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Merozoite invasion of the erythrocytes in humans is a key step in the 

pathogenesis of malaria. The proteins involved in the merozoite invasion 

could be  potential targets for the development of malaria vaccines. Novel 

viral-vector-based malaria vaccine regimens developed are currently under 

clinical trials. Vesicular stomatitis virus (VSV) is a single-stranded negative-

strand RNA virus widely used as a vector for virus or cancer vaccines. Whether 

the VSV-based malarial vaccine is more effective than conventional vaccines 

based on proteins involved in parasitic invasion is still unclear. In this study, 

we  have used the reverse genetics system to construct recombinant VSVs 

(rVSVs) expressing apical membrane protein 1 (AMA1), rhoptry neck protein 

2 (RON2), and reticulocyte-binding protein homolog 5 (RH5), which are 

required for Plasmodium falciparum invasion. Our results showed that VSV-

based viral vaccines significantly increased Plasmodium-specific IgG levels 

and lymphocyte proliferation. Also, VSV-PyAMA1 and VSV-PyRON2sp prime-

boost regimens could significantly increase the levels of IL-2 and IFN-γ-

producing by CD4+ and CD8+ T cells and suppress invasion in vitro. The rVSV 

prime-protein boost regimen significantly increase Plasmodium antigen-

specific IgG levels in the serum of mice compared to the homologous rVSV 

prime-boost. Furthermore, the protective efficacy of rVSV prime protein boost 

immunization in the mice challenged with P. yoelii 17XL was better compared 

to traditional antigen immunization. Together, our results show that VSV 

vector is a novel strategy for malarial vaccine development and preventing the 

parasitic diseases.
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Introduction

In 2020, approximately 241 million new cases of malaria and 
627,000 malaria-related deaths were reported worldwide (WHO, 
2021). Plasmodium falciparum (P. falciparum) is a highly prevalent 
malarial parasite in sub-Saharan Africa and is a major cause of 
malaria-related death (WHO, 2021). In the past few decades, 
continuous efforts have been made to substantially reduce the 
incidences and deaths associated with malaria by using 
artemisinin-based combination therapy and long-lasting 
insecticide-treated nets (WHO, 2021). However, the primary 
cause for the failure to completely eradicate malaria is the 
Plasmodium parasite’s resistance to frontline drugs and tolerance 
of mosquitoes to insecticides (Haldar et al., 2018; Minetti et al., 
2020). Hence, there is a need to develop vaccines to prevent the 
occurrence and spread of malaria (Laurens, 2018; Stanisic and 
McCall, 2021). RTS,S/AS01 vaccine targets the circumsporozoite 
antigen of P. falciparum and is currently in pilot implementation 
in countries endemic to malaria since 2019. However, additional 
studies are required to evaluate the overall efficacy and safety 
profile of this vaccine (Laurens, 2020; Chatterjee and Cockburn, 
2021). Further, the development and optimization of malaria 
vaccine strategies are required.

The micronemes, rhoptries, and dense granules are apical 
organelles of the Plasmodium parasite, which play key roles in the 
erythrocyte invasion. The apical organelle proteins are considered 
potential candidates for anti-malarial vaccines (Salinas et  al., 
2019). P. falciparum reticulocyte binding-like protein RH5 
(PfRH5) is an apical organelle protein and a member of the 
erythrocyte ligands superfamily, which is essential for erythrocyte 
invasion (Bustamante et al., 2013; Douglas et al., 2014; Patarroyo 
et al., 2020). In cultured parasite lines, PfRH5 is typically processed 
by removing long disordered regions to generate a ~ 45 kDa 
fragment called PfRH5ΔNL. The fragment PfRH5ΔNL 
encompasses 140–526 aa residues but lacks 248–296 aa residues, 
which bind to basigin and play an inhibitory role in parasite 
invasion (Wright et al., 2014; Payne et al., 2017; Ragotte et al., 
2020; Moore et al., 2021). Therefore, PfRH5 could be a potential 
target for developing a vaccine against blood-stage Plasmodium 
infection (Ragotte et al., 2020). Furthermore, immunization with 
adenovirus/poxvirus vector-based protein-in-adjuvant RH5 has 
been observed to induce immune responses against P. falciparum 
(Douglas et al., 2015).

AMA1 is a micronemal protein of apicomplexan parasites. As 
a structurally conserved type I  integral membrane protein, 
PfAMA1 is necessary for the invasion of erythrocytes (Tyler et al., 
2011). The anti-PfAMA1 antibodies, which primarily recognize 
domain I (DI) and domain II (DII), have been observed to induces 

high levels of growth-inhibitory antibodies (Lalitha et al., 2004). 
In addition, Plasmodium rhoptry neck protein 2 (RON2) is a 
receptor for AMA1, and the AMA1-RON2 complex serves as a 
strong anchoring point to inhibit host erythrocyte invasion 
(Srinivasan et al., 2011; Patarroyo et al., 2020). In vivo studies have 
shown that mice immunized with an AMA1-RON2 peptide 
complex could provide complete protection against the lethal 
challenge of Plasmodium yoelii (P. yoelii) compared to 
immunization with AMA1 alone (Srinivasan et al., 2014). Further, 
antibodies generated in monkeys immunized with the AMA1-
RON2L complex demonstrated enhanced neutralizing potency 
(Srinivasan et  al., 2017). A previous study has shown that 
antibodies against the AMA1-RON2L/RH5 combination could 
consistently generate an additive growth-inhibitory effect against 
P. falciparum, as demonstrated using a growth inhibition assay 
(GIA) (Azasi et  al., 2020). Therefore, Plasmodium RH5 and 
AMA1-RON2 combinations serve as potential antigen targets for 
the development of novel malarial vaccines.

The vesicular stomatitis virus (VSV) belongs to the 
Rhabdoviridae family and is an enveloped, nonsegmented, single-
negative-strand RNA virus. In this study, we have used a reverse 
genetics system to construct recombinant VSVs (rVSVs) 
expressing a VSV nucleocapsid protein and two polymerase 
subunits to maintain the replicative ability of the virus (Lawson 
et al., 1995). In addition, the rVSVs expressing foreign antigens 
without altering its growth characteristics, which could benefit for 
vaccine development (Lawson et  al., 1995). VSV have been 
developed as a vaccine vector for multiple pathogens, including 
bacteria, DNA, and RNA viruses. This could aid in inducing 
robust cellular and humoral immune responses and confer 
protection against challenges in animal models (Humphreys and 
Sebastian, 2018; Fathi et  al., 2019). The Food and Drug 
Administration has approved the rVSVΔG-ZEBOV-GP vaccine 
for the prevention of Ebola virus disease (Choi et al., 2021). This 
indicates that VSV could serve as a robust vector backbone for 
vaccines and can be used against infectious diseases (Fathi et al., 
2019). Recently, various studies have used different VSV-based 
strategies to develop vaccines against SARS-CoV-2 and the 
protection effect mainly due to affecting the cell entry and 
inducing neutralizing antibodies (Case et  al., 2020; Yahalom-
Ronen et al., 2020). The VSV vector has a simple structure as well 
as genetic makeup and can induce high virus titer. It is mildly 
pathogenic, has a short immunization period, and has a good 
safety profile, thus making rVSV a desirable vector for vaccine 
development (Li et al., 2007; Fathi et al., 2019). However, VSV as 
a vector for malaria vaccine development has not been explored.

