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Quorum sensing (QS) is a bacterial cell-cell communication system with

genetically regulated mechanisms dependent on cell density. Canonical QS

systems in gram-negative bacteria possess an autoinducer synthase (LuxI

family) and a transcriptional regulator (LuxR family) that respond to an

autoinducer molecule. In Gram-positive bacteria, the LuxR transcriptional

regulators “solo” (not associated with a LuxI homolog) may play key roles in

intracellular communication. Arthrobacter sp. UMCV2 is an actinobacterium

that promotes plant growth by emitting the volatile organic compound N, N-

dimethylhexadecylamine (DMHDA). This compound induces iron deficiency,

defense responses in plants, and swarming motility in Arthrobacter sp.

UMCV2. In this study, the draft genome of this bacterium was assembled

and compared with the genomes of type strains of the Arthrobacter genus,

finding that it does not belong to any previously described species. Genome

explorations also revealed the presence of 16 luxR-related genes, but no

luxI homologs were discovered. Eleven of these sequences possess the

LuxR characteristic DNA-binding domain with a helix-turn-helix motif and

were designated as auto-inducer-related regulators (AirR). Four sequences

possessed LuxR analogous domains and were designated as auto-inducer

analogous regulators (AiaR). When swarming motility was induced with

DMHDA, eight airR genes and two aiaR genes were upregulated. These results
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indicate that the expression of multiple luxR-related genes is induced in

actinobacteria, such as Arthrobacter sp. UMCV2, by the action of the bacterial

biocompound DMHDA when QS behavior is produced.

KEYWORDS

actinobacteria, LuxR solos, domain approach, airR genes, aiaR genes, swarming
motility

Introduction

Quorum sensing (QS) is a bacterial cell-cell communication
system based on the production, release, and detection of
signal molecules called autoinducers (AI). QS regulates gene
expression in response to changes in bacterial population
density and produces coordinated behavior, based on
environmental conditions (Fuqua et al., 1994; Waters and
Bassler, 2005; Papenfort and Bassler, 2016). Cellular functions
regulated by QS include bioluminescence, antibiotic synthesis,
virulence factor production, biofilm induction, sporulation, and
swarming motility (Polkade et al., 2016; Bramhachari et al.,
2018).

The lux operon, responsible for bioluminescence in the
model organism Vibrio fischeri (Aliivibrio fischeri), is composed
of six structural genes (luxA-E and luxG) and the regulatory
genes luxI and luxR that encode homonym proteins (Fuqua
et al., 1996; Miller and Bassler, 2001). LuxI is an acyl-synthase
of approximately 190 amino acids that uses the acyl carrier
protein as a substrate to add the N-acyl group to L-homoserine
lactone derived from S-adenosylmethionine and produce acyl-
homoserine lactones (AHLs)., the main autoinducers in Gram-
negative bacteria. In other bacteria, LuxI homologs add different
N-acyl groups to l-homoserine lactones to produce different
AHLs (Fuqua et al., 1994; Zavilgelsky and Manukhov, 2001).
LuxR is a transcriptional regulator of approximately 250 amino
acids with characteristic modular architecture consisting of an
autoinducer binding domain in the N-terminal region (Shadel
et al., 1990; Slock et al., 1990) and a DNA-binding domain with
a helix-turn-helix (HTH) motif in the C-terminal region (Choi
and Greenberg, 1991; Fuqua et al., 1994).

Quorum sensing systems were identified in both Gram-
negative and Gram-positive bacteria (Hawver et al., 2016).
In Gram-negative bacteria, the more studied QS systems
are regulated by members of the AHL family (Swift et al.,
1994) which act as diffusible signal molecules, whose synthesis
is performed by members of the LuxI family. Above a
threshold concentration, these molecules bind to members of
the transcriptional regulator LuxR family (Fuqua et al., 1996).
The stable LuxR-AHL complex subsequently binds to the lux
box, a specific regulatory sequence in the promoter region, to
activate or suppress the transcription of its target genes (Fuqua
et al., 2001).

