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Recent studies show that the metabolic characteristics of different leukocytes, 

such as, lymphocytes, neutrophils, and macrophages, undergo changes both 

in the face of infection with SARS-CoV-2 and in obesity and type 2 diabetes 

mellitus (DM2) condition. Thus, the objective of this review is to establish a 

correlation between the metabolic changes caused in leukocytes in DM2 

and obesity that may favor a worse prognosis during SARS-Cov-2 infection. 

Chronic inflammation and hyperglycemia, specific and usual characteristics of 

obesity and DM2, contributes for the SARS-CoV-2 replication and metabolic 

disturbances in different leukocytes, favoring the proinflammatory response 

of these cells. Thus, obesity and DM2 are important risk factors for pro-

inflammatory response and metabolic dysregulation that can favor the 

occurrence of the cytokine storm, implicated in the severity and high mortality 

risk of the COVID-19 in these patients.
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Introduction

The coronavirus belongs to the RNA virus family, widely distributed among mammals 
and birds, mainly causing respiratory or enteric diseases. In some cases, it can also cause liver 
and neurological diseases (Cui et al., 2019; Carod Artal, 2020). Different coronavirus strains 
infect their hosts in a specific way; these infections can be acute or prolonged. The main routes 
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of virus transmission include respiratory and fecal-oral pathways. 
Coronaviruses present the largest genome among all RNA viruses, 
a specific characteristic of this family (Masters, 2006).

Two different highly pathogenic coronaviruses were 
responsible for two of the major viral epidemics in the last two 
decades: the Severe Acute Respiratory Syndrome Coronavirus 
(SARS-CoV), which originated in China in 2002–2003, and the 
Middle East Respiratory Syndrome Coronavirus (MERS-CoV), 
which originated in the Middle East in 2012 (Zhu et al., 2020; 
Zhou et al., 2020a). Both coronaviruses have a zoonotic origin and 
the ability to cause severe and fatal diseases in humans (Andersen 
et al., 2020; Zhu et al., 2020). At the end of December 2019, the 
outbreak of a new coronavirus in Wuhan, located in Hubei 
province in China, was described in several patients showing 
similar clinical symptoms, including fever, cough, dyspnea, and 
atypical pneumonia (Zhou et  al., 2020a). The pathogen was 
identified in bronchoalveolar lavage fluid from a patient with 
“pneumonia of unknown etiology” after sequencing the virus 
genome. Bioinformatic analyses revealed that the virus’s 
characteristics were typical of the beta-coronavirus 2B type strain 
(WHO, 2020). In addition, a 96% similarity was identified with 
the genome of the bat SARS-like coronavirus of the BatCov strain 
RaTG13, a coronavirus detected in the species Rhinolophus affinis, 
from Yunan province in China (Zhou et al., 2020a).

The virus was initially named 2019-novel coronavirus (2019-
nCoV). Subsequently, on February 11, 2020, the World Health 
Organization (WHO) altered the name to SARS-CoV-2 due to its 
close resemblance to the SARS-CoV (Velavan and Meyer, 2020). 
In January 2020, the virus was already manifesting outside China. 
The WHO declared a global health emergency on January 30, 
2020, and the COVID-19 pandemic on March 11, 2020 
(WHO, 2020).

SARS-CoV-2 is a ribonucleic acid (RNA) virus with about 
30,000 nucleotides and 29 translated viral proteins (Ceraolo and 
Giorgi, 2020; Di Mascio et al., 2021). The spike glycoprotein (S 
protein) is responsible for the entry of the virus into the host cell 
through binding to the ACE-2 receptor and subsequent fusion to 
the plasma membrane. Like other coronaviruses, SARS-CoV-2 
needs proteolytic processing of S protein to activate the endocytic 
pathway. Host proteases participate in this cleavage and activation 
of the SARS-CoV-2 for entering into the cell; among these are the 
transmembrane protease serine-2 (TMPRSS-2), cathepsin L, and 
furin (Hoffmann et al., 2020; Shang et al., 2020). Single-cell RNA 
sequencing data showed that TMPRSS2 is highly expressed in 
different tissues with co-expression of ACE-2, including epithelial 
cells in the nose, lungs, and bronchial branches, which explains, at 
least in part, the tissue tropism for the SARS-CoV-2 (Lukassen 
et al., 2020; Sungnak et al., 2020). Another essential viral protein 
is the nucleocapsid (N protein), which regulates the viral 
replication process in the host cell (Luo, 2012). Since SARS-CoV-2 
is a RNA virus, it can be  directly translated by the host cell 
machinery to produce viral proteins (Khan et al., 2021).

In response to the SARS-CoV-2 infection, the host organism 
activates its defense systems by increasing immune cell-mediated 

inflammatory processes. Immune and epithelial cells produce and 
release several cytokines with a pro-inflammatory profile, which 
leads to cytokine storm when released in a persistent and/or 
exacerbated way, thus causing an uncontrolled inflammatory 
response and severe symptoms in the patients. Individuals with 
comorbidities, including obesity, hypertension, type 2 diabetes 
mellitus, cancer, and autoimmune diseases, as well elderly 
individuals, have a high risk of presenting exacerbated 
inflammatory response associated with COVID-19, resulting in a 
poor prognosis and high mortality rate (Wang et al., 2019; Bolay 
et al., 2020; Cai et al., 2020; Wilk et al., 2020; Xu et al., 2020; Zhou 
et  al., 2020a). Recent studies show that the metabolic 
characteristics of different leukocytes undergo changes in face of 
infection with SARS-CoV-2 infection and in obese type 2 
diabetic individuals.

Metabolic changes in leukocytes

Neutrophils

Neutrophils are one of the first inflammatory leukocytes 
recruited to places of host damage. These leukocytes have long 
been viewed as short-lived essential cells for the elimination of 
extracellular pathogens, possessing a restricted function in the 
orchestration of the inflammatory response and immune function. 
However, they can also move away from injured tissues, what is 
called reverse migration, having effects on other cells thus exerting 
beneficial or harmful effects depending on the context (Ji and Fan, 
2021). In addition, neutrophils also directly and indirectly (i.e., 
through inflammatory mediators) interact with macrophages, 
dendritic cells, and lymphocyte subsets present at inflammatory 
sites and regulate their effector functions. Neutrophils have 
emerged as a significant source of humoral pattern recognition 
molecules that identify pathogen-associated molecular patterns 
(PAMPs) and start the immune response in coordination with the 
cellular arm, thus responding as functional ancestors of antibodies 
(Mantovani et al., 2011).