In the current study, we  first constructed a novel malaria 
vaccine using blood-stage antigens as immunogens and VSV as 
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the vector. Our results showed that the VSV-PfRH5ΔNL or 
VSV-PfAMA1345 + VSV-PfRON2sp immunization strategy in mice 
induced specific antibodies and polyfunctional T cell responses in 
mice. These candidate vaccines effectively suppressed the invasion 
of P. falciparum in vitro. Furthermore, our data showed that rVSVs 
(VSV-PyAMA1343 + VSV-PyRON2sp) prime and protein boost 
strategy stimulated T cells to secrete high levels of IFN-γ and IL-2 
compared to protein-only vaccination. However, no significant 
differences in parasitemia and survival rate of mice were observed 
between the two vaccination strategies. Interestingly, both 
vaccines could protect against P. yoelii challenge in mice. Our 
results showed that rVSVs expressing Plasmodium blood-stage 
antigens as candidates for malaria vaccines and extended the 
potential application of VSV vector vaccine.

Materials and methods

Cell culture

Vero cells are kidney epithelial cells derived from Cercopithecus 
aethiops, and BSR-T7 cells are kidney cells stably expressing T7 
polymerase derived from baby hamsters (Buchholz et al., 1999). 
Vero cells and BSR-T7 cells were cultured in Dulbecco’s Modified 
Eagle’s medium (DMEM) (Hyclone, UT, USA) containing 10% 
fetal bovine serum (Gibco, NY, USA) and supplemented with 1% 
penicillin–streptomycin solution (Gibco). All cells were 
maintained at 5% CO2 in a humidified incubator at 37°C.

Generation of rVSVs

Figure  1A shows the rVSVs containing AMA1345 
(PF3D7_1133400, Domain I, and Domain II, residues 98–442 aa), 
RH5ΔNL (PF3D7_0424100, residues 140–526 aa, but lacking 
residues 248–296 aa), and RON2sp (PF3D7_1452000, C-terminal 
region residues 2020–2059 aa) from P. falciparum 3D7. The second 
construct was rVSVs containing AMA1343 (PYYM_0916000, 
Domain I, and Domain II, residues 43–385 aa) and RON2sp 
(PYYM_1316500, residues 1839–1877 aa) from P. yoelii 17XL 
(Py17XL). The codon-optimized antigen-encoding sequences, 
encompassed the bases expressing Flag-tag, were synthesized with 
the base by Talen Biotech (Shanghai, China). The restriction 
enzymes Xho I  and Nhe I  were used to insert the sequences 
between the G and L genes of the VSV expression vector pXN2. 
The recombinant VSVs were recovered using a reverse genetic 
system (Publicover et al., 2004). Briefly, 3 × 106 Vero cells were 
seeded in 10 cm dishes and allowed to adhere overnight. Vero cells 
were infected with the vaccinia virus expressing the T7 RNA 
polymerase (Fuerst et  al., 1986) at a multiplicity of infection 
(MOI) of 2.5 in serum-free DMEM medium and incubated for 2 h. 
The cells were transfected using the Lipofectamine™ LTX Reagent 
(Invitrogen, CA, USA) with 10 μg of recombinant pXN2 and 4 μg 
of other plasmids encoding VSV nucleocapsid (N), 5 μg 

phosphoprotein (P), and 2 μg large polymerase subunit (L) 
according to manufacturer’s instruction. BSR-T7 cells supernatant 
was collected after two days of transfection and filtered using a 
0.22 μm filter (Millipore, MA, USA) to remove the vaccinia virus. 
This supernatant was used to infect new BSR-T7 cells. BSR-T7 
cytopathy was observed after two days of infection. The rVSVs 
released into the supernatant were collected and stored at 
−80°C. The rVSVs were replicated in Vero cells, and the virus titer 
was determined by 50% tissue culture infective dose(TCID50). 
The rVSVs titers obtained were within the range of 107 ~ 109 
PFU. The recombinant VSV-green fluorescent protein (VSV-GFP) 
was used as a control and cloned as described above. The 
packaging plasmids pXN2-GFP, pP, pL, and pN were gifted by 
Prof. John Rose (Yale University).

Expression, purification of proteins, and 
immunization

The gene fragments AMA1345, RON2sp, and RHΔNL from 
P. falciparum 3D7 and AMA1343 and RON2sp from Py17XL (same 
as VSV constructs) were synthesized by Talen Biotech (Shanghai, 
China). These gene fragments were cloned into the pET28a (+) 
vector after codon optimization. The cloned vector was sequenced 
to determine if the sequence assembly was accurate by DNA 
sequencing. The plasmids were transformed into Escherichia coli 
BL-21 cells to produce recombinant proteins with the His-Tag. The 
proteins were induced using 0.1 mM IPTG at 37°C and purified 
using Ni-sepharose beads (YouLong Biotech, Shanghai, China). 
The endotoxin from the recombinant proteins was removed prior 
to subsequent use. The purity of the proteins was >80% which was 
determined by YouLong Biotech. The PfRON2sp polypeptide was 
synthesized by YouLong Biotech (Shanghai, China), and the purity 
of the peptide was analyzed by high-performance liquid 
chromatography (HPLC). All antisera were raised in mice using 
standard protocol by YouLong Biotech (Shanghai, China).

SDS-PAGE and Western blotting

The purified recombinant proteins were separated and 
visualized using 10% sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) stained with Coomassie brilliant blue. 
The proteins were separated on 10% SDS-PAGE and transferred to 
polyvinylidene difluoride (PVDF) membranes (Amersham 
Biosciences, NJ, USA). The PVDF membranes were blocked with 
5% skim milk for 1 h at room temperature, followed by incubation 
with primary anti-His antibodies (Abcam, Cambridge, UK), or 
antisera at 4°C overnight. The membranes were washed with tris-
buffered saline containing 0.1% Tween 20 (TBST) and incubated 
with 1:5000 dilution horseradish peroxidase-conjugated secondary 
antibody (Southern Biotech, UAB, USA). The signal was detected 
with a chemiluminescence reagent (Thermo, MA, USA) using the 
ImageQuant LAS4000 system (GE Healthcare, Piscataway, NJ, 
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USA). BSR-T7 cells were transfected with recombinant VSVs 
(MOI = 10) for 12 h. The cells were lysed using RIPA buffer 
containing 1 mM PMSF (Sigma, MO, USA) for 30 min at 4°C. The 
lysate was boiled for 5 min, and the proteins were separated on 10% 
SDS-PAGE. Western blotting was performed using primary anti-flag 
antibodies (Abcam, Cambridge, UK) or anti-PfRON2sp antiserum.