The analysis of different proteobacterial genomes has
revealed the wide presence of homologs of the transcriptional
regulator luxR without the presence of their corresponding
homolog LuxI, thus referred to as luxR orphans or “solos”
(Fuqua, 2006; Case et al., 2008; Patankar and González,
2009). These transcriptional regulators possess the same
structural organization as canonical LuxR (Bez et al., 2021).
Stenotrophomonas maltophilia encodes the transcriptional
regulator SmoR, a non-LuxI-associated LuxR homolog that
binds to oxo-C8-homoserine lactone produced by Pseudomonas
aeruginosa. SmoR regulates its operon transcription and
promotes swarming motility in S. matophilia (Martínez et al.,
2015). LuxR solo proteins are involved in inter-kingdom
signaling, responding to the signals produced by eukaryotes
(Venturi and Fuqua, 2013; Kan et al., 2017). A subfamily of
luxR is present exclusively in plant-associated bacterial (PAB)
responses to plant low-molecular weight compounds (González
et al., 2013; González and Venturi, 2013; Venturi and Fuqua,
2013). Structurally, PAB-LuxR is very similar to canonical LuxR
but differs in one or two of the aromatic or hydrophobic amino
acids normally conserved in the auto-inducer binding domain
of canonical LuxR proteins (González and Venturi, 2013). PAB-
LuxR proteins are present in phytopathogenic bacteria as XccR
of Xanthomonas campestris (Zhang et al., 2007), or OryR of
Xanthomonas oryzae (Ferluga and Venturi, 2009) and in plant
beneficial bacteria, such as Pseudomonas sp. GM79 (Coutinho
et al., 2018) and PsrR of Kosakonia sp. KO348 (Mosquito
et al., 2020). Other LuxR proteins respond to endogenous
molecules other than AHLs and are therefore not associated
with LuxI synthases. PluR, present in Photorhabdus luminescens,
responds to α-pyrones produced by the ketosynthase PpyS,
whereas PauR of the human pathogen Photorhabdus asymbiotica
senses dialkylresorcinols and cyclohexanediones produced by
the bacteria (Brachmann et al., 2013; Brameyer et al., 2014,
2015).

Other molecules, such as volatile organic compounds
(VOCs) produced by bacteria, act as signaling molecules
regulating processes that are frequently regulated by QS
(Schulz-Bohm et al., 2017; Xie et al., 2018). Resistance against
antibiotics, virulence, and motility are examples of behaviors
regulated by bacterial VOCs. The mechanisms involved in
the communication mediated by VOCs and the regulation
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of these behaviors are primarily unknown (Kim et al., 2013;
Enkataraman et al., 2014; Mansurova et al., 2018). The
participation of luxR transcriptional regulators is not discarded.

In gram-positive bacteria, QS systems are usually
regulated by auto-inducing peptides (Monnet and Gardan,
2015; Hawver et al., 2016; Aframian and Eldar, 2020),
released by specific transporters into the extracellular media,
where they are detected by a transmembrane receptor.
Autoinducer detection triggers a signaling pathway through
the successive phosphorylation/dephosphorylation of a sensing
transmembrane histidine kinase and a transcriptional regulator
that interacts with DNA and controls the QS response (Lyon
and Novick, 2004; Dufour and Lévesque, 2013; Monnet et al.,
2014). Although LuxR-LuxI systems are marginally present in
Gram-positive bacteria, luxR solo genes are frequently found in
that group of bacteria (Rajput and Kumar, 2017).

Arthrobacter sp. UMCV2 is an actinobacterium
(Gram-positive) isolated from the Zea mays rhizosphere
(Valencia-Cantero et al., 2007). This Arthrobacter
strain promotes plant growth through the emission of
VOCs, predominantly N, N-dimethylhexadecylamine
(dimethylhexadecylamine, DMHDA) (Velázquez-Becerra
et al., 2011). DMHDA emitted by Arthrobacter sp. UMCV2
accumulates in the extracellular medium and modulates the
growth and swarming motility of Arthrobacter sp. UMCV2 and
other bacteria (Velázquez-Becerra et al., 2013; Martínez-Cámara
et al., 2020). In this study, we analyzed the Arthrobacter sp.
UMCV2 genome, identified and classified the Arthrobacter sp.
UMCV2 luxR-related genes, and demonstrated the upregulation
of luxR-related genes by DMHDA when motility-associated
genes are induced.

Materials and methods

Biological material

The strain used in this study was Arthrobacter sp.
UMCV2 (Valencia-Cantero et al., 2007), deposited at the
Microorganism Collection of the National Center of Genetic
Resources (Boulevard de la Biodiversidad 400, Rancho las
Cruces, 47600 Tepatitlán de Morelos, Jalisco, México) having
accession number CM-CNRG-691. The bacterial strain was
routinely cultured on nutrient agar (NA) or nutrient broth (NB)
at 22◦C.

Chemicals

The chemical compound N, N-dimethylhexadecylamine
(DMHDA) was purchased from Sigma Aldrich (St Louis MO
USA, catalog 40460) and dissolved in ethanol. Equal volumes
of solvent were used in all the treatments.

Genomic DNA extraction

From a single colony culture, Arthrobacter sp. UMCV2
was inoculated into 50 ml of NB at 22◦C with agitation at
180 rpm for 2 days. Genomic DNA was extracted from 20 ml
of liquid culture using the Wizard Genomic DNA Purification
Kit (Promega, Madison, WI, USA, catalog A1120), according
to the manufacturer’s instructions. The quality and quantity
of genomic DNA were assessed by agarose gel electrophoresis
using a NanoDrop 1000 (Thermo Scientific, Rockford, IL, USA).