As part of the innate immune response, neutrophils have four 
primary responses, including phagocytosis, degranulation, 
production of reactive oxygen species (ROS), and neutrophil 
extracellular traps (NETs) formation (van der Linden and 
Meyaard, 2016).

NETosis represents an important function of neutrophils to 
create and extrude complexes of decondensed DNA, termed NETs 
(Brinkmann et al., 2004). The NETs play a protective role in the 
immune system against invading pathogens. Also, they possess 
pro-inflammatory properties that can induce coagulation and 
thrombosis (Martinod and Wagner, 2014). Neutrophils regulate 
acute inflammation and the subsequent infiltration of other 
immune cells through enzymes, such as neutrophil elastase (NE) 
or myeloperoxidase (MPO), and antimicrobial peptides, as well as 
by secreting chemokines and pro-inflammatory cytokines 
(Mantovani et al., 2011).
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The NETs are formed by neutrophil’s nuclear DNA fibers 
released in the extracellular space in response to acute and chronic 
inflammation, infection, and activated platelets. The generation of 
NETs is a controlled response by NETosis, a specific type of cell 
death different from apoptosis and necrosis. In general, the 
NETosis process is dependent on the production of ROS by 
NADPH oxidase (Delgado-Rizo et  al., 2017) and includes the 
release of nuclear chromatin lined with effector proteins and 
peptidyl arginine deiminase type IV (PAD4) activation (Yousefi 
et al., 2019). After stimulation, the neutrophil nuclear envelope 
disintegrates to enable the mixing of chromatin with granular 
proteins (Fuchs et al., 2007). MPO and NE promote chromatin 
condensation and deteriorate histones (Papayannopoulos et al., 
2010). In the presence of histone hypercitrullination, PAD4 
mediates chromatin decondensation, and the DNA-protein 
complexes are released extracellularly as NETs (Fuchs et al., 2007). 
Thus, whereas plasma membrane integrity remains, both the 
nuclear membrane and granular membrane degenerate during 
NETosis (Yousefi et  al., 2019). If successful, in the end, the 
organisms are trapped in these NETs and killed by the coordinated 
action of enzimes such as MPO, NE and cathepsin G and ROS 
products. On the other hand, excessive formation of NETs or 
ineffective clearance can induce pathological effects, such as 
endothelial dysfunction, pro-inflammatory effects, thrombosis by 
stimulating platelet aggregation, and thrombin generation 
(Papayannopoulos et al., 2010).

In many tissues, chronic inflammation induced by the 
presence of T-cells or macrophages is preceded by neutrophil 
infiltration. Neutrophil infiltration is a transient and premature 
stage in the inflammatory process, preparing for the recruitment 
and activation of other cell types. Blood neutrophils are vital in 
innate immunity since they constitute the most significant 
proportion of white blood cells (Jaillon et al., 2013).

Beyond their rapidly and classical secreted mediators, 
neutrophils have lately emerged as critical regulators in innate and 
adaptive immunity through cytokine production and secretion. 
Neutrophils promote the liberation of C-C motif chemokine 
ligand 2 (CCL2) and other cytokines, such as tumor necrosis 
factor alpha (TNF-α) (Jaillon et  al., 2013). In adipose tissue, 
inflammatory markers secreted by macrophages further mobilize 
neutrophil migration into fatty tissue. These neutrophils, in turn, 
secrete cytokines that recruit more myeloid, T- and B-cells (Mraz 
and Haluzik, 2014). Adipokines are central to obesity, insulin 
resistance (IR), immunity, and inflammation. Of the adipokines, 
leptin has pro-inflammatory effects, whereas adiponectin has anti-
inflammatory properties. (Lustig et al., 2022).

Cytokines play a relevant role during viral infections; thus, the 
host-viral relationship occurs through the activation of toll-like 
receptors (TLRs) and the identification of pathogen associated 
molecular patterns (PAMPs) (Kolli et  al., 2013). The term 
“cytokine storm” was first coined in 1993 to describe a graft-
versus-host disease. The term has since been extended to describe 
the sudden release of similar cytokines associated with 
autoimmune, hemophagocytic lymphohistiocytosis, sepsis, 

cancer, acute immunotherapeutic responses, and infectious 
diseases (Ferrara et  al., 1993; Shimabukuro-Vornhagen 
et al., 2018).

Elevated inflammatory markers and increased serum levels of 
cytokines and chemokines favor the development of the severe 
form of COVID-19. Patients with the severe form of the disease 
had higher inflammatory biomarkers, such as C-reactive protein, 
lactic dehydrogenase, serum ferritin, interleukin (IL)-6, IL-1β, 
IL-1Rα, IL-7, IL-8, IL-10, basic fibroblast growth factor, 
granulocyte colony-stimulating factor, granulocyte-macrophage 
-CSF, interferon (IFN-gamma), induced protein (IP) -10 / 
CXCL10, MCP-1 / CC motif chemokine ligand (CCL) -2, 
macrophage inflammatory protein (MIP)-1α / CCL3, MIP-1β/
CCL4, platelet-derived growth factor, TNF-α and vascular 
endothelial growth, suggesting that a cytokine storm underpins 
severe COVID-19 immunopathology (Gustine and Jones, 2021).

In COVID-19, the accumulation of neutrophils generates a 
toxic environment that contributes to the pathophysiology of 
severe acute respiratory syndrome. In this context, neutrophils are 
activated and induce the release of ROS, superoxide, and hydrogen 
peroxide (H2O2), causing oxidative stress, which contributes to the 
cytokine storm and blood clot formation in SARS-CoV-2 infection 
(Borges et al., 2020; Saleh et al., 2021).

Among the processes triggered by neutrophils in COVID-19, 
NETs are released having neutrophil elastase (NE) as one of the 
leading members of their networks, a proteolytic enzyme stored 
in azurophilic granules, secreted to degrade proteins (Middleton 
et al., 2020). An imbalance of NE and other proteinases induces 
damage to the alveolar-capillary barrier, resulting in tissue damage 
and edema formation (Jorch and Kubes, 2017).

The increase in plasma NETs is associated with increased 
severity of COVID-19, as well as lung injury and microvascular 
thrombosis (Tomar et al., 2020). This harmful effect of NETs is 
also reported in other organ tissues, such as the kidneys and the 
liver and it may be  associated with thrombus triggering and 
reinforcing neutrophil association in the immunopathology of 
COVID-19 (Veras et al., 2020).

