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Editorial on the Research Topic

Themethanemoment -Cross-boundary significance ofmethanogens

Introduction

Methanogens are anaerobic methane-producing archaea that derive energy from

methanogenesis, a biological process responsible for most global methane emissions.

Because methane is a potent greenhouse gas and a high-energy fuel, methanogens could

help solve the dual challenge humanity is facing—climate change and energy shortage

(Buan, 2018). On the one hand, mitigating methane emissions is a high priority in

tackling global warming and climate change. On the other hand, promoting methane

production in well-controlled environments such as waste digesters convert waste into

high purity methane as a sustainable biofuel.

There are also good reasons to believe that the significance of methanogens would

extend beyond climate and energy. For example, methanogens were one of the earliest

life forms on Earth, they have evolved enormous diversity for ∼3.5 billion years (Wolfe

and Fournier, 2018), they possess many essential genes uniquely shared between archaea

and eukaryotes (Lyu and Whitman, 2017), and they are now collectively distributed in

a wide range of ecosystems—on the land, in the oceans, across extreme environments

(Liu and Whitman, 2008), closely associated with humans, animals, and plants (Borrel

et al., 2020), and even adapted to oxic niches (Lyu and Lu, 2018). A good understanding

and translation of their functions across the biosphere will unravel the untapped
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cross-boundary significance of methanogens relevant to the

environment, energy, agriculture, biotechnology, and health and

disease of humans, animals, and plants.

Therefore, we have formed a guest editorial team with

diverse expertise in microbiology, environmental science,

biotechnology, and medicine to bring forward this new

Frontiers Research Topic “The Methane Moment—Cross-

boundary Significance of Methanogens” (Lyu et al., 2022).

To showcase methanogen-relevant research across multiple

disciplines, this topic is cross listed with 3 Frontiers journals and

6 sections. To facilitate the discussion of this topic, our editorial

team presents here a preface article envisaging, within our

expertise, the significance of methanogens in diverse settings.

Evolution of methanogens and
methanogenesis

While the origin of methanogens and their ancestral

pathway of methanogenesis is debatable, modern methanogens

operate five unique pathways: CO2-reducing, aceticlastic,

methylotrophic (Lyu et al., 2018b), methoxydotrophic (Mayumi

et al., 2016) and alkylotrophic (Zhou et al., 2022). All the

pathways use a methyl-coenzyme M reductase complex (MCR)

to catalyze the final step of methanogenesis. MCR homologs

are also shown to be involved in anaerobic methanotrophy

and alkane metabolism (Laso-Perez et al., 2016; Borrel et al.,

2019). Previously, it was reported that methanogens were

classified into two distantly related groups within the phylum

Euryarchaeota (Bapteste et al., 2005; Borrel et al., 2016). In

recent years, genomic and sequencing analysis has proposed

many novel methanogens outside Euryarchaeota, expanding the

diversity of methanogens and methanogen-like archaea (Baker

et al., 2020). For example, Korarchaeota, Thaumarchaeota,

Verstraetearchaeota, and Nezhaarchaeota, also contain MCRs,

suggesting that they have the potential of methanogenesis

(Wang et al., 2019). Bathyarchaeota, Hadesarchaea, and

Helarchaeota contain alkyl–coenzyme M reductase complex

(ACR), enzymes that are similar to MCR but activate alkanes

instead (Seitz et al., 2019).

The findings of MCR and ACR in non-Euryarchaeota

challenged the hypothesis that methanogenesis originated from

Euryarchaeota, suggesting a more complex evolutionary history

ofmethanogens (Garcia et al., 2022). Some studies suggested that

the hydrogen-dependent CO2-reducing (hydrogenotrophic)

methanogenesis may be the ancestral form of biological methane

production and methanogens evolved from hydrogenotrophic

to methylotrophic methanogenesis (Berghuis et al., 2019).

Others suggested that hydrogen-dependent methylotrophic

methanogenesis was the ancestral form and hydrogenotrophic

methanogenesis developed later by phylogenetic analysis of

methanogens based on concatenated ribosomal proteins and

on functional proteins (Wang et al., 2021). Further studies on

the origin, evolution, and ecophysiology of methanogens will

be instrumental in understanding their adaptation across the

biosphere and their cross-boundary significance thereof.