Genome sequencing, assembly,
annotation, and phylogenetic analysis

The genome of Arthrobacter sp. UMCV2 was sequenced
at the genomic sequencing facilities of LANGEBIO, Cinvestav-
IPN (Irapuato-México), using an Illumina MiSeq platform
generating three paired-end libraries, with coverage of 57x, the
original data were assembled into 461 contigs or scaffolds using
Newbler v2.9 software. To order the contigs, A. chlorophenolicus
A6 was used as the reference genome. A summary of the
project information is presented in Supplementary Table 1. The
genome sequence was submitted to the RAST web service (MG-
RAST 4.0.3)1 for automated annotation (Aziz et al., 2008). The
sequence was deposited in the GenBank database of the National
Center for Technology Information (NCBI)2 with accession
number (CP024915.1).

A genomic-based phylogenetic tree, a 16S-based
phylogenetic tree and digital DNA–DNA hybridization
(dDDH) were performed with the assembled genome using the
Type Strain Genome Server (TYGS) pipeline (Meier-Kolthoff
and Göker, 2019; Meier-Kolthoff et al., 2022).3 Trees were
inferred using FastME 2.1.6.1 from Genome BLAST Distance
Phylogeny (GBDP), distance formula d5 (Farris, 1972; Meier-
Kolthoff et al., 2013; Lefort et al., 2015), comparing the genomes
of Arthrobacter sp. UMCV2, with type strains deposited in the
DSMZ database.

In silico analysis of Arthrobacter sp.
UMCV2 luxR-related genes

In addition to NCBI gene notation, a complementary
search for luxR and corresponding LuxI homologous genes
was performed with RAST MG-RAST 4.0.3 (see above) and

1 https://www.mg-rast.org

2 https://www.ncbi.nlm.nih.gov/genbank

3 https://tygs.dsmz.de/
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PATRIC 3.6.12 (Brettin et al., 2015).4 Putative luxR homologs
were analyzed using InterPro v62.0 (Blum et al., 2021).5

Phylogenetic and molecular evolutionary analyses were
conducted using MEGA version X (Kumar et al., 2018)
using the maximum likelihood method and the Jones-Taylor-
Thornton (JTT) matrix-based model (Jones et al., 1992). The
bootstrap consensus tree inferred from 1,000 replicates was
used to represent the evolutionary history of the taxa analyzed
(Felsenstein, 1985). Initial trees for the heuristic search were
obtained automatically by applying the Neighbor-Join and
BioNJ algorithms to a matrix of pairwise distances estimated
using the JTT model followed by selecting the topology with a
superior log-likelihood value. The analysis involved 44 amino
acid sequences. There were 1,098 positions in the final dataset.

Bacterial motility assay

The effect of DMHDA on bacterial motility was tested on
NA plates with DMHDA at concentrations of 0, 0.1, 0.2, 3.0,
4.0, 5.0, and 6.0 µM. Subsequently, 5 µl of bacterial suspension
(OD595 = 1) was added to each plate center. The swarming
motility was assessed following the protocols described by
Martínez-Cámara et al. (2020) with a few modifications, such
as petri dishes prepared with NB plus 0.5% agar and incubated
for 120 h at 23◦C. The motility diameter was measured using
a digital Vernier caliper (Mitutoyo Corporation, Tokyo Japan,
catalog 500-196-30) and the results were reported in centimeters
of bacterial extension on the media. Three independent assays,
each with four replicates, were performed.

Gene expression analysis

RNA extraction was performed for three biological
replicates of Arthrobacter sp. UMCV2 from swarming motility,
as previously described (Martínez-Cámara et al., 2020). RNA
was extracted using TRI reagent (Sigma Aldrich, St Louis, MO,
USA, catalog T9424) and treated with DNase I to remove the
remaining genomic DNA. The integrity of the RNA was assessed
by visualization on 1.2% agarose gel. The final concentration
was estimated using NanoDrop (Thermo Scientific, Rockford,
IL, USA). cDNA synthesis was performed using 500 ng RNA
template and SuperScript First-Strand Synthesis System (Life
Technologies/Gibco-BRL CA, USA). Reverse transcription
quantitative real-time PCRs (RT-qPCR) were performed on an
ABI StepOneTM System thermocycler (Applied Biosystems;
Foster City, CA, USA). Oligonucleotides were designed (using
the NCBI for Biotechnology Information primer design tool)
to amplify airR1-12 and aiaR1-4 (Supplementary Table 2).

4 https://www.patricbrc.org

5 https://www.ebi.ac.uk/interpro/search/sequence

Oligonucleotides to amplify fliC, flgL, fliM, motA, and recA
have been previously reported (Martínez-Cámara et al., 2020),
recA was used as the normalizer gene. RT-qPCR analysis was
performed using the SYBR-Green kit (Applied Biosystems,
Foster City, CA, USA, catalog 4385612) and the following
protocol: 5 µl SYBR Green, 1 µl direct and inverse oligo, 2 µl
cDNA, and 1 µl water. Samples were run using the following
protocol: 95◦C for 5 min, 40 cycles of 95◦C for 15 s, and 60◦C
for 1 min. To prepare the melting curve, samples were run
at 95◦C for 15 s and 60◦C for 1 min, and the temperature
was subsequently raised to 95◦C at a rate of 0.3◦C/s. Gene
expression was evaluated using the comparative 11 Ct method
according to Livak and Schmittgen (2001).