Indirect immunofluorescence assay

BSR-T7 cells were infected with rVSVs at MOI = 10. After 12 h 
of infection, the cells were collected, and 1 × 105 cells were seeded 

in a micro-well plate. The cells were fixed with ice-cold acetone for 
5 min and blocked using 5% skim milk in phosphate buffer saline 
(PBS) at 4°C overnight. The cells were incubated with antisera 
from recombinant protein (anti-PfRH5 and anti-PfAMA1) or 
peptide (anti-PfRON2)-immunized mouse or rabbit at 1:200 
dilution in PBS for 1 h at 37°C. The cells were incubated with Alexa 
Fluor 546-conjugated goat anti-mouse IgG or Alexa Fluor 
488-conjugated goat anti-rabbit IgG secondary antibodies 
(Invitrogen) for 1 h at 37°C. The nuclei were stained with 4′, 
6-diamidino-2-phenylindole (DAPI; Invitrogen) at 37°C for 
30 min and mounted using a ProLong Gold antifade reagent 
(Invitrogen). The cells were visualized under oil immersion using 

A

B C

FIGURE 1

Construction, expression, and purification of recombinant PfAMA1345 and PfRH5ΔNL proteins, as well as synthesis and identification of PfRON2sp. 
(A) Schematic representation of PfAMA1, PfRH5, and PfRON2. The signal peptide is shown in purple, domain I/ domain II/ domain III (D I/D II/D III) 
in orange, the transmembrane domain in blue, the low complexity domain in green, and the coiled-coil domain in red. The genes encoding 
PfAMA1345 (98-442aa) and PfRH5ΔNL (140-526aa, lacking 248-296aa) were cloned for expression and purification. PfRON2sp (2020-2059aa) 
peptide was synthesized. The amino acid residue of PfAMA1345, PfRH5ΔNL, and PfRON2sp were shown in the right panel. (B) Expression and 
purification of PfAMA1345 and PfRH5ΔNL proteins. Codon-optimized PfAMA1345 and PfRH5ΔNL genes were cloned in the pET28a (+) vector, 
transformed in E. coli, and purified using Ni-sepharose beads. The purified PfAMA1345, PfRH5ΔNL, and PfRON2sp peptides were separated by SDS-
PAGE and stained using Coomassie brilliant blue (B) and immunoblotting with anti-His antibody for PfAMA1345, PfRH5ΔNL, and anti-RON2 for 
PfRON2sp (C).
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a confocal laser scanning FV200 microscope (Olympus, Tokyo, 
Japan) equipped with ×20 dry and ×60 oil objectives. The images 
were captured with FV10-ASW 3.0 viewer software and prepared 
for publication with Adobe Photoshop CS5 (Adobe Systems, CA, 
USA). For immunofluorescence on Pf parasite lysate, the Pf 3D7 
strain was purified using 63% Percoll. The cells were blocked with 
PBS containing 5% nonfat milk. The cells were incubated with 
rabbit anti-sera of AMA1, RH5, and RON2, which were used as 
primary antibodies, followed by incubation with Alexa Flour 
546-conjugated goat anti-rabbit IgG (Invitrogen). The cells were 
counterstained with DAPI and mounted using ProLong Gold 
antifade reagent. The parasites were visualized under oil immersion 
using a confocal laser scanning FV200 microscope (Olympus).

Animal vaccination

6–8 weeks old male BALB/c mice were obtained from 
Shanghai SLAC Laboratory Animal Co. Ltd. (Shanghai, China). 
The mice were maintained under “specific pathogen-free” 
conditions per the guidelines established by Jiangnan University 
Institutional Animal Care and Use Committee (Wuxi, China). 
To determine the immune response induced by rVSVs 
expressing P. falciparum antigens, BALB/c mice were vaccinated 
via intranasal routes with 106 plaque-forming units (PFU) 
VSV-PfRH5ΔNL or 5 × 105 PFU VSV-PfAMA1345 and 
VSV-PfRON2sp in 1:1 ratio (n = 5 mice/group). 25 μl of the 
vector was used to immunize the mice on day 0, and a booster 
dose was administered on day 14. The mice vaccinated with 
VSV-GFP and PBS were used as controls. For immunization 
with purified proteins, 50 μg PfRH5ΔNL proteins/mice or 25 μg 
PfAMA1345/mice +25 μg PfRON2sp proteins or peptides 
dissolved in 100 μl PBS with an equal volume of complete 
Freund’s adjuvant were injected intraperitoneally in mice. 
Freund’s incomplete adjuvant was administered on days 14 and 
28 to boost immunity. The injections were administered thrice 
at an interval of 2 weeks.

To investigate the protective efficacy of the vaccines against 
P.yoelii infection, 6–8 weeks old BALB/c mice were divided into 
five groups and vaccinated with rVSVs through the intranasal 
route. The proteins were injected intraperitoneally. Group 1 and 2 
mice were vaccinated with VSV-GFP and PBS, respectively, and 
served as controls. Group 3 mice (rVSVs boosting with rVSVs, 
rVSVs-rVSVs) were primarily immunized with 25 μl of 106 PFU 
VSV-PyAMA1343 + VSV-PyRON2sp in 1:1 ratio (5 × 105 PFU each, 
n = 5 mice/group) and booster dose was administered day 14. 
Group  4 mice (rVSVs boosting with double protein 
immunizations, rVSVs-P–P) were first immunized with 25 μl of 
106 PFU VSV-PyAMA1343 + VSV-PyRON2sp on day 0. The booster 
dose consisted of 50 μg PyAMA1343 + PyRON2sp proteins (25 μg 
each) dissolved in 100 μl PBS with an equal volume of incomplete 
Freund’s adjuvant administered on days 14 and 28. Group 5 mice 
(Triple protein immunization, P-P-P) were immunized with a total 
of 50 μg PyAMA1343 + PyRON2sp proteins (25 μg each) dissolved 

in 100 μl PBS with an equal volume of complete Freund’s adjuvant 
on day 0. The booster dose comprised the same proteins with 
incomplete Freund’s adjuvant and was administered on days 14 
and 28. Group 4 and 5 mice were vaccinated with VSV-GFP and 
PBS, respectively, and served as controls. All animal experiments 
were approved by the Animal Ethics Committee of Jiangnan 
University [JN. No. 20180615t0900930 (100)].

