the 
class level showed that three distinct clusters were formed, 
corresponding to the three sampling regions (Figures 2D,E).

The major bacterial phyla in all samples were Proteobacteria, 
Chloroflexi and Acidobacteria (Figure  2A). Among them, 
Proteobacteria was the predominant bacterial phylum, and 
comprised mainly of α- and γ-Proteobacteria (Figure  2A). In 
addition, NC10 bacteria belonging to Rokubacteria were detected 
in all study areas (Figure  2A). Within the 9 archaeal phyla, 
Thaumarchaeota was the most abundant archaeal phylum in all 
samples, and dominated by Nitrososphaeria (Figure  2B). 
Thermoplasmata and Methanomicrobia belonging to Euryarchaeota, 
together with Bathyarchaeia (Crenarchaeota) occupied a higher 
proportion in Haima especially at Stn. SQ81 (Figure  2B). The 
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relative abundance of Marine Benthic Group A, Thaumarchaeota 
and Thermoplasmata, was higher in the trough than the cold seeps, 
while that of Methanocellales and Methanomicrobia was higher the 
in cold seeps than the trough (Figure 2B).

3.3. Comparison between the cold seeps 
and the trough

LEfSe analysis demonstrated that NC10 bacteria 
(Rokubacteria) and Methylococcales accounted for higher 

proportion in the trough and the cold seeps, respectively (p < 0.05, 
Figure 3A; Table S3). The relative abundance of Marine Benthic 
Group A, Thaumarchaeota and Thermoplasmata, was higher in 
the trough than in the cold seeps, while that of Methanocellales 
and Methanosarcinales showed the opposite trend (p < 0.05, 
Figure 3B).

For functional prediction of bacteria with Tax4fun based on 
total ASVs of bacterial 16S rRNA gene, the abundance related to 
acetoclastic methanogens was the highest in all methanogenesis 
pathways, especially in the Xisha trough, while that related to CO2 
and methylotrophic methanogens was higher in the cold seeps 

TABLE 1 Geochemical information of sediment samples collected from cold seeps in the South China Sea.

Station
Longitude 

(°E)
Latitude 

(°N)
Depth 

(m)

TN TC TP 
(mg/
kg)

TS 
(mg/
kg)

C/N 
Ratio

NH4
+ 

(mg/
kg)

NO3
− 

(mg/
kg)(%) (%)

SQ58 Haima 110.46 16.73 1,388 0.17 1.27 678.28 1,468.90 7.66 11.86 1.23

SQ79 110.41 16.73 1,377 0.15 1.15 531.86 3,017.88 7.87 10.46 1.02

SQ81 110.4 16.69 1,366 0.16 1.18 477.01 1,574.94 7.41 9.49 1.05

SQ62 Site F 119.29 22.11 1,151 0.09 0.67 812.62 529.79 7.61 10.05 1.31

SQ63 119.28 22.11 1,165 0.1 0.75 918.97 137.42 7.84 15.84 1.06

SQ64 119.29 22.12 1,305 0.1 0.81 1,071.21 161.85 8.3 17.1 1.12

SQ82 Xisha 

trough

111.99 18.44 1,732 0.14 1.11 610.99 1,127.57 8 13.11 1.01

SQ84 114.08 18.05 3,408 0.1 0.67 555.34 925.19 6.87 11.63 1.22

SQ87 111.94 18.2 2,200 0.12 0.91 659.45 904.08 7.56 9.8 1.41

A

C D E

B

FIGURE 2

Community composition of bacteria (A) and archaea (B) at the class level; Averaged alpha diversity indices of the bacterial and archaeal 
communities based on 16S rRNA gene (**: p < 0.01) (C); non-metric multidimensional scaling (NMDS) plots of bacterial (D) and archaeal 
(E) communities based on 16S rRNA gene.
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(Figure S1A). The genes related to denitrification and dissimilatory 
nitrate reduction was more abundant in the Xisha trough, while 
that of assimilatory sulfate reduction was more abundant in Site F 
(Figure S1A).

For functional prediction of archaea with Tax4fun based on 
total ASVs of archaeal 16S rRNA gene, the abundance of methane 
metabolism was the highest in the cold seeps especially in Haima, 
while that of denitrification, dissimilatory nitrate reduction and 
assimilatory sulfate reduction was higher in the Xisha trough 
(Figure S1B).