Statistical analysis

The results were analyzed using Student’s t-test or analysis
of variance and Duncan’s multiple range test for multiple
(p ≤ 0.05).

Results

Genome properties

The Arthrobacter sp. UMCV2 assembled genome sequence
consists of a single circular chromosome of 3,435,243 bp with
a 69.3% of GC content (Figure 1). Automatic gene functional
annotation predicted 3,114 genes, consisting of 3,067 protein-
coding and 47 RNA genes (Table 1). The gene distribution had
representatives of 23 “Clusters of Orthologous Groups” (COGs)
functional categories (Supplementary Table 3). The genome
size of Arthrobacter sp. UMCV2 is similar to the genome
size of closed-related type strains of Arthrobacter species
deposited in the DSMZ database (Supplementary Table 4)
that range between 3.17 Gb of A. echini and 4.42 Gb of
A. sedimenti. Genomic-based and 16S-based phylogenetic trees
were generated using the complete genome sequences. 16S
genes of the closed-related bacterial type strain deposited in the
DSMZ database were detected using the pipeline of the SYGS
server (Meier-Kolthoff and Göker, 2019). Both phylogenetic
trees presented a clear affiliation of the UMCV2 strain with
the Arthrobacter genus. However, further genomic (Figure 2A)
or 16S (Figure 2B) phylogenetic trees did not conclusively
supported a taxonomic position at the species level. The 16S-
based phylogenetic tree showed clustering of the Arthrobacter
sp. UMCV2 strain with the bacterial species A. echini, A. bussei,
A. agilis, A. cheniae, A. ruber, and A. sedimenti. The genomic-
based phylogenetic tree retains the same type of clustering and
clearly shows a divergence of the UMCV2 branch from the other
Arthrobacter species.
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FIGURE 1

Graphical map of the Arthrobacter sp. UMCV2. From outside to the center: genes on the forward strand (red), genes on the reverse strand
(orange), RNA genes (pink tRNAs, purple rRNAs), the guanine-cytosine (GC) ratio is in light green and gray. The inner circle shows the GC skew
in blue and green. Gaps between individual contigs are not presented. The order of the contigs was assumed to correspond to a reference
genome. Contigs not matching the reference genome were ordered from the largest to the smallest. Ordered contigs were joined with 50 bp of
“N.” This figure was drawn with the DNA plotter software.

Relatednesses between the genomes of Arthrobacter sp.
UMCV2 and closed-related type strains of Arthrobacter species
were calculated as dDDH percentages. Concordantly with the
phylogenetic tree topologies, the highest dDDH values of
Arthrobacter sp. UMCV2 were produced with cluster members
of type strains such as A. bussei, A. agilis, A. cheniae, A. ruber,
and A. sedimenti, ranging from 40.3% (with A. ruber) to 36.2%

TABLE 1 Arthrobacter sp. UMCV2 genome statistics.

Attribute Value % of total

Genome size (bp) 3,435,243 100

DNA coding region (bp) 2,735,154 79.62

DNA G + C content (bp) 1,902,572 69.3

DNA scaffolds 461 100

Total genes 3,114 100

Protein coding genes 3,067 98.49

RNA genes 47 1.51

Genes assigned to COGs 1,884 60.50

Genes with Pfam domains 1,930 61.95

(with A. bussei). Similar dDDH values were produced among
type strains of the same cluster ranging from 47% (A. agilis to
A. bussei) to 31.4% (A. agilis to A. sedimenti) (Table 2). These
results strongly suggest that Arthrobacter sp. UMCV2 belongs
to a species not yet described within the genus Arthrobacter.

Identification of characteristic LuxR
domains

Analysis of the Arthrobacter sp. UMCV2 genome was
performed with the MG-RAST and PATRIC servers and
18 putative luxR homolog sequences, but no LuxI putative
homologs were identified. Protein sequences corresponding to
the putative luxR homologs were examined to identify LuxR-
characteristic domains using the InterPro server. Aliivibrio
fischeri LuxR (Fuqua et al., 1994) and Pseudomonas sp. GM79
PipR (Coutinho et al., 2018) were included in the analysis
as references for canonical experimentally characterized
LuxR proteins, Streptomyces purpurogeneiscleroticus NRRL
B-2952 LuxR (Rajput and Kumar, 2017) as a canonical
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FIGURE 2