Enzyme-linked immunosorbent assay

To measure antigen-specific IgG responses, the serum was 
collected from the immunized mice from a tail vein on days 0, 7, 21, 
and 35 after first immunization with P. falciparum antigens 
combinations and day 35 after first immunization with P. yoelii 
antigens combinations. First, we coated with PfAMA1 and PfRON2 
protein (peptides) for VSV-PfAMA1345 + VSV-PfRON2sp and 
PfAMA1345 + PfRON2sp immunization and coated with PfRH5ΔNL 
protein for VSV-PfRH5ΔNL and PfRH5ΔNL immunization. 
Similarly, we  coated with PyAMA1343 and PyRON2sp protein 
(peptides) for VSV-PyAMA1343 + VSV-PyRON2sp and 
PyAMA1343 + PyRON2sp immunization. 96-well polystyrene 
microplates (Corning, NY, USA) were coated with the 
corresponding antigens from P. falciparum 3D7 [5 μg/ml of 
PfRH5ΔNL, PfAMA1345 + PfRON2sp proteins (peptides)], and 
P. yoelii [5 μg/ml of PyAMA1343 + PyRON2sp proteins (peptides)] 
with 100 μl/well coating buffer (Na2CO3, 50 mM, pH9.6) overnight 
at 4°C. The antigenic sites were blocked with 5% bovine serum 
albumin in PBS for 2 h at 37°C. 1:40 diluted serum was added to the 
antigen-coated plates and incubated for 2 h at 37°C, followed by 
incubation with HRP-conjugated goat anti-mouse IgG secondary 
antibody (diluted at 1:3000) for 1.5 h at 37°C. The signals were 
detected using a tetramethylbenzidine kit (Sigma, MO, USA) at 
room temperature, and the reactions were terminated using 2 M 
H2SO4. The optical density of the solution was measured at 450 nm 
using a Multiskan FC microplate reader (Thermo Fisher Scientific, 
MA, USA). One-way analysis of variance (AVONA) was used to test 
the differences.

MTT assay

BALB/c mice from all groups were euthanized on day 35 
post-first immunization, and the splenic lymphocytes were 
harvested. 100 μl of 5 × 105 cells/well splenic lymphocytes were 
seeded in 96-well plates. The cells were then stimulated with 5 μg/
ml PfRH5ΔNL or PfAMA1345 + PfRON2sp proteins for 72 h. 
Next, 50 μg thiazolyl blue tetrazolium bromide (MTT, Beyotime, 
Shanghai, China) was added to each well and incubated for 4 h. 
To terminate the reaction100 μl, dimethyl sulfoxide was added to 
each well and incubated for 10 min. The absorbance was 
measured at 570 nm using a Multiskan FC microplate reader 
(Thermo Fisher Scientific). One-way AVONA was used to test 
the differences.
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Flow cytometry

BALB/c mice from all groups were sacrificed on day 35 post-
first immunization. The splenocytes were isolated, and the red 
blood cells were harvested using ACK lysis for 3 min at room 
temperature. The cells were washed with PBS and centrifuged at 
1500 rpm for 5 min. Next, the cell pellet was resuspended in RPMI 
1640 complete medium, and 5 × 105 cells/100 μL/well were seeded 
in 96-well plates. The cells were stimulated with 5 μg/ml PfRH5ΔNL 
and PfAMA1345 + PfRON2sp proteins (peptides) for 24 h, followed 
by treatment with 50 ng/ml phorbol 12-myristate 13-acetate (PMA; 
Sigma), 1 μg/ml ionomycin (Sigma), and 1 μg/ml bafilomycin A 
(Sigma) for 6 h. Next, the cells were incubated with allophycocyanin-
conjugated-anti-mouse CD4 and fluorescein isothiocyanate-
conjugated-anti-mouse CD8 (Biolegend, CA, USA) for surface 
staining. The cells were fixed, permeabilized (BD Biosciences, NJ, 
USA), and stained with phycoerythrin (PE)-conjugated anti-IFN-γ 
and PE/Cy7-conjugated anti-IL-2 antibodies (Biolegend) to detect 
interferon (IFN)-γ and interleukin (IL)-2. The cells were sorted 
using a FASCanto II flow cytometer (BD Biosciences). The 
splenocytes of mice immunized with antigens derived from P.yoelii 
were isolated on day 10 post-immunization and stimulated with 
5 μg/ml PyAMA1343 + PyRON2sp proteins. The rest of the protocol 
is the same as those described above for flow cytometry. One-way 
AVONA was used to test the differences in cytokine levels in mice 
immunized with antigens derived from Pf. The student’s t-test was 
used to assess the differences in cytokine levels in mice immunized 
with antigens derived from Py.

Growth inhibition assay

Plasmodium falciparum 3D7 parasites were cultured in human 
O+ erythrocytes at 5% hematocrit. Next, the synchronized parasites 
were collected on day 35 after the first immunization for 24 h at 
37°C and incubated with antisera at 1:100, 1:1000, or 1:2000 
dilutions. The inhibition assays were carried out in 96-well plates 
for all strains and antibody concentrations, and the experiment was 
carried out in triplicates. The cultures were fixed, and parasitized 
erythrocytes in at least 30 high-power fields were counted using a 
microscope. A 5% sorbitol solution was used to synchronize the 
parasites into the ring stage and incubated in the presence of 
antiserum at the same concentrations indicated above for 24 h at 
37°C. The cells were fixed with 0.05% glutaraldehyde and stained 
using SYBR Green I nucleic acid gel stain (Invitrogen). 1 × 106 cells 
were used to perform inhibition assays using flow cytometry. The 
invasion inhibition efficiency was calculated as described previously 
(Lu et al., 2022). One-way AVONA was used to test the differences.

Plasmodium yoelii 17XL challenge

The mice were infected with Py17XL by administering 5 × 105 
parasitized erythrocytes (perythrocytes) on day 35 after the initial 

immunization. Blood smear microscopy was used to determine 
parasitemia every day post-infection. Briefly, a drop of blood was 
smeared on a glass slide, dried, and stained using a Wright’s-
Giemsa staining kit (JianCheng, Nanjing, China). The slides were 
observed under an oil microscope. Once all the PBS-treated mice 
had died, the surviving mice from the other groups were sacrificed 
on day 10 post-infection. The splenocytes from mice were 
harvested to analyze the cytokine secretion levels. The mice were 
observed for 10 days to determine the survival rates. According to 
the Animal ethics guidelines, humane endpoints were considered 
in all the in vivo experiments. Two-way AVONA was used to test 
the differences in parasitemia. Log-ranks (Mantel-Cox) tests were 
used to study the survival rates in mice.

Statistical analysis

GraphPad Prism software (version 5.0) was used to analyze 
data and create graphs. One-way or two-way ANOVA was used to 
perform statistical analysis. Log-ranks (Mantel-Cox) tests were 
used to study the survival rates in mice. p < 0.05 was considered 
statistically significant.

Results

Expression and purification of 
recombinant proteins using the 
Escherichia coli

A schematic diagram of PfAMA1345 (98–442 aa), PfRH5ΔNL 
(140–526 aa, lacking 248–296aa), and PfRON2sp (2020–2059 aa) 
is shown in Figure 1A. PfAMA1345 and PfRH5ΔNL proteins were 
expressed using the E. coli and purified. PfAMA1345 and 
PfRH5ΔNL proteins were separated using SDS-PAGE and stained 
with Coomassie brilliant blue (Figure 1B). The protein expression 
was determined using western blotting (Figure 1C). In addition, 
PfRON2sp was synthesized and identified by SDS-PAGE, western 
blotting (Figures 1B,C), and HPLC (Supplementary Figure S1).