3.4. Phylogeny of functional genes

A total of 638,497 high-quality mcrA gene sequences were 
obtained from all samples excluding Stn. SQ81, and were classified 

into 222 ASVs using DADA2 (Table S2). Top 53 ASVs (accounting 
for >95% of the total retrieved mcrA gene sequences) were used 
to construct a phylogenetic tree, and fell into five distinct clusters, 
i.e., ANME-2e, ANME-2c, ANME-2d, Methanosarcinaceae, and 
Methanocellales (Figure  4A). ANME-2e (22ASVs, 27.9%) and 
ANME-2d (18ASVs, 27.6%) were the two major clusters.

A total of 624,726 high-quality pmoA gene sequences were 
obtained in all nine samples, and were classified into 251 ASVs 
using DADA2 (Table S2). Top 20 ASVs (accounting for >85% of 
the total retrieved pmoA gene sequences) were used to construct 
a phylogenetic tree, with two distinct clusters formed (Figure 4B). 
Cluster I contained most of the ASVs (15 of 20 ASVs).

A total of 696,892 high-quality dsrB gene sequences were 
obtained in all nine samples and were classified into 2,646 ASVs 
using DADA2 (Table S2). Seven distinct clusters were formed 
based on the top 20 dsrB ASVs with affiliated sequences from the 

A

B

FIGURE 3

LEfSe analysis between the cold seeps and the trough for bacteria (A) and archaea (B) showing the Linear Discriminant Analysis (LDA) score.
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GeneBank database, i.e., Group I, Syntrophobacteraceae, 
Desulfobacteraceae, Group II, Desulfobulbaceae, Group III and 
Group IV (Figure 4C).

3.5. Composition, diversity and 
abundance of functional genes

For mcrA gene, the highest proportion of Methanosarcinaceae 
and lowest proportion of ANME-2e were detected in  Site F 
(Figure 4A). ANME-2c and Methanocellales were major group in 
the Haima and the Xisha trough, respectively. The relative 
abundance of ANME-2d was higher in the cold seeps (accounting 
for 23.3% in the Haima and 42.4% in the Site F, respectively) than 

that in the trough (accounting for 4.1%; Figure 4A). Meanwhile, 
distinct ANME-2d predominant in each sample, e.g., ASV5, ASV4 
and ASV24 was mainly distributed in the Haima, the Site F and 
the Xisha trough, respectively, (Figure  S1C). For pmoA gene, 
Cluster I  affiliated with NC10 bacteria accounted for higher 
proportion in the cold seeps than the trough. ASV1 dominant in 
all samples, while ASV2 was mainly in the cold seeps (Figure S1D). 
For dsrB gene, Group I and Syntrophobacteraceae were mainly 
in Site F (respective of 44.3 and 36.5%); higher relative abundance 
of Desulfobacteraceae, Group III and Group IV were found in the 
Xisha trough, while Group II and Desulfobulbaceae accounted for 
higher proportion in the Haima (Figure 4C; Figure S1E).

In terms of alpha diversity, there was no significant 
difference of mcrA group between the cold seeps and the 

A B

C

FIGURE 4

Maximum likelihood phylogenetic trees for mcrA gene with top 53 ASVs (accounting for >95% of the total retrieved mcrA gene sequences) (A), 
pmoA gene of top 20 ASVs (accounting for >85% of the total retrieved pmoA gene sequences) (B) and dsrB gene of top 20 ASVs (accounting for 
>49% of the total retrieved dsrB gene sequences) (C). Bootstrap values over 50% based on 1,000 replicates were shown. The abundance of the 
ASVs in each region was shown in the heatmap referred to the color key.
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A

D

B C E

FIGURE 5

The averaged alpha diversity in different regions for mcrA (A), pmoA (B) and dsrB (C) genes (*p < 0.01); Gene copy numbers (log copies in wet 
sediment weight) (D) and three functional genesnon-metric multidimensional scaling (NMDS) plot of different functional genes (E).

trough (Figure  5A), while significantly higher diversity of 
pmoA and dsrB groups was present in the trough and the cold 
seeps, respectively (p < 0.05, Figures  5B,C). Regarding gene 
abundance quantified by qPCR, significantly higher abundance 
of mcrA, pmoA and dsrB gene was detected from the cold seeps 
than from the trough (p < 0.05, Figure 5D). NMDS analysis of 
functional genes showed that three distinct clusters 
corresponding to the different sampling regions were formed 
(Figure 5E).