Arthrobacter sp. UMCV2 phylogenetic tree based on the genomic (A) and (B) 16S rRNA gene sequences. The trees were inferred from genome
BLAST distance phylogeny (GBDP) distances. The branch lengths were scaled in terms of GBDP distance formula d5. The numbers above
branches are GBDP pseudo-bootstrap support values >60% from 100 replications, with average branch support of 77.4% for genomic tree and
57.2% for 16S rRNA gene sequences tree. The trees were rooted at the midpoint. Species in blue were mentioned as not validly published by the
DSMZ server https://lpsn.dsmz.de/ at the time of writing.
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in silico characterized LuxR protein from actinobacteria,
and Streptomyces SN-593 RevU (Panthee et al., 2020) as
an experimentally characterized LuxR-related protein from
actinobacteria. All four reference proteins presented a
characteristic DNA-binding domain at the C-terminal end
(IPR000792). The canonical LuxR proteins displayed an
autoinducer binding domain (IPR005143) at the N-terminal
end, whereas RevU (LAL-LuxR protein) Streptomyces SN-
593 exhibited an alternative ATPase domain (IPR041664)
(Figure 3). Interestingly, the length of the RevU protein was
significantly longer (923 a.a.) than the canonical LuxR (250
a.a.).

Further, we analyzed 18 Arthrobacter sp. UMCV2 putative
LuxR proteins for conserved domains (Figure 3). Eleven
sequences showed the characteristic DNA-binding domain
IPR000792 at the C-terminal end (designated as airR
sequences), four showed the IPR001867 domain described
as a DNA-binding domain type OmpR/PhoB (designated
as aiaR sequences), one sequence contained the IPR005561
domain described as transcription antitermination regulator,
and two sequences did not show conserved C-terminal domains
(Figure 2). At the N-terminal end, 10 sequences matched
the IPR001789 domain, described as a signal transduction
response regulator receiver domain, three sequences matched
the ATPase domains (IPR041664 or IPR003593), and three
sequences did not show conserved domains at the N-terminal
end. The putative LuxR homologs in Arthrobacter sp. UMCV2
did not contain the canonical LuxR autoinducer-binding
domain IPR005143. Only one sequence earlier recognized
as a putative LuxR homolog sequence showed the unrelated
domain IPR011051 (RmlC-like cupin domain superfamily).
Similar to RevU from Streptomyces SN-593, five sequences
were significantly longer (489–926 a.a.) than canonical LuxR
sequences. Sequences CVO76_16125 and CVO76_05180 with
the domains IPR011051 and IPR005561, respectively, were
discarded as LuxR-related since their domains are discordant
with LuxR proteins (Figure 3).

Evolutionary relationships of
LuxR-related sequences

LuxR-related sequences were used to construct a
phylogenetic tree to observe their association with previously
experimentally or in silico characterized LuxR-related sequences
(Figure 4 and Supplementary Table 6). All Actinobacteria
LuxR-related proteins clustered together with the 16 putative
LuxR homologs from Arthrobacter sp. UMCV2 (AirR and
AiaR sequences), three LuxR or LuxR-related sequences from
Streptomyces and Streptosporangium, and three luxR or luxR-
related sequences from A. terricola or Arthrobacter species.
Whereas all the other analyzed luxR-related sequences from
Proteobacteria clustered together with LuxR of A. fischeri

(Figure 4). Among the LuxR-related sequences of Arthrobacter
sp. UMCV2, three principal clusters were observed. Cluster
I grouped proteins of approximately 218–439 a.a. with the
concurrence of the domains IPR001789 and IPR000792 (six
proteins) or the IPR000792 domain alone (two proteins).
LuxR from Arthrobacter terricola (previously characterized
in silico) belonged to this cluster (Figure 4). Cluster II grouped
proteins with the domain IPR001867 (the four AiaR proteins)
and Cluster III grouped larger proteins (507–916 a.a.) with
the LuxR-related proteins of Streptomyces, Streptosporangium,
and Arthrobacter multispecies (Figures 3, 4). We included
sequences of LuxR associated with LuxI and LuxR solos,
although no preferential clustering between luxR solo genes was
observed. These results indicate that the 16 analyzed sequences
from Arthrobacter sp. UMCV2 belongs to the Actinobacteria
group of LuxR-related sequences separate from the canonical
LuxR from Proteobacteria, suggesting early divergence between
these transcriptional regulators in both phyla.

N, N,-dimethylhexadecylamine modulates
Arthrobacter sp. UMCV2 swarming
motility

Arthrobacter sp. UMCV2 was placed in NB plates
supplemented with DMHDA 1.0–6.0 µM to observe the
bacterial swarming motility. After 72 h, Arthrobacter sp.
UMCV2 showed an enhancement of 66, 61, and 59% in
swarming motility on plates at 1.0, 2.0, and 3.0 µM DMHDA,
respectively, compared with controls although, a drastic motility
decrease was observed on plates with 4.0 and 5.0 µM DMHDA
(Figure 5). These results show that DMHDA modulates
swarming motility, a behavior usually associated with quorum
sensing signaling that involves the bacterial flagellar apparatus.