Generation of recombinant 
VSV-PfAMA1345, VSV-PfRH5ΔNL, and 
VSV-PfRON2sp

The codon-optimized antigen-encoding sequences were 
cloned into the pXN2 vector at the G–L junction in the VSV 
genome using Xho I and Nhe I restriction enzymes (Figure 2A). 
The rVSVs were packaged using the reverse genetic system in 
BSR-T7 cells. The cytopathic effect caused by rVSVs indicated that 
rVSVs were successfully packaged in BSR-T7 cells. VSV-GFP 
served as a control (Supplementary Figure S2A). The expression 
of PfAMA1345 and PfRH5ΔNL proteins with Flag-tag was 
confirmed using western blot (Figure  2B). In addition, the 
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FIGURE 2

Construction and characterization of recombinant VSV-PfAMA1345, VSV-PfRH5ΔNL, and VSV-PfRON2sp. (A) Construction of VSV-PfAMA1345, VSV-
PfRH5ΔNL, VSV-PfRON2sp, and VSV-GFP. Gene encoding Plasmodium falciparum antigen PfAMA1345, PfRH5ΔNL, and PfRON2sp were cloned into 
VSV vector pXN2 between the G and L genes. The recombinant VSV pseudotype was cloned into pXN2-GFP, recombinant pXN2, and other 
plasmids encoding VSV nucleocapsid (N), phosphoprotein (P), and large polymerase subunit (L) to reconstruct the VSV genome. (B) BSR-T7 cells 
infected with rVSVs were harvested and analyzed 12 h post-infection by western blotting using anti-Flag antibody for VSV-PfAMA1345 and VSV-
PfRH5ΔNL and anti-PfRON2 antisera for VSV-PfRON2sp. BSR-T7 cells infected with VSV-GFP were used as the control. (C) Indirect 
immunofluorescence was performed to study PfAMA1345, PfRON2sp, and PfRH5ΔNL expression in BSR-T7 cells infected with recombinant VSVs 
12 h post-infection using anti-PfAMA1, PfRH5, or PfRON2sp antisera obtained from antigen-immunized mice. Non-transfected BSR-T7 cells were 
used as the control. The bar represents 10 mm.
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expression of PfRON2sp was determined using anti-PfRON2sp 
antiserum obtained from PfRON2sp peptide-immunized mice 
(Figure  2B). Immunofluorescence results demonstrated 
cytoplasmic localization of PfAMA1345, PfRH5ΔNL, and 
PfRON2sp proteins in rVSV-infected BSR-T7 cells (Figure 2C). 
Together, these results demonstrate that recombinant viruses like 
VSV-PfAMA1345, VSV-PfRH5ΔNL, and VSV-PfRON2sp were 
successfully cloned and packaged.

rVSVs containing PfAMA1345, PfRON2sp, 
and PfRH5ΔNL induce specific humoral 
and cellular immune responses

For assessing the humoral and cellular immune responses 
induced by rVSVs, the mice were immunized via the intranasal 
route with 106 PFU rVSVs or boosted with the same dose. The 
mice were injected with homologous fragments of the three 
proteins simultaneously via the intraperitoneal route, as 
indicated in the vaccination strategy (Figure 3A). The Pf-specific 
antibodies were detected in the serum of the mice. The results 
revealed a significant increase in serum IgG level in mice 
immunized with a single and booster dose of 
VSV-PfAMA1345 + VSV-PfRON2sp and VSV-PfRH5ΔNL 
regimens compared to mice immunized with VSV-GFP 
(Figure 3B). In the mice immunized with the combination of 
VSV-PfAMA1345 and VSV-PfRON2sp, the booster 
immunization could significantly induce the IgG responses 
compared to a single dose of vaccination (Figure  3B). 
Nevertheless, the traditional protein vaccine immunization 
could still produce a high level of antibody titers (Figure 3B). 
Furthermore, an increase in antibody levels induced by rVSVs 
peaked at 3 weeks post-immunization; however, a decrease in 
antibody levels was observed in the next weeks after a single 
dose of immunization. Interestingly, an increase in antibody 
levels was observed 5 weeks after booster immunization 
(Figure 3C). To determine the specificity of antibodies generated 
and detect antigens in parasite lysates of Pf, immunofluorescence 
was performed on the serum collected from VSV-Pf-immunized 
mice. The results confirmed that the antisera could recognize 
the corresponding antigens. PfAMA1 was localized in the 
microneme, RH5 was localized in rhoptry, and RON2 was 
localized in the rhoptry neck organelles of the parasite 
(Figure  3D). These results indicate that strengthening 
immunization could effectively enhance the production of 
serum IgG levels and extend the duration of 
antibody maintenance.

The proliferation of specific lymphocytes was assessed using 
the MTT assay to investigate antigen-specific T-cell immune 
responses induced by rVSV immunization in the spleen. In mice 
immunized with rVSV single and prime-boost vaccination, a 
significant increase in the proliferation of specific T cells was 
observed compared to mice immunized with VSV-GFP 
(Figure  4A). Additionally, a significant increase in IFN-γ and 

IL-2-secreting CD4+ T and CD8+ T cells were observed in mice 
immunized with VSV-PfAMA1345 + VSV-PfRON2sp using prime-
boost regimen compared with the VSV-GFP group (Figures 4B,C). 
An increase in IFN-γ and IL-2 secretion by CD4+ T cells was 
observed in mice immunized with a rVSV boosting regimen, 
compared to mice immunized with PfAMA1345 + PfRON2sp and 
PfRH5NLΔNL protein only vaccination. Together, these results 
demonstrate that VSV-based vaccines targeting P. falciparum 
invasion-related antigens could induce antigen-specific T-cell 
immune responses.

rVSV immunized mice antisera inhibits 
Plasmodium falciparum invasion in vitro

The GIA and invasion inhibition assay are widely used 
functional assays in blood-stage vaccine screening. Therefore, 
we  evaluated the inhibitory effects of antisera from mice 
immunized with different vaccination strategies on the invasion 
by the P. falciparum 3D7 strain in vitro. The microscopic 
examination and flow cytometry results showed that antisera 
derived from VSV-PfRH5ΔNL prime-boost immunization 
regimen could significantly inhibit the parasitic invasion 
compared to antiserum derived from mice immunized with 
VSV-GFP (Figures 5A–C). Furthermore, microscopic analysis 
revealed that VSV-PfRH5NLΔNL single vaccination and 
VSV-PfAMA1345 + VSV-PfRON2sp prime-boost immunization 
showed a significant inhibitory effect compared to VSV-GFP 
groups (Figure  5C). In addition, no significant difference in 
inhibition of invasion by P. falciparum 3D7 was observed on 
treatment with antisera derived from recombinant VSV 
immunization and homologous protein immunization 
(Figure 5C). These results indicated that single and prime-boost 
regimen of VSV-PfRH5ΔNL produced antibodies could inhibit 
parasite invasion.