3.6. Environmental impacts

Pearson’s correlation coefficients demonstrated that significant 
correlation existed for Group II/III of dsrB with TS and C/N Ratio, 
and for ANME-2c/2d of mcrA with TS and TP (p < 0.05, Table 2). 
Regarding alpha diversity, it was significantly correlated with TN 

and TC in the bacterial community, and with TN, TC and TS in 
the archaeal community (p < 0.05, Table 2).

4. Discussion

4.1. Heterogeneity of bacterial and 
archaeal communities

Bacterial community exhibited higher diversity than that of 
archaeal community in the three studied regions in this study, 
consisting with the finding of previous studies conducted in the 
cold seeps of the SCS (Zhang et al., 2012; Cui et al., 2019; Jing 
et al., 2020). Compared with trough, higher proportions of SRB 
(Desulfobulbus, Desulfococcus and Desulfobacteraceae) were found 
in the cold seeps, where typically syntrophic consortium formed 
by those SRB groups with anaerobic methane oxidizers (Boetius 
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et  al., 2000; Orphan et  al., 2001). On the other hand, NC10 
bacteria accounted for higher proportion in the trough, where has 
been proposed to support a widespread occurrence of this 
bacterial group (Chen et al., 2014) with the potential of performing 
N-DAMO pathway with the co-operation of anammox bacteria 
(Hu et al., 2009; Ettwig et al., 2010). In addition, Methylococcales 
(type I methanotrophs) occupied a high proportion in the cold 
seeps, very possibly be favored by relatively high methane released 
after AOM process (Hanson and Hanson, 1996).

As for archaea, the prevalence of methylotrophic 
Methanosarcinales and acetogenotrophic Methanocellales in the 
cold seep sediments suggested a potentially high level of in situ 
methane production, and in agreement with the functional 
prediction based on 16S rRNA genes in this study. In addition, 
archaeal groups, i.e., Methanoperedenaceae (ANME-2d), 
ANME-3, ANME-2a/2b and ANME-2c, were mainly detected in 
the cold seeps. It was already known that ANME −2a, −2b, −2c, 
and − 3 could form a consortium with SRB to participate in the 
SAMO process (Knittel and Boetius, 2009), therefore, their 
presence might further prove that SAMO processes widely occur 
in the hydrate-bearing seeps of the northern SCS (Niu et al., 2017; 
Cui et  al., 2019). The detection of ANME-2d clades 
Methanoperedens in the cold seeps indicated that the 

DAMO-related microbes existed in the hydrate-bearing cold seeps 
(Haroon et al., 2013), although their real ecological role in this 
process still need direct proofs. Different ANME clades had varied 
spatial distribution, for example, ANME-3 predominant in this 
study, while ANME-1 and ANME-1b predominant in the 
respective of Jiulong methane reef area (Cui et al., 2016) and the 
GMGS2 drilling area of the SCS (Cui et al., 2019). This reflected 
the complexity and heterogeneity of the microbial communities 
in different cold seeps, and the necessity of conducting specific 
studies on each individual seep.

4.2. Phylogeny and abundance of 
functional groups

Based on the phylogeny of mcrA gene ANME-2d cluster 
affiliated with sequences recovered from Yangtze Estuary sediment 
(Zheng et al., 2020), wetland (Chen et al., 2017) and Indonesian 
river sediment (Vaksmaa et al., 2017), which were typical habitats 
for the occurrence of methanogenesis (Wang et al., 2015) and 
Nr-DAMO processes (Haroon et al., 2013). Higher proportion of 
ANME-2d in the cold seeps was consistent with the findings based 
on archaeal 16S rRNA gene analysis in this study, although this 

TABLE 2 Pearson correlation matrix among the variables.