Glucose is the primary substrate used by neutrophils in 
physiologic conditions. Neutrophils take glucose via glucose 
transporter-1 (GLUT-1) (Maratou et  al., 2007), which is 
subsequently converted to glucose-6-phosphate by the enzyme 
hexokinase. This molecule is then converted through a series of 
reactions to pyruvate via the glycolytic pathway. In this process, 
there is generation of adenosine triphosphate (ATP), and the 
reduced form of nicotinamide adenine dinucleotide (NAD), 
namely NADH. In neutrophils, pyruvate is directed to lactate 
synthesis, following the anaerobic glycolytic pathway (Curi et al., 
2020). Hypoxia-induced transcription factor (HIF)-1α is one of 
the main transcriptional regulators of genes in neutrophils during 
hypoxia. It is essential for allowing cell adaptation in hypoxic 
conditions. This transcription factor induces cell survival via 
NF-kB-dependent HIF-1α, which is necessary for inflammation 
resolution (McGettrick and O’Neill, 2020). Codo et al. showed 
that the mitochondrial ROS/HIF-1a/glycolysis axis is induced in 
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monocytes and macrophages infected with SARS-CoV-2, which 
allows a higher production of pro-inflammatory cytokines and 
interferons (IFNs) (Codo et  al., 2020). Additionally, glucose 
enhances both viral replication and cytokine synthesis. Therefore, 
it is hypothesized that this axis may be increased in neutrophils 
during infection by SARS-CoV-2.

Glycolysis is the main pathway to ATP production for 
neutrophil functions, such as phagocytosis and NET formation 
(Curi et al., 2020), which were reported to have increased rates in 
COVID-19 patients (Veras et al., 2020), and enriches the idea that 
glucose may be  highly required in SARS-CoV-2 infection. In 
contrast to glycolysis, the pentose phosphate pathway is an 
alternative route for glucose-6-phosphate, in which this molecule 
is converted to ribose-5-phosphate and nicotinamide adenine 
dinucleotide phosphate (NADPH) in neutrophil cytosol and 
proceeds to DNA and RNA production (Kumar and Dikshit, 2019).

NADPH production in neuthophil is indispensable for the 
cytosolic NADPH oxidase (NOX) ROS production (Injarabian 
et al., 2019). Violi et al. reported an overreaction of NOX2  in 
hospitalized COVID-19 patients. They observed a high NOX2 
plasma concentration in Intensive Care Unit (ICU) COVID-19 
patients and even higher in thrombosis cases, which implies 
NOX2 rates relate to a poor diagnosis (Violi et al., 2020).

Glutamine is an amino acid with relatively high concentration 
in the blood. Castell et al. described glutamine in human neutrophils 
(Castell et  al., 2004) and we  were the first to report glutamine 
presence in neutrophils at high concentrations and its contribution 
to neutrophil functions. Curi-Pithon et  al. observed high 
concentration of intracellular glutamine in Wistar rats’ neutrophils. 
Also, using in vitro assays we reported that the glutamine metabolism 
preserved the function of neutrophils (Pithon-Curi et  al., 1997, 
2002b). Different pathways in the neutrophil are associated with 
glutamine: DNA and RNA production, cytokines production, ROS, 
and apoptosis (Cruzat et al., 2018). In neutrophils from COVID-19 
patients, these pathways are dysregulated. Therefore, glutamine must 
be an important factor for those neutrophil functions reestablishment 
(Kumar and Dikshit, 2019; Curi et  al., 2020). Additionally, in 
pathologic situations, when neutrophils are deprived of glucose, they 
can change their energy substrate to glutamine (Injarabian 
et al., 2019).

Glutamine metabolism involves two enzymes, glutaminase 
phosphate dependent (GLS) and glutamine synthetase (GS). GLS 
is responsible for glutamine hydrolysis, converting it to glutamate-
ammonia NH4. At the same time, GS activates the ion production 
glutamine ammonia NH4 (Pithon-Curi et al., 2002a; Hatanaka 
et al., 2006; Tan et al., 2017). In clinical settings in the COVID-19 
risk group, a history of decreased glutamine levels and increased 
hexosamine levels has been seen (Matsuyama et al., 2021).

Lymphocytes

Lymphocytes can be divided by their function into two main 
populations: B and T lymphocytes. B lymphocytes participate in 

the humoral response and, if activated, are differentiated into 
plasma cells, which secrete antibodies (Luan et  al., 2014). T 
lymphocytes are involved in cellular immunity, modulate the 
immune response in the presence of chemical mediators, and 
participate in the activation of other immune system cells (Rubel 
et al., 2010).

T lymphocytes are fully activated when a foreign peptide is 
recognized or in the presence of some inflammatory conditions. 
In this pro-inflammatory environment, costimulatory ligands and 
increased expression of MHC class I and II molecules are induced 
in antigen-presenting cells (APCs), which are necessary for 
activation of T lymphocytes and cytokines that attract T 
lymphocytes, activating them through their antigenic receptors 
(Steinman et al., 2012).

When stimulated, lymphocytes can differentiate into different 
profiles, proinflammatories, such as Th1 (Th1) and Th17 
lymphocytes (Th17), cells related to hyper sensibility, such as Th2 
(Th2) lymphocytes and the immunosuppressor regulatory T 
lymphocytes (Treg). Th1 cells are involved in eliminating 
intracellular pathogens and are associated with organ-specific 
autoimmunity (Prete, 1992). They mainly secrete IL-2, 
IFN-gamma, TNFα, and IL-6. IFN-gamma is essential for 
activating mononuclear phagocytes, including macrophages and 
microglial cells, thus resulting in increased phagocytic activity 
(Murray et al., 1985).

Th2 lymphocytes are known for their association with allergic 
reactions (Sokol et al., 2009). They mainly secrete the cytokines 
IL-4, IL-5, and IL-10, which have anti-inflammatory action. Of 
these, the cytokine most produced by these cells is IL-4, which 
favors the differentiation of Th0 cells into Th2 cells. Th1 and IL-4 
also upregulate the low-affinity IgE receptor in B lymphocytes and 
mononuclear phagocytes and the high-affinity IgE receptor in 
mast cells and basophils (Prete, 1992; Steinke and Borish, 2001; 
van Panhuys et al., 2008).