VSV-PyAMA1343 and VSV-PyRON2sp 
vaccination protects against Plasmodium 
yoelii challenge

Primates are the only host of P. falciparum, and conducting 
in vivo experiments in primates could be challenging (Beignon 
et al., 2014). Therefore, P. yoelii, which can infect rodents and 
cause malaria, was used as an alternative model to evaluate the 
efficacy of VSV-based vaccines (Figure  6A). RH5 has no 
homologous protein in P. yoelii; therefore, we could not construct 
recombinant VSV for in vivo experiments. To investigate the 
protective effect of VSV-based malaria vaccines, a recombinant 
VSV vaccine was constructed expressing AMA1343 and RON2sp 
of P. yoelii, which are homologous fragments of PfAMA1345 and 
PfRON2sp. The cytopathic effect on BSR-T7 cells was observed 
under a microscope, indicating that VSV-PyAMA1343 and 
VSV-PyRON 
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FIGURE 3

Antigen-specific humoral immune responses induced by rVSVs. (A) Schematic representation of animal vaccination and detection strategies. 
BALB/c mice (n = 5 per group) were intranasally immunized with 25 μl of 106 PFU VSV-PfAMA1345 + VSV-PfRON2sp (VSV-PfAMA1345 and VSV-
PfRON2sp mixture) or VSV-PfRH5ΔNL as single or prime-boost vaccination. The mice were intraperitoneally injected with 50 μg 
PfAMA1345 + PfRON2sp and PfRH5ΔNL antigens three times at the indicated time points. The immune responses were detected at the indicated 
time points. (B) Specific IgG titers were analyzed on day 35 after primary immunization with rVSVs single and prime-boost or proteins by ELISA 
coated with 5 μg/ml PfAMA1345 + PfRON2spor PfRH5ΔNL proteins (peptides). (C) The trend of specific IgG antibodies in mice immunized with 

(Continued)
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2sp were successfully packaged (Supplementary Figure S2B). 
Furthermore, PyAMA1343 and PyRON2sp were expressed in 
recombinant VSVs and verified by western blotting (Figure 6B). 
These results confirm that recombinants VSV-PyAMA1343 and 
VSV-PyRON2sp were successfully generated.

Specific IgGs in serum and cytokine secretion by T cells 
derived from the spleen were investigated to evaluate the efficacy 
of VSV-PyAMA1343 and VSV-PyRON2sp hybrid immunization 
strategies. The results showed that immunization with rVSVs-P-P 
and P-P-P induce higher IgG levels in mice after 5 weeks of 
vaccination compared to mice immunized with rVSVs-rVSVs 
(Figure 6C). However, no significant difference between the IgG 
induced by in sera of mice immunized with rVSVs-P-P and P-P-P 
(Figure 6C). Furthermore, we evaluated if rVSVs-P-P and P-P-P 
could induce specific cellular immune responses on P. yoelii 
challenge. The results showed that immunization with rVSV-P-P 
could induce CD4+ and CD8+ T cells to secrete high levels of 
IFN-γ and IL-2 in mice compared to immunization with P-P-P 
(Figure 6D).

BALB/c mice from all the groups were infected with Py17XL 
by administering 5 × 105 perythrocytes intraperitoneally after 
35 days of initial immunization. This will allow us to evaluate 
whether immunization with rVSVs expressing PyAMA1343 and 
PyRON2sp could protect the mice against P. yoelii infection. The 
microscopic examination revealed that the percentage of 
perythrocytes was significantly lower in mice immunized with 
rVSVs-P-P and P-P-P compared to mice immunized with 
VSV-GFP and PBS, respectively (Figure 6E). On day 6 after the 
Py17XL challenge, the parasitemia was less than 30% in mice 
immunized with rVSVs-P-P and P-P-P regimens (Figure 6E). 
Moreover, all mock-immunized mice died within 8 days of 
P. yoelii challenge. The survival rate of rVSVs-P-P and P-P-P-
immunized mice was significantly higher compared to mice 
immunized with VSV-GFP and PBS, respectively (Figure 6F). 
Nevertheless, no significant differences in survival rate were 
observed between mice immunized with rVSVs-P-P and P-P-P 
(Figure 6F). These results indicate that the rVSVs-P-P and P-P-P 
immunization strategies protected mice against P. yoelii infection 
and the rVSV prime-protein boost immunization induced 
stronger polyfunctional T cell responses.

Discussion

An effective vaccine that successfully eliminates malaria 
could aid in improving public health. RTS,S/AS01 is the only 

licensed malaria vaccine undergoing phase III clinical trial. 
However, the vaccine has moderate efficacy and may not be able 
to eradicate malaria (Neafsey et al., 2015; Olotu et al., 2016; 
Tinto et  al., 2019; Arora et  al., 2021). Despite challenges 
associated with vaccine development, such as the genetic 
variation and antigenic diversity of parasites (Neafsey et al., 
2021), some strategies, including novel viral vectors as an 
antigenic delivery platform, have been used to enhance the 
protective efficacy of the malarial vaccines (Frimpong et al., 
2018; Humphreys and Sebastian, 2018). Further, vaccines with 
viral vector backbone are currently being used against Ebola 
virus disease in clinical settings (Choi et al., 2021). However, 
VSV has not been used for malaria vaccine development until 
now. In this study, we  have constructed three recombinant 
VSV-based vaccines expressing P. falciparum gene fragments 
like AMA1345, RON2sp, and RH5ΔNL. Our results show that 
these vaccines could induce high IgG levels and a strong 
antigen-specific T-cell immune response in immunized mice. 
Although single immunization with rVSVs could not induce a 
strong T cell response, the prime-booster rVSVs regimens 
inhibited invasion of P. falciparum in vitro. Interestingly, the 
protective efficacy of rVSVs prime-protein boost vaccination 
was comparable to protein immunization in mice against 
P. yoelii infection. Our results provide novel insights into the 
development of VSV-based vaccines for malaria.

Various studies have used viral vectors for malaria vaccine 
development (Ewer et al., 2015), including Modified Vaccinia 
Virus Ankara (MVA), chimpanzee adenovirus 63 (ChAd63) (Kim 
et al., 2020), Human Adenovirus Serotype 5 (AdHu5), adeno-
associated virus serotype 1 (AAV1) (Yusuf et  al., 2019), and 
AAV8 (Shahnaij et al., 2021). Furthermore, the ChAd63-MVA 
vaccine encoding multiple epitope string thrombospondin-
related adhesion proteins (ChAd63-MVA ME-TRAP) is currently 
undergoing clinical trials (Kimani et al., 2014; Hodgson et al., 
2015; Tiono et al., 2018). However, the protective efficacy of the 
vaccine is still unsatisfactory in infants in the high malaria-
endemic region (Tiono et  al., 2018). ChAd63 and MVA viral 
vector vaccines encoding Pfs25-IMX313 induce T-cell and B-cell 
responses in humans; nevertheless, the efficacy of antibodies in 
serum to reduce transmission is weak (de Graaf et al., 2021). To 
the best of our knowledge, our study is the first to use the rVSV 
vector to develop a malaria vaccine. Further, our results show that 
booster immunization with VSV-PfRH5ΔNL and 
VSV-PfAMA1345 + VSV-PfRON2sp could trigger high IgG levels 
in serum and promote the proliferation of specific lymphocytes 
(Figures 3B, 4A). Moreover, the vaccine can significantly inhibit 