Variables TN TC TP TS C/N Ratio NH4
+ NO3

−

dsrB Group I −0.204 −0.116 0.315 −0.458 0.429 0.412 −0.301

Syntrophobacteraceae −0.198 −0.191 0.22 −0.284 0.101 −0.083 −0.088

Desulfobacteraceae −0.111 −0.099 0.102 −0.177 0.051 −0.145 0.629

Group II 0.345 0.398 −0.252 0.788 0.267 −0.158 −0.456

Desulfobulbaceae 0.61 0.59 −0.112 0.303 0.003 −0.089 0.113

Group III −0.336 −0.458 −0.238 −0.098 −0.718 −0.021 0.148

Group IV 0.344 0.272 −0.133 0.067 −0.317 −0.15 0.538

mcrA ANME-2e −0.049 −0.134 −0.238 −0.074 −0.505 −0.161 0.251

ANME-2c 0.276 0.32 −0.328 0.816 0.168 −0.234 −0.359

ANME-2d −0.239 −0.129 0.705 −0.287 0.62 0.57 −0.033

Methanosarcinaceae −0.397 −0.364 0.459 −0.442 0.16 0.517 −0.244

Methanocellales −0.003 −0.001 −0.13 −0.085 −0.034 −0.293 0.563

pmoA Cluster I 0.467 0.53 −0.1 0.316 0.397 −0.152 −0.409

Cluster II −0.467 −0.53 0.1 −0.316 −0.397 0.152 0.409

Diversity Shannon (bac) −0.789 −0.759 0.325 −0.434 −0.021 0.274 0.221

Shannon (arc) 0.767 0.738 −0.527 0.799 −0.061 −0.534 −0.23

Shannon (mcrA) −0.32 −0.344 0.204 −0.261 −0.182 0.097 0.331

Shannon (pmoA) 0.197 0.194 −0.432 0.392 −0.069 −0.241 −0.039

Chao_1 (dsrB) 0.597 0.653 −0.137 0.655 0.366 −0.166 −0.335

Gene 

abundance

mcrA −0.03 0.008 0.63 −0.429 0.313 0.57 −0.01

pmoA −0.568 −0.534 0.439 −0.394 0.121 0.025 0.188

dsrB 0.383 0.373 0.122 0.034 0.055 −0.014 0.273

Bold values in the table represent the better positive correlation between the variables (p < 0.05).
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archaeal cluster was undetectable in the Haima cold seep 
previously using another conventional mcrA primer (Niu et al., 
2017). As for pmoA gene, two distinct clusters formed, with 
Cluster I  was closely related to sequences recovered from the 
mudflat in Mai Po Nature Reserve of Hong Kong (Chen et al., 
2015a) and sediments of the SCS (Chen et al., 2014, 2015b). NC10 
bacteria have been reported using pmoA gene from the sediments 
in the SCS previously (Chen et  al., 2014, 2015b, 2022). The 
association of ANME-2d archaea and NC10 bacteria with DAMO 
process has been proposed (Chen et al., 2022), future studies with 
isotopic tracing experiments will be  helpful to elucidate their 
functions and relative contributions to this process.

Comparatively, more distinct clusters were formed for dsrB 
gene, suggesting highly diversified dsrB genotypes existed. 
Among the seven clusters, clusters of Syntrophobacteraceae, 
Desulfobulbaceae and Group IV were closely related to 
sequences from deep-sea sediments of Nankai Trough (Kaneko 
et al., 2007); Desulfobacteraceae cluster was closely related to 
sequences from sediments of Changjiang Estuary (He et  al., 
2015); clusters of Group II/III were closely related to sequences 
from coastal marine sediment of Aarhus Bay (Petro et al., 2019). 
The high diversity of SRB genotypes might be associated with 
the different ANME groups detected in the same region. This 
phenomenon has also been observed in the pockmark (Lazar 
et  al., 2011) and Thuwal cold seeps (Lee et  al., 2014), might 
be  influenced by the sulfate concentrations and organic 
substrates availability (Leloup et al., 2007; Lazar et al., 2011). 
Highly diversified substrate utilizing capability of different SRB 
groups reflected a better adaptability to the deep-sea 
environment (Dhillon et  al., 2003), and a potentially higher 
ecological contribution to AOM progress in the cold seeps 
and trough.