N, N,-dimethylhexadecylamine
modulates the expression of
auto-inducer related regulators and
auto-inducer analog regulator genes

The expression of airR and aiaR genes, together with
the flagellar genes flgL, fliC, and motA, were quantified in
bacterial growth with 1.0 µM DMHDA and compared with
the respective controls (0.0 µM). Eigth of the airR and two
of the aiaR genes exhibited statistically significant induction.
The overexpression of airR5 was 55-fold, followed by airR3
and airR7, over expressing by 25-fold. The overexpression of
airR1, airR2, airR6, and aiaR3 ranged between 14- and 6-fold.
The overexpression of airR11, aiaR2, and aiaR3 ranged between
4- and 1.6-fold (Figure 6A). With the increase in swarming
motility, the expression of flagellar genes flgL, fliC, and motA
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FIGURE 3

Conserved domains found in the model LuxR proteins and LuxR-related sequences from Arthrobacter sp. UMCV2. LuxR-related sequences
were localized to the genome of Arthrobacter sp. UMCV2 employs the informatic tools MG-RAST 4.0.3 and PATRIC 3.6.12. Domains were
localized in the protein sequences employing the informatics tool InterPro v62.0. Proteins are represented with a blue line and their lengths are
compared with the upper scale. Conserved domains are localized in the proteins with colored boxes. Protein names, the strain of origin, and
national center for technology information (NCBI) locus are indicated in the left column.
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FIGURE 4

Evolutionary relationships among Arthrobacter LuxR-related sequences. The evolutionary relationship was inferred using the Maximum
Likelihood method and jones-taylor-thornton (JTT) matrix-based model. The bootstrap consensus tree was inferred from 1,000 replicates. Blue
sequences have been experimentally characterized, red denotes sequences informatically characterized and black is Arthrobacter sp. UMCV2
sequences established in this work. Cluster I (light blue, sequences with domains IPR001789, and IPR000792 or IPR000792 alone), Cluster II
(purple, sequences with domains IPR001789, and IPR001867), and Cluster III (green, larger proteins) are emphasized. Accession numbers of
employed sequences are provided in Supplementary Table 5. LuxR solos are marked with *.

also increased, showing an overexpression ranging from 8- to 4-
fold (Figure 6B). These results showed that DMHDA modulates
the expression of different airR and aiaR genes at different
magnitudes, simultaneous with flagellar genes.

Discussion

Arthrobacter sp. UMCV2 is a plant growth-promoting
rhizobacterium that was isolated while screening for iron-
reducing bacteria, capable of supplying ferrous iron to plants
in alkaline soils where this metal is limited to plant growth

and development (Valencia-Cantero et al., 2007). This beneficial
bacterium also promotes plant growth through the emission
of the volatile organic compound DMHDA (Velázquez-Becerra
et al., 2011). DMHDA acts as an inter-kingdom signaling
molecule interacting with the plant cytokinin signaling pathway
involving the AHK2 receptor (Vázquez-Chimalhua et al., 2021a)
and producing in this way, a cross-talk with the jasmonic-acid
pathway (Vázquez-Chimalhua et al., 2019). Plant organogenesis
and growth are modulated by DMHDA through modifying the
balance between stem cell niche and Jasmonic acid-dependent
gene expression (Vázquez-Chimalhua et al., 2021b). DMHDA
also induces expression of genes involved in plant systemic

Frontiers in Microbiology 10 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1040932
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1040932 October 25, 2022 Time: 13:41 # 11

Chávez-Moctezuma et al. 10.3389/fmicb.2022.1040932

FIGURE 5

The effect of dimethylhexadecylamine (DMHDA) on
Arthrobacter sp. UMCV2 swarming motility. Nutrient agar plates
were prepared with various concentrations of DMHDA and
inoculated with 5 µl bacterial suspension. After 72 h of culturing,
colony diameters were measured. Bars, and error bars on panel
(A), represent the mean ± standard error values, respectively, for
four biological replicates. Letters indicate means that differ
significantly, following Duncan’s multiple range test (p < 0.05).
Panel (B) shows representative images of the treatments.

defense mechanisms and Fe-acquisition strategies, which are
suggested to enhance photosynthesis and biomass production
(Orozco-Mosqueda et al., 2013; Castulo-Rubio et al., 2015;
Montejano-Ramírez et al., 2020). Previous results showed
that Arthrobacter sp. UMCV2 adopts an endophytic lifecycle
and colonizes plant tissues, providing benefits to host plants
(Montejano-Ramírez et al., 2018; Hernández-Soberano et al.,
2020).