Figure 3 (Continued)
VSV-PfAMA1345 + VSV-PfRON2sp or mice inoculated with VSV-PfRH5ΔNL on days 0, 7, 21, and 35 after primary immunization. (D) Subcellular 
localization of PfAMA1, PfRH5, and PfRON2 proteins. The parasite was labeled with antisera against PfAMA1345, PfRH5ΔNL, and PfRON2sp in the 
microneme, rhoptry, and rhoptry neck. PfGAMA was used as the marker of PfAMA1. The pre-immune serum was used as the negative control. 
Nuclei were stained with DAPI and appeared as blue in merged images. The bar represents 5 mm. DIC represents Differential Interference Contrast. 
One-way AVONA was used to perform statistical analysis. Error bars indicate standard deviation (SD). Ns, no significant, *p < 0.05, **p < 0.01, 
***p < 0.001 and **** p < 0.0001.
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FIGURE 4

Antigen-specific cellular immune responses induced by immunization with VSV-based vaccines. Spleen cells were collected from immunized 
mice after 5 weeks of immunization (A) Splenic lymphocyte proliferation was assessed using MTT assay after stimulation with 5 μg/ml 
PfAMA1345 + PfRON2sp or PfRH5ΔNL proteins (peptides). VSV-GFP was used as the control. (B,C) The frequency of CD4+ and CD8+ T cells secreting 
IFN-γ or IL-2 alone was determined by flow cytometry after stimulation with 5 μg/ml PfAMA1345 + PfRON2sp mixture or PfRH5ΔNL proteins 
(peptides) in vitro for 24 h. Treatment with PMA (50 ng/ml), ionomycin (1 μg/ml), and bafilomycin A (1 μg/ml) for 6 h. The frequency of CD4+ and 
CD8+ T cells secreting IFN-γ and IL-2 were determined by flow cytometry after the same stimulation with proteins (peptides) and treatment with 
PMA, ionomycin, and bafilomycin A. Error bars indicate SD. One-way AVONA was used to perform statistical analysis.*p < 0.05, **p < 0.01, 
***p < 0.001 and ****p < 0.0001.

https://doi.org/10.3389/fmicb.2022.1042414
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Sun et al. 10.3389/fmicb.2022.1042414

Frontiers in Microbiology 12 frontiersin.org

A

B

C

D

FIGURE 5

Inhibition efficiency of anti-PfAMA1345 + PfRON2sp and anti-PfRH5ΔNL antisera. (A) Parasitemia analysis were determined by flow cytometry using 
SYBR Green staining. P1 represents Plasmodium falciparum-infected erythrocytes, P2 represents ring forms after infecting erythrocytes with P. 
falciparum, P3 represents schizonts after infecting erythrocytes with P. falciparum. (B) Parasitemia analysis using microscopy. The bar represents 
10 mm. (C) Inhibition of parasite invasion was determined using flow cytometry (C) and microscopy (D). Error bars indicate SD. One-way AVONA 
was used to perform statistical analysis. Ns, no significant, *p < 0.05, **p < 0.01, and *** p < 0.001.
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FIGURE 6

Antigen-specific immune response and immune protection induced by rVSVs. (A) The workflow of vaccination, challenge, and detection 
procedure. BALB/c mice (n = 5 per group) were intranasally immunized with 25 μl of 106 PFU VSV-PyAMA1343 + VSV-PyRON2sp (VSV-PyAMA1343 and 
VSV-PyRON2sp mixture) through prime-boost vaccination. The mice were intraperitoneally injected with 50 μg PyAMA1345 + PyRON2sp antigens 
three times at the indicated time points. Mice were infected with Py17XL with 5 × 105 perythrocytes 35 days after first immunization. Immune 
responses were detected at the indicated time points. (B) Western blot analysis of expression of PyAMA1343 and PyRON2sp in BSR-T7 cells that 
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erythrocyte invasion (Figure  5C), thereby indicating that the 
rVSV vaccines targeting Plasmodium blood-stage antigens could 
induce functional immune responses.

The humoral immune response plays an important role in 
conferring protection and developing immunity against parasitic 
natural infections and vaccine inoculation (Boyle et  al., 2017; 
Gonzales et al., 2020). Our results are consistent with the previous 
studies, which used VSV as a vector for vaccine development, such 
as vaccines against COVID-19 (Case et al., 2020) and the Marburg 
virus (Marzi et al., 2018). These studies have demonstrated that 
immunizing mice with rVSVs expressing microbial antigens could 
induce high antibody titers. A consistent increase in IgG levels was 
observed in sera of mice immunized with prime-boost regimens 
such as VSV-PfRH5ΔNL or VSV-PfAMA1345 + VSV-PfRON2sp 
(Figure 3B). However, the antibody titers began to decline after 
3 weeks of a single dose of immunization (Figure 3C). To address 
the concerns regarding the loss of potency to generate rVSV-
induced functional antibodies after a single immunization, 
we have developed a new rVSV-P–P strategy. This strategy could 
induce higher antibody levels compared to the rVSVs-rVSVs 
regimen; in fact, this strategy can induce antibody levels 
comparable to those produced by the protein vaccine (Figure 6C).

T cells are indispensable for attenuating the replication of the 
Plasmodium parasite and reducing the severity of malaria (Kurup 
et  al., 2019). Furthermore, IFN-γ plays a critical role in the 
immune response against Plasmodium by inducing phagocytosis 
and activating macrophages to promote the killing of parasites and 
other phagocytic cells (Gbedande et al., 2020). Moreover, IFN-γ 
produced by CD4+T cells in response to Plasmodium antigen is 
IL-2 dependent (Kimura et al., 2010). A subunit malaria vaccine 
confers protection against sporozoite challenge by increasing the 
production of IL-2-secreting CD4+T cells (Chawla et al., 2019). 
Our results showed that single and booster immunization with 
VSV-PfAMA1345 + VSV-PfRON2sp significantly increases the 
levels of IFN-γ-and IL-2-secreting CD4+T cells compared to 
VSV-GFP immunization (Figure 4B). IFN-γ activates phagocytosis 
and killing of parasites, whereas parasitic invasion is primarily 
dependent on ligand-receptor interactions between parasites and 
erythrocytes (Patarroyo et  al., 2020). Although rVSV 
immunization could increase the secretion of cytokines, no 
significant differences in inhibiting parasitic invasion were 
observed between rVSV regimens and homologous protein 
immunization (Figure 5C). Studies have shown that MHC-I aids 
in recognition of P. vivax and P. yoelii-infected reticulocytes by 

cytotoxic CD8+T cells. Further, cytotoxic T-lymphocytes aid in 
parasite clearance during the blood stage of malaria (Junqueira 
et al., 2018; Hojo-Souza et al., 2020). Our results show a significant 
increase in levels of IFN-γ and IL-2-secreting CD8+ T cells in the 
spleen of mice immunized with VSV-PfAMA1345 + VSV-PfRON2sp 
prime-boost regimen (Figure 4C). This indicates that the VSV 
based vaccines could effectively induce CD8+ T cell-mediated 
immune response. A clinical study reported the involvement of 
cytotoxic CD8+ T cells in the pathogenesis of malarial 
complications in humans (Kaminski et al., 2019); however, the 
role and underlying mechanisms of CD8+ T cell responses in Pf 
blood-stage vaccine are unclear and should be explored further.