Significance in the global carbon cycle

As part of the Earth’s ‘biogeochemical engine’, methanogens

transform annually 2% of the ∼70 Gt global net primary

production carbon into ∼1 Gt of methane, of which ∼60% is

oxidized by methane oxidizers. The remaining ∼0.4 Gt escapes

into the atmosphere, accounting for∼70% of the global methane

emission (Thauer et al., 2010). Notably, this well-established

model does not consider that biological methane emission

can also occur in non-methanogens which may encompass

all living organisms including plants, fungi, algae, bacteria,

archaea, and human cells (Günthel et al., 2019; Bižić et al., 2020;

Ernst et al., 2022). Non-methanogens do not produce methane

via methanogenesis where substrates are stoichiometrically

converted into methane for energy conservation. Instead, their

methane appears to be a metabolic byproduct likely derived

from methyl radicals induced by reactive oxygen species

under oxic conditions. Consequently, the observed methane

yield in non-methanogens is extremely unstable and varies

in the range of sub-attomole to micromole per gram of

dry cellular weight (Ernst et al., 2022), dwarfed by typical

methanogens yielding at the mole level (Thauer et al., 2008).

Moreover, methanogens predominate all the major methane-

emitting habitats such as ruminants and rice fields (see below).

Therefore, while it is of significance to develop a quantitative

global model for the elusive methane emissions from non-

methanogens, methanogens remain the most potent biological

methane producer and the top contributor to the global

methane emission.

Abiotic sources such as mining and combustion of fossil

fuel and biomass burning contribute to ∼30% of the global

methane emission (Conrad, 2009; Rosentreter et al., 2021). Since

the industrial revolution, the atmospheric methane has almost

tripled from ∼700 to an alarming ∼1900 ppb, contributing

substantially to global warming and climate change (Earth Org,

2022). The increase in abiotic emission is almost exclusively

human-induced, while a large share of that increase in biological

emission is also anthropogenic (Conrad, 2009). About 40%

of the biological methane come from methanogens in the

ruminants and rice fields for producing meat, milk, and rice,

and another ∼16% from methanogens in landfills and sewage

treatment facilities (Lyu et al., 2018b). As the world population

continues to grow, food consumption and waste disposal

will inevitably increase, fueling more methane emissions. This

creates a nexus of heated conflicts between global warming,

food and agriculture security, and waste management. To

add insult to injury, biological emission from at least certain

natural sources such as tropical wetlands may have entered

a positive feedback loop (Voosen, 2022). In these wetlands,
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elevated methane emission makes climate warmer and wetter

which in turn fuels more methane emission. This is of immense

concern, as wetlands are a top habitat for methanogens and the

single largest natural source of methane emission, responsible

for emitting ∼0.15 Gt of methane annually (Lyu et al., 2018b;

Rosentreter et al., 2021).

Significance in environmental
microbiome

Methanogens proliferate in natural and engineered habitats

limited in typical electron acceptors (O2, nitrate, or sulfate),

such as deep subsurface environments (Underwood et al.,

2022), intestinal tracts of animals and insects (Borrel et al.,

2020), and anaerobic digestors for residential and industrial

waste treatment (Vítězová et al., 2020; De Bernardini et al.,

2022). Here, methanogens act as a terminal electron sink

driving anaerobic oxidation of organic matter to completion.

Specifically, methanogens syntrophically couple their reductive

metabolism with bacterial partners’ oxidative metabolism via

indirect or direct electron transfers facilitated by H2/formate

(Schink, 1997), conductive mineral grains like iron-oxides or

activated carbon (Rotaru et al., 2018), or electron-carrying

cell surface molecules such as multiheme c-type cytochromes

(Rotaru et al., 2021).

A general assumption is that the thermodynamically more

efficient respiratory bacteria such as nitrate and sulfate reducers

would competitively displace methanogens in habitats where

typical electron acceptors are abundant. However, that is

not always the case. For example, in oxic and sulfate-rich

seagrass meadows, methylotrophic methanogens occupied an

unconventional niche via demethylation of compounds like

betaine, an osmolyte of seagrasses (Schorn et al., 2022). This

unconventional niche may even harbor novel methanogens or

methanogen-like archaea, evidenced by the presence of Ca.

Helarchaeota metagenomes encoding the mcrA (Schorn et al.,

2022). Other unconventional niches include steel structures

suffering corrosion (Lahme et al., 2021), and electrode materials

for bio-electricity generation (Aryal et al., 2022). These examples

highlight the robustness of methanogens in adapting to a

wide range of habitats. Regardless of the habitats, a key to

the proliferation of methanogens is to obtain electrons from

their surrounding microbiome. Further studies on this electron

exchange process will contribute to a functional assessment of

the overall electron flow in environmental microbiomes. This

has implications for methane mitigation, biofuel production,

and ecosystem stability.

Significance in human health and beyond

Methanogens in human health and disease have a

complicated story. While detection of gut-derived methane

in human breath was first studied in the 1970’s (Bond et al.,

1971), it was initially believed that methanogens and methane

production had no physiological consequence. However, it is

now known that methanogens colonize the gastrointestinal tract

commonly but when they do so more prominently, they can

be associated with human disease. The strongest relationship

is with constipation (Triantafyllou et al., 2014). The presence

of methane is not only associated with constipation, it is

proportional to the amount of methane and studies of intestinal

physiology point to methane as the cause and perhaps even as a

potential gasotransmitter (Pimentel et al., 2006; Wang, 2014).