Arthrobacter sp. UMCV2 genome and
taxonomy

Arthrobacter sp. UMCV2 was initially identified as
Arthrobacter agilis since its 16S rRNA sequences showed a
percent identity above 99.5% (Valencia-Cantero et al., 2007).
However, the 16S rRNA sequences of A. echini (Lee et al.,
2016), A. ruber (Liu et al., 2018), A. bussei (Flegler et al.,
2020), A. sedimenti (Lin et al., 2020), and A. cheniae (Yang
et al., 2021) also share a percent identity above 99.5% with
the 16S rRNA gene of Arthrobacter sp. UMCV2. In this study,
the TYGS pipeline was employed to produce phylogenetic
trees of the type strains of the species most closely related to
Arthrobacter sp. UMCV2 on 16S rRNA and genomic terms

(Figure 2), to determine the specific taxonomic position of
Arthrobacter sp. UMCV2. Although our results place UMCV2
in the Arthrobacter genus, Arthrobacter sp. UMCV2 is not
included in the A. agilis branch or in branches together with
other type strains. Then, we used a dDDH approach to calculate
the relatedness between the genomes of Arthrobacter sp.
UMCV2 and type strains of closely related species. dDDH is
a recognized standard procedure for genome sequence-based
species delimitation (Meier-Kolthoff et al., 2013). Thus, we
found that the higher dDDH values were shared between
Arthrobacter sp. UMCV2 and a cluster of type strains including
A. bussei, A. agilis, A. cheniae, A. ruber, and A. sedimenti,
ranging from 40.3 to 36.2%, which are clearly below the 70%,
which is generally accepted as the species boundary (Chun
et al., 2018); concordantly, dDDH values detected among type
strains were similarly low (Table 2). Therefore, we conclude
that Arthrobacter sp. UMCV2 might be a new species that can
eventually be described.

The Arthrobacter sp. UMCV2 genome has a typical size
for the Arthrobacter genus. The genes involved in survival and
colonization, such as SOD, showed aptitudes for colonization of
roots (Kim et al., 2000; Alquéres et al., 2013), in addition to the
operon ars, which confers resistance to arsenic and arsenate, a
toxic metalloid (Wang et al., 2009). The presence of fhuDCB
genes can be important in siderophore piracy (Koster, 1991;
Galet et al., 2015), which is important for competition in soil.

Arthrobacter sp. UMCV2 possesses
luxR-related genes

The presence of luxR annotated genes was particularly
interesting since luxR genes are involved in the QS process.
Previously, we found that DMHDA induces swarming motility
in Arthrobacter sp. UMCV2, frequently recognized as a behavior
regulated by QS (Martínez-Cámara et al., 2020). The canonical
luxI-luxR system is typically the central component of QS
in Gram-negative bacteria (Whiteley et al., 2017), but is
exceptionally present in Gram-positive bacteria (Rajput and
Kumar, 2017). Additionally, luxI homologs in the Arthrobacter
sp. UMCV2 genome were not found. In contrast, 18 predicted
protein sequences homologous to luxR were localized.

We used a domain-based approach to analyze putative
luxR-related proteins and compared them with four well-
characterized LuxR proteins. We included the first protein
described as LuxR, originally found in A. fischeri (Fuqua et al.,
1994), as a reference protein. PipR from Pseudomonas sp. GM79
was included as a reference LuxR since it is a well-experimentally
characterized protein belonging to the LuxR protein family that
responds to the plant derivative compound N-(2-hydroxyethyl)-
2-(2-hydroxyethylamino) acetamide through a periplasmic
binding protein. PipR has been included in the subfamily
PAB that integrates LuxR proteins that respond to low-weight
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FIGURE 6

The relative expression of auto-inducer-related regulators (airR), auto-inducer analog regulator (aiaR), and motility-involved genes in
Arthrobacter sp. UMCV2 induced with DMHDA. Arthrobacter sp. UMCV2 was induced with dimethylhexadecylamine (DMHDA). After 72 h,
relative expression of airR, aiaR genes panel (A), and motility-involved genes panel (B) were determined. Values represent mean ± standard
errors of relative expression of three biological replicates in reference to control (with bars). Asterisks indicate significant differences between
treatments calculated using Student’s t-test (p < 0.05). Genes belonging to Cluster I, II, and III of Figure 4 are colored in light blue, purple, and
green, respectively.

plant molecules (Mosquito et al., 2020; Xu, 2020). The LuxR
protein from Streptomyces purpurogeneiscleroticus NRRL B-
2952 (Rajput and Kumar, 2017) was also included as a reference
since it is part of a canonical QS LuxI-LuxR system present in
actinobacteria characterized in silico. Additionally, RevU was
included as a non-canonical LuxR protein from actinobacteria
(Panthee et al., 2020) since this protein binds the biomediator
BR-1, a β-carboline compound, to regulate the synthesis of
reveromycin in Streptomyces SN-593. RevU belongs to the LAL-
LuxR subfamily (large ATP-binding regulators of the LuxR
family), which is characterized by its large size (over 900
a.a. residues) and an ATP-binding domain in the N-terminus.
Although it is present in gram-negative bacteria, it is more
frequently found in actinobacteria (De Schrijver and De Mot,
1999; Panthee et al., 2020). Canonical LuxR from A. fischeri
and S. purpurogeneiscleroticus, as well as PipR, displayed the
same architecture composed of the autoinducer binding domain
IPR005143 at the N-terminal end and the DNA-binding domain
IPR000792 at the C-terminal. Unsurprisingly, in the LAL-
LuxR subfamily member RevU protein, the autoinducer binding
domain was replaced by an ATPase domain in addition to the
large size of the protein (Figure 3).