Th17 lymphocytes induce inflammation and autoimmunity 
and mainly produce the cytokines IL-22, IL-21, and IL-17. IL-17 
leads to the induction of proinflammatory cytokines, including 
IL-6, IL-1β, TNF-α, and proinflammatory chemokines, ensuring 
the chemotaxis of neutrophils and other immune cells to sites of 
inflammation (Moseley et al., 2003; Ivanov et al., 2006).

Treg cells can be divided into a natural subset derived from 
the thymus with FOXP3 expression and Treg cells induced in 
peripheral tissues, which arise from naive CD4+ CD25+ cells after 
antigen stimulation in a suitable cytokine medium (Chen et al., 
2003). Its central effector cytokines include IL-10, TGF-beta, and 
IL-35. IL-35 plays a vital role in the immune system as a cytokine 
inhibitor. It can modulate the T cell functions, activate bone 
marrow-derived immunosuppressive cells and regulate the actions 
of an inflammatory factor related to the immune system. 
Therefore, the regulation of IL-35 is of great importance in chronic 
diseases (Zhang et al., 2019).

The metabolic changes in leukocytes are associated with 
essential changes in their phenotypes and functions. The naïve 
lymphocytes in the lymphoid tissues and the bloodstream are 
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metabolically less active. Upon contact with pathogens or 
neoplastic cells, these cells are activated, proliferating and 
secreting cytokines to coordinate the immune response. The 
activation of these cells is accompanied by metabolic changes in 
biosynthetic and energetic pathways which are stimulated (Buck 
et al., 2015).

An increased metabolic rate is essential to ensure that all 
processes involved in the immune response function correctly and 
effectively. The metabolism of T cells changes during the process 
of activation, proliferation, and differentiation. T cells need to 
reprogram their metabolic pattern to meet their bioenergetic and 
biosynthetic needs, using different metabolic substrates (glucose, 
amino acids, and fatty acids) and activating a given metabolic 
pathway in each situation (glycolysis, oxidative phosphorylation, 
pentose phosphate pathway, synthesis and fatty acid oxidation and 
glutamine metabolism) (Gerriets and Rathmell, 2012; Jung et al., 
2019). Through these mechanisms, lymphocytes can provide an 
appropriate scenario for the synthesis of macromolecules and 
organelles to perform the cell division process. The metabolic 
pathways responsible for synthesizing DNA, RNA, and structural 
lipids such as phospholipids and cholesterol must have high 
activity and an adequate energy supply in the form of ATP (Curi 
et al., 1993).

Highly proliferation cells, such as activated lymphocytes, use 
high levels of glucose and glutamine, but the oxidation of these 
metabolites is low. Glucose is mainly converted into lactate and 
glutamine into glutamate, aspartate, and lactate (Ardawi and 
Newsholme, 1983).

T lymphocytes in a quiescent state produce ATP through 
beta-oxidation of fatty acids (FAs) and use pyruvate derived from 
glucose via oxidative phosphorylation (OXPHOS) (Buck et al., 
2015; Rangel Rivera et al., 2021). When antigens are presented 
together with the MHC molecules and co-stimulatory signals, 
these cells are activated and proliferate, increasing their 
energy demand.

During the T lymphocyte activation process, to meet the 
increased metabolic demand, there is an increase in the expression 
of GLUT1 (Frauwirth et al., 2002; Buck et al., 2015). After the 
activation of T lymphocytes, several transcription factors and 
signaling pathways regulate metabolic reprogramming, such as 
IL-2, the activation of mammalian target of rapamycin (mTOR) 
complexes, and the Akt pathway. The cells then mainly use 
glycolysis and amino acids such as glutamine to generate ATP 
(Chang et al., 2013; Buck et al., 2015; Rangel Rivera et al., 2021).

From the activation of T cells, there is the mechanism of 
differentiation of these cells from stimuli of different cytokines 
and metabolic pathways (Michalek et al., 2011; Buck et al., 2015). 
So, cells with Th1, Th2, and Th17 features tend to use the glycolytic 
pathway more through mTOR signaling, while Treg cells 
preferentially use the FAs oxidation pathway. Signaling through 
mTORC1 and mTORC2 favors the differentiation of cells with Th1 
and Th2 profiles (Delgoffe et  al., 2011). Short-chain FAs and 
retinoic acid can induce the differentiation of Tregs in synergy 
with TGF-β (Coombes et  al., 2007; Schmidt et  al., 2016). The 

vitamin shortage, in turn, may inhibit the cellular immunity of 
Th1 and Th17 lymphocytes (Hall et al., 2011; Buck et al., 2015) in 
immune cells and promote exacerbated inflammatory responses.

Several studies over the years have shown increased markers 
associated with immunosenescence in obese individuals, 
generating a state of premature aging of immune cells (Shirakawa 
et al., 2016; Brunelli et al., 2022). The development of obesity can 
generate shortening of telomeres due to increased replicative 
demands. The increased metabolic load that occurs in obesity 
favors mitochondrial dysfunction, attenuating the functions of the 
electron transport chain (ETC) and generating an increase in the 
production of ROS (Hey-Mogensen et al., 2012; Shirakawa et al., 
2016; Schafer et al., 2017).

Macrophages

Macrophages are highly plastic cells capable of rapidly 
changing their functional profile through a process defined as 
polarization in response to the stimulus in the local 
microenvironment. Usually, these cells are classified as classically 
activated (pro-inflammatory or M1 macrophages) (Nathan et al., 
1983; Pace et  al., 1983) or as alternatively activated (anti-
inflammatory or M2 macrophages) (Stein et al., 1992; Doyle et al., 
1994). Each subtype presents a specific gene expression program, 
leading to the acquisition of different markers on the cell surface, 
secretion of cytokines, as well specific metabolic adaptations.

Pro-inflammatory macrophages are activated by microbial 
products, such as lipopolysaccharide (LPS) and other ligands of 
TLRs, and produce pro-inflammatory cytokines in large amounts, 
such as TNF-a, IL1-β, IL-6, IL-12, and IL-23 (Mosser and 
Edwards, 2008). Glycolysis (Freemerman et al., 2014) and the 
pentose-phosphate pathway (Tannahill et  al., 2013) are the 
primary sources of ATP for pro-inflammatory macrophages, while 
the Krebs cycle is broken at two points (Newsholme et al., 1996; 
Peres et al., 1999; Meiser et al., 2016). Oxidation of fatty acids 
(FAO) is downregulated (Feingold et al., 2012).