Studies go on to identify the main human gut methanogen as

Methanobrevibacter spp. (Kim et al., 2012), and other notable

gut methanogens also belong to Methanosphaera spp. and

Methanomassiliicoccales (Hoegenauer et al., 2022).

While typically associated with constipation, gut

methanogens and methane is linked to other conditions

including obesity. In an elegant study using germ free animals,

methanogens promoted obesity when animals were co-

colonized with Bacteroides thetaiotamicron demonstrating that

methanogens are dependent on syntrophic bacteria (Samuel

et al., 2007). Work in obesity suggests that methanogens are

associated with higher body-mass-index in obesity and their

presence may also predict a less ideal outcome for weight loss

after bariatric surgery (Basseri et al., 2012; Mathur et al., 2016).

Beyond the gut, oral methanogens are strongly associated with

polymicrobial oral infections such as periodontitis (Lepp et al.,

2004; Horz and Conrads, 2011), while the gut methanogen

Methanobrevibacter smithii could produce 2-hydroxypyridine

that might drive Parkinson’s disease pathogenesis (Wilmes et al.,

2022). It is clear from these examples that it is important to

understand the roles of methanogens at least in the context of

nutrition, constipation, polymicrobial infection, and gut-brain

axis. Furthermore, basic principles established for human-

associated methanogens would have implications in the poorly

studied animal- and plant-associated methanogens. Together,

studies of these host-associated methanogens will help to

elucidate their roles in the health and disease of humans,

animals, and plants.

Significance in biotechnology

Besides their commercial applications in waste treatment

and biogas production, methanogens emerge also as cell

factories for sustainable biomanufacturing, owing to their

intriguing ecophysiological characteristics. Notable examples

include their high gas or hydrostatic pressure tolerance, ranging

from 300 kPa to 400 MPa (Ver Eecke et al., 2013; Taubner

et al., 2018; Pappenreiter et al., 2019); their wide range of

growth temperature, from approx. −4 to 122◦C (Taubner et al.,

2015); and their abilities to reduce CO2 with diverse gaseous

and volatile compounds such as H2, CO, formate, ethanol,

and secondary alcohols (Kurth et al., 2020). Moreover, certain
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methanogens are also fast growing (Abdel Azim et al., 2017;

Palabikyan et al.) and genetically tractable (Mondorf et al., 2012;

Nayak and Metcalf, 2017; Susanti et al., 2019; Lyu et al., 2020;

Fink et al., 2021; Bao et al., 2022; Li et al., 2022).

With these features, methanogens are poised to help drive

the next biotechnological boom through a gas fermentation

bioprocess. Of special interests to this process are CO2-

reducing microbes, which can be regarded as a carbon-

negative cell factory that enables carbon fixation, bioenergy

transition, and production of high-value bioproducts (Müller,

2019; Pfeifer et al., 2021; Liew et al., 2022). As a proof

of concept, methanogens capable of CO2-reduction have

already been engineered to produce geraniol (Lyu et al.,

2016), isoprene (Aldridge et al., 2021), acetate (Schone et al.,

2022), enzymes (Lyu et al., 2018a; Akinyemi et al., 2021),

and bioplastics (Thevasundaram et al., 2022) under laboratory

conditions. Additionally, several high performance and high

pressure gas fermenting methanogen cell factories have been

identified under bioreactor conditions (Mauerhofer et al.,

2018, 2021). Because the biomass of methanogens is already

rich in valuable compounds such as ether lipids (Baumann

et al., 2018, 2022), carboxylic acids, and complex coenzymes

(Lyu and Whitman, 2019), coupling synthetic biology with

bioprocess development holds high potential for advancing

methanogens into an economically feasible platform for

green biomanufacturing.

Discussion

Although invisible to the naked eye, many have

acknowledged the significant influence of methanogens

and their surrounding microbiome on humanity’s fate. This

is evidenced by the Global Methane Pledge endorsed by 120

nations aiming for a 30% cut in methane emissions by 2030

(The White House, 2021). However, beyond methanogenesis

and methane reduction, more research is needed to understand

the functional roles of methanogens in both free-living

and host-associated microbiomes. Bioengineering of and

bioprocess development for methanogens are also of high

importance, which echoes the unprecedented investments

in low-carbon biomanufacturing (The White House, 2022).

Ultimately, the convergence of these research areas would lead

to a more sustainable future by not only mitigating global

warming and climate change but tapping the potential of

methanogens in environmental, agricultural, industrial, and

medical biotechnology.
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