None of the Arthrobacter sp. UMCV2 sequences showed
architectures present in the model luxR sequences, although
11 sequences exhibited the DNA-binding domain IPR000792
(Figure 3). This is a HTH domain that was previously used
as a criterion to include proteins in the luxR protein family

(De Schrijver and De Mot, 1999; Lopes-Santos et al., 2012;
Rajput and Kumar, 2017). We conclude that these 11 proteins
belong to the LuxR transcription regulator family and are
designated as Auto-inducer-related Regulators (AirR). Among
these proteins, eight were grouped in cluster I (Figure 4) and
six of them possessed a signal transduction response regulator
receiver domain (IPR001789) that substitutes the autoinducer
binding domain of canonical LuxR. In other proteins with
HTH domains, the autoinducer binding domain is substituted
either by an ATPase domain (as happens in RevU) or no
amino-terminal domain was identified. Three of these sequences
clustered with RevU from Streptomyces and LuxR or LuxR
related to Streptomyces iranensis, Streptosporangium roseum
A. terricola, and Arthrobacter spp., supporting the involvement
of these proteins in the LuxR family. A separate group (cluster
II of Figure 4) was found in which the canonical DNA-binding
HTH domain was substituted with an OmpR/PhoB-type DNA-
binding domain together with the same signal transduction
response regulator receiver domain present in most of the
cluster I AirR sequences (Figures 3, 4). We designated the auto-
inducer analog regulator (AiaR) to this group because they form
a sister cluster to AirR sequences deep inside the actinobacteria
LuxR protein group but do not pose the HTH domain that
defines LuxR protein, in addition to the analogous function of
both domains with those present in canonical LuxR. Because
no Lux-I homologous proteins were found in Arthrobacter sp.
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UMCV2, all AirR constitute “solo” proteins inside the luxR
family.

Arthrobacter sp. UMCV2’s compound
N, N-dimethylhexadecylamine induces
auto-inducer-related regulators

LuxR solos have been extensively studied in Gram-negative
bacteria. Some LuxR solos bind AHL from other bacterial
species, probably as a strategy to expand their regulatory
network by utilizing the existing components of the resident
quorum-sensing systems (Martínez et al., 2015; Mosquito et al.,
2020). Also, other LuxR solos have evolved to respond to
different molecules including signals from plants (Patel et al.,
2013). Although the functions of these proteins are under-
studied in Gram-positive bacteria, especially in actinobacteria
other than Streptomyces, the phylum has been phylogenetically
explored by Lopes-Santos et al. (2012) and revised by Polkade
et al. (2016). In A. aurescens and A. chlorophenolicus, multiple
sequences of luxR homologs have been reported (16 and 17
sequences, respectively). However, no experimental work has
been conducted (Lopes-Santos et al., 2012).

Because AirR proteins do not show the canonical LuxR
autoinducer-binding domain, AHL is not expected to be
the signal molecule for AirR proteins. However, a previous
study revealed that DMHDA induced swarming motility in
Arthrobacter sp. UMCV2 and simultaneously upregulates the
expression of marker genes of the flagellar apparatus (Martínez-
Cámara et al., 2020). Since swarming motility is frequently
regulated by QS (Krishnan et al., 2012; Nickzad et al.,
2015), in this study, swarming motility induction by DMHDA
was reproduced and the expression of the airR genes was
determined. It was found that 10 of the 16 luxR-related genes
were statistically upregulated (Figure 6), but airR3 and airR5
(rich proteins clustered with RevU), and aiR1, airR2, and
aiR7 were induced over 10-fold. Multiple inductions of airR
genes suggest the existence of a hierarchical network of airR
gene induction. In P. aeruginosa PAO1, four individual QS
circuits have been described. Individual circuits are highly
interconnected and involve auto-induction. The induction of an
individual circuit by its auto-inductor results in the induction
(or repression) of one or more of the other three (Papenfort and
Bassler, 2016). Similarly, it is possible that DMHDA induction
of an airR gene directly or indirectly upregulates other airR
genes via unknown mechanisms. Therefore, additional studies
are required to elucidate the function and regulation of airR
genes.

In this study, the genomic analysis indicated that
Arthrobacter sp. UMCV2 forms a separate branch within
the genus Arthobacter, potentially constituting a new species.
Genomic analysis also identified a group of 16 genes designed
as airR, 10 of which were induced by Arthrobacter sp. UMCV2

compound DMHDA, which simultaneously induces QS
behavior. To the best of our knowledge, this is the first report
about the induction of the luxR gene family in the Arthrobacter
genus by a bacterial self-compound.
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