M2 or anti-inflammatory macrophages are induced by IL-4 or 
IL-13 secreted by adaptive and innate immune cells such as Th2 
lymphocytes, basophils, and mast cells (Stein et al., 1992). In M2 
macrophages, the metabolic requirement is mainly supported by 
the Krebs cycle with increased FA oxidation and OXPHOS activity 
(Jha et al., 2015).

Macrophage Activation Syndrome was described as a serious 
risk factor contributing to lung inflammation, acute respiratory 
distress syndrome (ARDS), and subsequent death of COVID-19 
patients (Giamarellos-Bourboulis et al., 2020; Toor et al., 2020). 
Autopsies in patients who died of COVID-19 revealed a high 
infiltration of macrophages within the area of bronchopneumonia 
(Barton et  al., 2020). SARS-CoV-2 enters the host cells via 
ACE-2 receptor interaction, which is present in several cells, 
including macrophages.

The Warburg effect likely supports SARS-Cov-2 replication in 
cells expressing ACE-2 (Icard et  al., 2021). This hypothesis is 
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reinforced by studies showing that the increased flux through 
glycolysis supports virus replication in colon cancer cells and 
blood monocytes (Bojkova et  al., 2020; Codo et  al., 2020). In 
monocytes, SARS-CoV2 replication and the induced cell response 
are sustained by the switch to aerobic glycolysis (the Warburg 
effect) (Codo et al., 2020). In addition, these authors observed that 
the infection increase mitochondrial ROS production, leading to 
(HIF-1α) stabilization that may favor glycolysis major recruitment.

Metabolic changes in obesity, type 
2 diabetes, and the immune 
system

Obesity was soon identified as a risk factor for the worse 
prognosis of COVID-19 (Wu et  al., 2020), including the 
occurrence of ARDS, in addition to adverse cardiovascular events 
in up to 28% of patients hospitalized (Guo et  al., 2020). The 
prevalence of obesity is increasing worldwide and is currently 
considered a significant public health problem because it affects 
billions of people. The role of ectopic fat deposits has attracted 
interest in the COVID-19 scenario because this increase in 
adiposity may be  related with a poor prognosis of disease in 
patients (Hoffmann et al., 2020).

During weight gain, adipose tissue undergoes multiple 
processes of structural and cellular remodeling. First, mature 
adipocytes expand during the chronic positive energy balance, 
becoming hypertrophic to store more fat. If this extra energy is not 
used, the number of cells increases (hyperplasia) (Haczeyni et al., 
2018). Hyperplastic and hypertrophic adipocytes are usually 
hypoxic, partially explaining the development of inflammation 
(Castoldi et  al., 2016). Subsequently, hypoxia induces the 
activation of HIF-1α, which acts as a critical regulator of 
physiological functions, including metabolism, cell proliferation, 
and angiogenesis (Allen et  al., 2020; Ménégaut et  al., 2020). 
HIF-1α activates glycolysis and inflammatory response, which 
implies the effects of HIF-1α on the pathogenesis of COVID-19. 
HIF-1α leads to a potent profibrotic transcription program with 
extracellular matrix components (ECM) accumulation, leading to 
fibrosis and adipose tissue dysfunction (Lippi and Henry, 2020; 
Zhou et al., 2020b). Tian et al. recently demonstrated that during 
SARS-CoV-2 disease, the viral protein ORF3a increases the 
production of HIF-1α, which promotes SARS-CoV-2 disease and 
inflammatory responses (Tian et  al., 2021).Simultaneously, 
immune cells infiltrate adipose tissue, and proinflammatory 
cytokines are overexpressed (Xydakis et  al., 2020). A thin 
individual has a high proportion of M2/M1 macrophages, 
eosinophils, and regulatory T cells, which secrete ILs −4/−13 
and − 10, leading to an anti-inflammatory phenotype. This 
scenario is different in the obesity condition, in which there is a 
metabolic disorder that involves excessive fat accumulation by the 
adipose tissue and various tissues, organs, and systems, causing 
hormonal imbalance in cells, metabolic pathways, vessels, and 
arteries (Xydakis et  al., 2020). This low-grade chronic 

inflammatory and metabolic disease can alter the mechanisms of 
innate and adaptive immune responses, increasing susceptibility 
to infections and other diseased conditions, such as DM2, 
cardiovascular diseases, hypertension, and some types of cancer 
(Xydakis et al., 2020).

In obesity, there is an activation of several stress pathways, 
such as endoplasmic reticulum stress, oxidative stress, and 
inflammasome complexes (Hotamisligil, 2010), in addition to 
tissue hypoxia, which induces a change in innate immunity and 
lymphoid cells and a modification of the macrophage signature 
with a rapid shift in polarization toward an M1 phenotype, 
associated with adipose tissue inflammation and insulin resistance 
(IR) (Lumeng et al., 2007; Dalmas et al., 2011; Castoldi et al., 
2016). A low-grade state of chronic inflammation is, therefore, 
mainly explained by the imbalance of immune cells in a 
dysfunctional adipose tissue. Stressed adipocytes release fatty 
acids (FAs) and secrete chemokines that lead to the infiltration of 
inflammatory immune cells that secrete proinflammatory 
cytokines (Xu et al., 2015). In addition, dysbiosis of the intestinal 
microbiota can also trigger inflammation by activating immune 
signaling pathways (Cox et al., 2015).