Although antigen and viral vector-based vaccines can induce 
CD4+ and CD8+T cell responses, T-cell responses induced by 
vaccines are influenced by multiple factors, including the type of 
viral vectors and antigens of specific pathogens (Sasso et al., 2020). 
For example, non-human primate adenoviruses (NHPAd) are 
vaccine vectors that can induce a high level of CD4+ and CD8+T 
cell responses (Sasso et  al., 2020). Whereas the proportion of 
IFN-γ and IL-2 double-positive CD8+T cells induced by the viral 
antigen coxsackievirus B3(CVB3)-VP1-VSV was less compared 
to CD4+ T cells (Wu et al., 2014). Our results showed that rVSV 
vaccines containing malaria antigens could induce both CD4+ and 
CD8+ T cells secreting IFN-γ and IL-2 (Figures 4B,C). Malaria 
vaccines with virus-like particles (Lee et  al., 2020) and AAV8 
(Shahnaij et al., 2021) as vectors can induce the production of high 
levels of memory T cells, which is an important defense 
mechanism against malaria. Whether rVSV vaccines could also 
induce the production of memory T cells should be investigated 
further (Krzych et al., 2014; Moncunill et al., 2017). Regarding 
immunization routes, the intranasal route is commonly used for 
administering VSV-based vaccines, such as STAR-CoV2 (Case 
et al., 2020). Intranasal inoculation of VSV vaccines could induce 
mucosal immunity in addition to humoral and cellular immunity 
(Wu et  al., 2014). A recent study has shown that sporozoites 
inoculated in the skin induce circulating IgA production, and IgA 
monoclonal antibody reduces the parasitemia in the liver of mice 
(Tan et al., 2021). Whether the rVSV malaria vaccine induces 
mucosal immunity should be further investigated.

The microbial infection model could be used to evaluate the 
effectiveness of vaccines and investigate the underlying 
mechanisms of protective immunity in vivo. Rodent parasites, 
including P. yoelii, have been widely used to study parasite biology 
and mammalian immune responses to malaria (De Niz and 

Figure 6 (Continued)
infected with recombinant VSV (MOI = 10 for 12 h) using anti-Flag antibodies. (C) Specific IgG titers were analyzed on day 35 after primary 
immunization with rVSVs single and prime-boost or proteins by ELISA coated with 5 μg/ml PyAMA1343 + PfRON2sp proteins. One-way AVONA was 
used (D) The frequency of CD4+ and CD8+ T cells secreting IFN-γ or IL-2 alone was determined by flow cytometry after stimulation with 5 μg/ml 
PyAMA1343 + PyRON2sp mixture proteins in vitro for 24 h. Treatment with PMA (50 ng/ml), ionomycin (1 μg/ml), and bafilomycin A (1 μg/ml) for 6 h. 
The frequency of CD4+ and CD8+ T cells secreting IFN-γ and IL-2 were determined by flow cytometry after the same stimulation with proteins and 
treatment with PMA, ionomycin, and bafilomycin A. One-way AVONA was used to test the differences. (E) Analysis of the infection rate of RBC via 
blood smears on days 3, 4, 5, and 6 post-challenge with Py17XL. Two-way AVONA was used to test the differences. (F) Survival rates of different 
immunization strategies in inoculated mice post-challenge. Log-rank (Mantel-Cox) tests were used to analyze mouse survival curves. Error bars 
indicate SD. Ns, no significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Heussler, 2018). To verify the effects of recombinant VSV 
vaccines in vivo, we explored the protective efficacy of different 
vaccine immunization strategies using Py17XL as a model. After 
the Py17XL challenge, a significant decrease in the parasitemia of 
mice immunized with rVSVs-P-P and P-P-P groups was observed 
(Figure 6E). A significant increase in the survival rate of the mice 
immunized with rVSVs-P-P and P-P-P groups was observed 
(Figure 6F). Further, a significant increase in IFN-γ and IL-2 
secretion by T cells was observed in mice immunized with 
rVSVs-P-P regimen compared to the mice immunized with P-P-P 
(Figure 6D). Together, these results indicate that VSV-prime and 
protein-boost regimen primarily induced high immunogenicity.

Notably, the rVSVs-rVSVs immunization strategy conferred 
weak protection, likely due to the complex immune mechanisms 
developed by protozoans. Further, the factors contributing to the 
reduced efficacy of homologous rVSV regimens include the 
presence of potential anti-vector antibodies. The pre-existing 
antibodies against VSV could probably reduce the efficacy of the 
homologous rVSV regimens. This could inhibit the replication of 
VSV vectors (Poetsch et al., 2019) and may impair the protective 
immunity against malaria. In addition, a previous study has 
suggested that the protective efficacy of the VSV-Ebola vaccine was 
dependent on antigen dose and immunization route (Jones et al., 
2007). Thus, investigating more candidate antigens and different 
routes of immunization for using VSV vaccines is necessary.

In conclusion, we  established a novel VSV-based vaccine 
approach for malaria and evaluated the vaccine efficacy. Our results 
demonstrated that rVSVs expressing AMA1345, RON2sp, and 
RH5ΔNL gene fragments of P. falciparum could effectively induce 
specific humoral and cellular immune responses as well as inhibit 
P. falciparum invasion. Furthermore, the rVSVs-P-P immunization 
strategy was more efficacy in protection against Py17XL infection. 
Our study demonstrated the use of VSV as a vaccine vector and 
provided new insights into effective malaria prevention.
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(A) PfRON2sp peptide was purified by chromatography and identified by 
mass spectrometry. The lower panel showed the peak time, area under 
the peak and protein concentration of the peak during PfRON2sp 
peptides were harvest.

SUPPLEMENTARY FIGURE S2

(A) Microscopic images of BSR-T7 cells infected with VSV-PfAMA1345, 
VSV-PfRH5ΔNL and VSV-PfRON2sp 24 h post-infection. Non-infected 
cells were used as mock control, and VSV-GFP-infected cells were used 
as positive control. The bar represents 20 mm. (B) Images of the 
microscope for cytopathic effect of BSR-T7 cells infected with VSV-
PyAMA1343 and VSV-PyRON2sp 24 h post-infection. Non-infected cells as 
mock control, and VSV-GFP-infected cells as positive control. The bar 
represents 20 mm.
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