Higher gene abundance of all the three functional groups in 
the cold seeps than in the trough might suggest that those 
functional groups were selectively favored by the enriched 
substrates in the cold seeps (Zhou et al., 2015; Niu et al., 2017; Cui 
et al., 2019). In the Xisha trough, significantly higher abundance 
of NC10 group might be associated with the frequently predicted 
functions of denitrification and dissimilatory nitrate reduction. 
This suggested that N-DAMO process was more important in the 
hydrate-bearing trough, although its contribution to the AOM 
process should be estimated using the isotopic tracing and active 
microbial assemblages involved deserve further investigation at 
the RNA level.

4.3. Impacting parameters on the 
microbial groups

Distinct prokaryotic and functional microbial communities 
were formed in the three respective hydrate-bearing locations. 
Distinct microbial communities formed in different cold seeps have 
been reported worldwide, and were locally selected by the biotic and 
abiotic factors (Ruff et al., 2015; Vigneron et al., 2019). The degree 

of microbial endemism in the methane seep suggests a high local 
diversification in the heterogeneous cold-seep ecosystems (Ruff 
et  al., 2015). The clear biogeographical distribution pattern of 
microbial communities were attributed to the in situ geochemical 
conditions in the sediments, especially TN, TC, TP, NO3

−, and TS; 
and their importance driving the spatial distribution of microbial 
communities in the cold-seep ecosystems have been reported 
previously (Heijs et al., 2007; Roalkvam et al., 2011; Shao et al., 2014; 
Niu et al., 2017). However, by far different environment parameters 
were measured in different studies, and it is difficult to ascertain 
which one was the most important factor. Previous studies indicated 
strong correlations of microbial communities in the cold seep 
sediment with the concentrations (Zhang et al., 2012) and physical 
forms of methane (Cui et  al., 2019). In those hydrate-bearing 
ecosystems, it would be reasonable to assume that the concentrations 
and physical forms of methane as the key drivers, although no in 
situ methane concentration was reported in most related studies. 
Methane concentrations were not measured in our study, but 
bubbling of fluids from the cold seeps were observed during diving 
with the deep-sea HOV in the cruise. Haima has exhibited a decline 
in activity in recent years (Liang et al., 2017), while Site F is currently 
active (Feng and Chen, 2015) with high concentration of methane 
gas (Lin et al., 2007), and the Xisha trough with large amount of gas 
hydrate, without cold seeps formed currently (Zhang et al., 2019). 
Therefore, concentrations and physical forms of methane in those 
different regions would be  different, subsequently supporting 
distinct prokaryotic and functional communities, and should 
be measured and recorded in the future studies.

4.4. Necessity of functional genes

16S rRNA genes as phylogenetic markers for amplicon 
sequencing have become routine in the microbial ecology studies 
in recent years (Woese and Fox, 1977), but functional genes that 
are indicative of a particular microbial guild were applied 
increasingly in recent years (Zeleke et al., 2013). Both 16S rRNA 
gene and functional genes were applied in this study. It seems 16S 
rRNA gene was more suitable for routine community composition 
analysis, however, to get a better resolution of functional groups, 
the specific primers targeting on the functional genes would 
be necessary. For example, different ANME clades (referred to as 
ANME −2a, −2b, −2c, and − 3) were revealed by the mcrA gene, 
while those clades together occupied a relatively lower proportion 
in the whole archaeal community (ranging from 0.04 to 1.70%) 
based on the archaeal 16S rRNA gene (Table S3). In addition, the 
relative abundance of SRB was extremely low in all samples based 
on the analysis of bacterial 16S rRNA genes. In fact, SRB was 
known belonging to several diverse clusters, a combination of 
different primers or probes are needed to cover entire SRB 
communities specifically (Lücker et  al., 2007), and 16S rRNA 
gene-based monitoring of SRB is particularly not sufficient. 
Therefore, it is necessary to use specific primers of functional 
genes combined with 16S rRNA to get a comprehensive picture of 
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the microbial communities, and this is particularly true for the 
environmental samples containing complex microbial gene pools 
(Lücker et al., 2007; He et al., 2015).
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