In patients with obesity, in which the white adipose tissue 
(WAT) is increased, and brown adipose tissue (BAT) is decreased 
(Zhou et al., 2020b), the renin-angiotensin-aldosterone system 
(RAAS) is chronically activated. This alteration predisposes to 
several dysfunctions, including cardiac pathologies and renal 
dysfunction. These changes are associated not only with 
hypertension (Hoffmann et  al., 2020) but also with insulin 
signaling in peripheral tissues (Donoghue et  al., 2000), the 
inflammatory state of the pancreas, and the β cell death profile 
(Yuan et al., 2010). The increase in oxidative stress is possibly the 
basis of the cytotoxic effects induced by angiotensin II and 
aldosterone during the exaggerated activation of SARS-CoV-2 
(Luther et al., 2011). The resulting IR acts as an impetus for the 
progression of cardiometabolic syndrome, which is commonly 
associated with obesity (Jing et al., 2013). There is then induction 
of the ACE2 protein axis. ACE2 is a type I  transmembrane 
glycoprotein of 805 amino acids (~ 120 kDa) containing a single 
extracellular catalytic domain whose sequence is 41.8% identical 
to the ACE domain (Hamming et al., 2007). It is associated with 
the activation of BAT and the darkening of WAT, which are related 
to anti-obesity effects (Kawabe et al., 2019). Due to many changes 
in physiology during obesity, including RAAS dysfunction, BAT 
tends to decrease in size and activity, increasing the chance of 
comorbidities (Shimizu and Walsh, 2015). RAAS components, 
including ACE2, are expressed in adipocytes and are crucial for 
the homeostasis of glucose and lipid metabolism. The entry of 
SARS-CoV-2 into the host cell depends on the ACE2 receptor. 
Under obesity, adipocytes express more ACE2, allowing the 
adherence of the virus to the cells (Jing et al., 2013). Experiments 
in mice showed that obesity induced by a high-fat diet is associated 
with increased expression of ACE2 in adipose tissue (Patel et al., 
2016). In an elegant study, Pasquarelli et al. indicated that the 
increased expression of ACE2  in adipose tissue of obese 
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individuals may have consequences for SARS-CoV-2 infection 
(Pasquarelli-do-Nascimento et  al., 2020). In addition, obesity 
causes hyperglycemia through IR, while there is increasing 
evidence that SARS-CoV-2 can also cause hyperglycemia by 
infecting and killing β cells (Yang et al., 2020).

DMs occur after a period characterized by reduced insulin 
sensitivity, also known as IR, chronic hyperglycemia, and 
consequent pancreatic beta cell dysfunction with possible 
progression to cell death and disease onset (Kahn, 2003; Reed 
et al., 2021). DM is one of the main noncommunicable diseases in 
the world and is considered a public health problem (Herman 
et al., 2012). DM can be classified by its etiology, as proposed by 
the WHO and the American Diabetes Association (ADA) and 
recommended by the Brazilian Diabetes Society, being named, for 
example, DM type (DM1) and type 2 DM (DM2), the two most 
common types of DM observed in the population (Boura-Halfon 
and Zick, 2009).

Chronically, DM can lead to chronic complications, especially 
micro- and macro-vascular complications, such as retinopathy, 
neuropathy and vasculopathy, urological diseases, and cancer 
(Vikram et al., 2014).

Several studies have shown that DM constitutes the main 
comorbidity in patients with severe disease admitted to the ICU 
for COVID-19 compared to those patients with mild symptoms 
(Deng and Peng, 2020; Wang et al., 2020; Zhou et al., 2020a).

Patients with preexisting DM2 also presented worse prognosis 
in SARS-CoV infection (Booth, 2003; Yang et al., 2006; Gorjão 
et al., 2022). Epidemiological studies also indicated that DM2 is 
the primary comorbidity associated with severe or lethal 
MERS-CoV infections (Al-Qahtani et al., 2018).

In DM2, the inflammatory response occurs due to the 
immune response to high blood glucose levels and the presence of 
inflammatory mediators produced by adipocytes and 
macrophages in adipose tissue. This low-grade chronic 
inflammation damages pancreatic beta cells and causes insufficient 
insulin production, which results in chronic hyperglycemia. 
Hyperglycemia in DMs can cause immune response dysfunction, 
which fails to control the spread of invasive pathogens in diabetic 
individuals, making them more susceptible to infections. Thus, 
there is a risk that infectious diseases are more severe in diabetic 
patients. In addition, as already mentioned, diabetic patients tend 
to have long-term changes, especially in organs such as the 
kidneys and heart. This association with hypertension and obesity 
also exacerbates infections, such as COVID-19 (Berbudi et al., 
2020; Connors and Levy, 2020; Wilk et al., 2020).

Zeng et  al. (2012) identified higher proportions of 
proinflammatory CD4+ T cells and circulating memory in DM2 
diabetic patients than in nondiabetic patients. The proportion of 
Treg cells was lower and the ratio of Treg to Th1 and Th17 cells 
was decreased in diabetic patients compared to nondiabetic 
patients, suggesting a shift toward a proinflammatory CD4+ 
T-cell profile.

Hotamisligil (2010) observed an increase in TNF-α in the 
adipose tissue of different animal models (db/db) with obesity and 

diabetes. Neutralization of TNF-α lead to an improvement in 
peripheral glucose uptake indicating a role of this cytokine in the 
phenotype. In addition to TNF-α, other cytokines such as IL-1β 
and IFN-gamma are increased in obesity and DM2 and contribute 
to the impairment of the insulin signaling response (Ouchi et al., 
2011; Mathis, 2013). In contrast, anti-inflammatory cytokines 
such as IL-4 and IL-10 are associated with protection against 
insulin sensitivity (Odegaard et al., 2007).

The hyperglycemia associated with the imbalance of the 
immune response in DM2 results in the inability to resolve the 
infection in diabetic individuals, generating chronic stimulation 
of the M1 profile macrophages. Macrophage functions and 
glucose metabolism are closely connected. An increase in glucose 
metabolism by macrophages, such as in DM, may influence 
metabolic reprogramming and the immune response capacity. In 
addition, as other authors reported, some kinases are involved in 
glucose metabolism and the immunomodulatory role of 
macrophages (Mantovani, 2008; Mauer et  al., 2014; Brady 
et al., 2016).

Covid-19, immune function, 
diabetes, and obesity

The infection itself is not limited to the lung tissue since after 
the entry of the virus through the airways, alveolar macrophages 
become secondary targets, which can initiate the cytokine storm, 
thus causing severe acute respiratory syndrome with subsequent 
respiratory failure (Almerie and Kerrigan, 2020). Due to the 
increased viral load in the upper respiratory tract cells, these cells 
dye thus releasing viral particles capable of infecting other cells 
and tissues.

As an example, they infect the cells of the lower respiratory 
tract, intestinal tract, heart, blood vessels, kidneys, and urinary 
bladder, which express high amounts of ACE2 and TMPRSS2. 
Therefore, there is a considerable worsening of the disease due to 
the death of infected cells, tissues and organs, mainly due to the 
exacerbated increase in secreted proinflammatory cytokines (IL-6, 
IL-1β, TNF-α, IFN-gamma, G-CSF, and CCL3) (Almerie and 
Kerrigan, 2020).

Obese individuals have WAT in the large walls of the airways 
in proportion to body mass index (BMI), which can lead to airway 
thickening, infiltration of immune cells, tissue damage, and 
pulmonary fibrosis (PF) (Kruger et al., 2015; Elliot et al., 2019). 
The increased expression of ACE2 in WAT during obesity makes 
these intrapulmonary deposits susceptible to SARS-CoV-2 
infection in the lung tissue. In addition, the prolonged viral 
dissemination would facilitate lung damage and consequent 
respiratory failure in cases of obesity (López-Reyes et al., 2020).

Adipose cells called lipofibroblasts (LiFs) affect lung function 
because the transdifferentiation of these cells into myofibroblasts, 
which leads to PF (Siripanthong et al., 2020). The LiFs have lipid 
droplets in their cytoplasm containing high levels of perilipin-2. 
Located in the alveolar interstitium, these cells reside in the 
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vicinity of type 2 alveolar epithelial cells (AEC2) that express 
ACE2, to which they provide surfactant molecules. AEC2 is 
considered the largest pool of cells that express ACE2 in the lungs, 
and the proximity of LiFs may indicate a greater chance of PF in 
the lungs of infected obese individuals (Stefanini et al., 2020). In 
addition, the possibility of LiFs expressing ACE2 should 
be  considered since PF is a common characteristic among 
deceased patients with COVID-19 (Stefanini et al., 2020).

COVID-19, therefore, induces an immune-mediated 
inflammatory response. In this context, epicardial adipose tissue 
can transduce this inflammation to the heart. Thus, the 
inflammation of this tissue may be  implicated in COVID-19 
myocarditis due to its contiguity with the myocardium and its 
proinflammatory secretome reaching the myopericardium 
directly through the blood vessels and paracrinally (Lasbleiz 
et al., 2021).

Some studies reported that the expression of ACE2  in 
adipocytes is higher than in lung cells, making these cells an 
important viral reservoir (Gupte et  al., 2008; Haczeyni et  al., 
2018). High-fat fet mice show increased expression of ACE2 in 
adipocytes (Maier et al., 2018). In obesity, excess adipose tissue 
may increase SARS-CoV-2 infection and tissue accessibility, 
leading to increased systemic viral spread and prolonged viral 
entry and spread (Qin et al., 2020), as seen during the influenza 
A epidemic.

An interesting point to be explored is the infection of adipose 
tissue with SARS-CoV-2, which can potentially increase 
proinflammatory cytokine secretion by this tissue (Martínez-
Colón et al., 2022; Saccon et al., 2022). In 2022, Basolo et al. (2022) 
observed that the nucleocapsid antigen SARS-CoV-2 was 
significantly detected in adipocytes from subcutaneous abdominal 
adipose tissue samples of patients who died of severe COVID-19, 
suggesting that the virus can directly infect subcutaneous fat 
depots. The anatomical localization of adipose tissue also can 
directly impact the susceptibility of SARS-CoV-2 infection, as 
demonstrated by Saccon et al. (2022). These authors observed high 
expression of ACE2  in visceral fat depots, suggesting elevated 
susceptibility to the SARS-CoV-2 infection. In addition, visceral 
fat cells present higher expression of pro-inflammatory cytokines 
than subcutaneous fat cells. It was demonstrated that when these 
fat cells are infected with the gamma variant, there is upregulation 
of proteins involved in the IFN signaling pathway, leading to a 
much softer induction of pro-inflammatory markers in 
comparison to the ancient SARS-CoV-2 lineage.

It has been described that the replication of SARS-CoV-2 in 
adipose tissue cells and its inflammatory insult are favored by the 
presence of lipid droplets. The hypothesis is that these lipid 
droplets function as reservoirs for viral replication and favor the 
production of proinflammatory cytokines (Dias et al., 2020; Ryan 
and Caplice, 2020; Saccon et al., 2022). In addition, adipokines are 
also influenced by COVID-19. Tonon et al. (2022) observed that 
patients with COVID-19 in severe condition present high levels 
of leptin and low adiponectin/leptin ratio, associated with 
increased expression of IL-6. Reiterer et al. (2021) demonstrated 

that SARS-CoV-2 in the adipose tissue of hamsters have decreased 
adiponectin protein level, but no mRNA levels alteration, 
suggesting the involvement of a post-transcriptional mechanism 
in this process. Thus, the characteristics of adipose tissue cells are 
determinant for the SARS-CoV-2 susceptibility and effects, 
including anatomical localization, ACE2 expression, pro- and 
anti-inflammatory cytokine profile, lipid droplet amount, and 
adipokine production, which can lately and negatively impact the 
metabolic responses in type 2 diabetic and obese patients.

After infection of host cells, the recruitment of 
proinflammatory cytokines and impaired T lymphocytes 
culminates in a cytokine storm associated with progression to 
ARDS and multiple organ failure (Dalmas et al., 2011). In severe 
respiratory forms, patients with COVID-19 infection exhibited 
macrophage activation syndrome. There is a decrease in CD4+ 
and CD8+ T lymphocytes (Giamarellos-Bourboulis et al., 2020) 
but a higher proportion of pro-inflammatory Th17 cells and of 
pro-inflammatory cytokines such as IL-2, IL-6, and TNF-α 
(Mirsoian et al., 2014; Chen et al., 2020).

Lymphopenia, is related to a 3-fold higher risk of severe 
COVID-19 infection (Zhao et al., 2020), and several mechanisms 
may be  involved in SARS-CoV-2-induced depletion and 
exhaustion of lymphocytes. First of all, SARS-CoV-2 may infect T 
cells via ACE2 receptor expressed on T cells (Kuklina, 2022), 
which promotes T cell death (Yue et al., 2018). Secondly, several 
cytokines (anti-inflammatory or pro-inflammatory) can accelerate 
the exhaustion and depletion of T cells, impacting on their 
respective roles. Besides, the virus may destroy lymph nodes and 
secondary lymphoid tissues such as spleen, leading to 
lymphopenia, which is reinforced by the observations of lymph 
node necrosis, splenic atrophy, and reduced lymphocyte numbers 
(Li et al., 2020; Tan et al., 2020). As previously mentioned, in 
obesity, dysfunctional hypertrophic adipocytes produce more 
pro-inflammatory cytokines, leading to a low-grade state of 
chronic inflammation. This state, in turn, causes metabolic and 
immunological disorders, making a cytokine storm more likely 
(Wang et al., 2019).

On the other hand, COVID-19 patients who were admitted to 
the ICU had a greatly elevation in blood neutrophil counts as 
compared to other SARSCoV2-positive patients with less severe 
symptoms (Huang et al., 2020). Cohort studies with COVID-19 
patients also described neutrophilia and sustained low levels of 
lymphocyte counts, conducting to a high neutrophil-to-
lymphocyte ratio (NLR), which is predictive of severe illness in the 
early stage of SARS-CoV-2 infection (Zhu et al., 2020).

A significant increase in the plasma level of IL-1β was 
reported in COVID-19 patients (Darif et al., 2021), suggesting 
that the NOD-, LRR- and pyrin domain-containing protein 3 
(NLRP3) may be  involved in the pathogenesis of pulmonary 
infection and injury. NLRP3 is a multiprotein complex in 
macrophages, dendritic cells, and other non-immune cells. The 
activation of NLRP3, a central component of the innate immune 
system, plays a key role in host defense but is also associated with 
metabolic and inflammatory conditions (López-Reyes et  al., 
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2020). During SARS-CoV-2 infection, intense and rapid 
stimulation of the immune system response can trigger the 
activation of the NLRP3 inflammasome pathway and the release 
of its products, including IL-18 and IL-1β (Freeman and Swartz, 
2020; Amin et  al., 2022), which may be  involved in the 
maintenance of inflammation. Viral infection could potentiate 
this underlying systemic inflammatory state, partially explaining 
the worse progression of the disease in obese patients (Barra 
et  al., 2020). There is a higher expression of ACE2 and 
TMPRSS2 in the pulmonary epithelial cells of individuals with 
obesity than in those without the disease, as demonstrated in 
vitro (Al Heialy et al., 2020). These conditions may contribute for 
the high occurrence of ARDS in obese individuals.

The platelets of obese individuals exhibit a series of 
abnormalities that contribute to the hypercoagulability state 
observed in them (Barrachina et  al., 2019). Thus, an inherent 
exacerbated state of inflammation and a tendency to develop 
hypercoagulation are probably contributing to the higher 
mortality rates observed on COVID-19-infected obese 
individuals. Prothrombotic factors are positively related to visceral 
fat. People with obesity have higher plasmatic concentrations of 
all prothrombotic factors (factor VII, fibrinogen, and von 
Willebrand factor) than nonobese individuals (De Pergola et al., 
1997). Similarly, plasma concentrations of PAI-1, a physiological 
inhibitor of plasminogen activators (urokinase and tissue types) 
synthesized by adipose tissue, are highly elevated in the plasma of 
obese individuals (Skurk and Hauner, 2004; Raiko et al., 2012), 
predisposing these individuals to thrombotic complications. All 
these conditions contribute to the progression of the 
prothrombotic state reported in obesity.

In patients with DM2, there is an increased risk of severity and 
mortality associated with COVID-19 (Holman et al., 2020). It is 
established that patients with DM2 are more susceptible to 
infections in general and have a worse prognosis when infected 
(Kumar Nathella and Babu, 2017; Xu et al., 2020). These patients 
have increased risk for bacterial, mycotic, parasitic, and viral 
infections. High susceptibility in the diabetic population was also 
observed in other pandemics resulting from coronaviruses such 
as MERS and SARS-Cov (Booth, 2003; Yang et al., 2006).

The impaired function of T cells and high levels of IL-6 also 
play a relevant role in the progression of COVID-19 in diabetic 
patients (Kulcsar et al., 2019). T cells are essential in regulating 
antibody-mediated cellular immunity (humoral immunity). In 
2021, Zheng et al. (2021) demonstrated immunological changes 
in patients diagnosed with DM and COVID-19. These patients 
showed an increased percentage of T CD4+ cells compared to the 
non-diabetic group, and a decreased number of T CD8+ cells. 
There was also an increase in cytokines such as IL-6, TNF-α, 
IFN-gamma, IL-2, and IL-10 compared to the non-diabetic group. 
The immune system imbalance results in chronic inflammation, 
which is a way for the body to respond to infections such as those 
caused by viruses.

Cytokine storms or excessive inflammatory reactions are 
serious complications in patients with SARS or MERS. Zhou et al. 

(2020a) identified increased IL-6 production in monocytes of 
patients with COVID-19. Studies suggest that the severity of 
COVID-19 is associated with elevated levels of inflammatory 
mediators; however, the elevation of IL-6 in the blood is highly 
correlated with the mortality caused by COVID-19 when 
survivors and non-survivors are compared (Liu et al., 2020; Zhou 
et al., 2020b). IL-6 is essential for the generation of Th17 cells. The 
increase in IL-6 may explain the rise in the Th17 profile found in 
patients with COVID-19, as reported by Xu et al. (2020).

T-cell metabolism and function are closely related to 
metabolic reprogramming, which is crucial for T-cell activation. 
Notably, peripheral blood mononuclear cells (PBMCs) in an 
activated condition due to viral infection exhibit metabolic 
dysfunction characterized by increased glycolysis and reduced 
oxygen consumption (Ajaz et al., 2021). Monocytes infected with 
SARS-CoV-2 also show an increased glycolytic rate (Figure 1). 
Higher concentrations of glucose are associated with a boosting 
on SARS-CoV-2 replication in monocytes (Codo et al., 2020). In 
addition, the cytokines TNF-α, IL-1β, and IL-6, which were highly 
expressed in SARS-CoV-2 infected monocytes in elevated glucose 
levels, are related to T cell dysfunction and lymphopenia.

Because of this central role of glycolysis in the response of 
leukocytes in COVID-19, the glucose analog 2-deoxy-D-glucose 
(2DG), which inhibits glycolysis, underwent a phase III trial and 
received emergency treatment approval for severe COVID-19 in 
India. However, the study enrolled only 220 patients, and the data 
were unavailable to the public (Halder et al., 2021).

IFN-I and IFN-III are important for the intrinsic viral 
resistance of the cells. These antiviral mechanisms have been 
shown to be  suppressed by coronavirus infection (Lim et  al., 
2016). In this sense, a study with COVID-19 patients showed 
reduced levels of type I  and type III IFN as well as higher 
concentrations of cytokines and chemokines (Blanco-Melo et al., 
2020). On the other hand, some studies suggested that the virus 
induced a late IFN action rather than a complete block of its 
production and effects on cells (Park and Iwasaki, 2020). 
Moreover, research with the SARS-CoV-infected mouse model 
showed that IFN-I was detectable in the lung for several hours 
after the viral load peak (Channappanavar et al., 2019). Also, in a 
study with a small cohort of COVID-19 patients was found a 
strong relationship between IFN-α and viral load and disease 
severity, concluding that high concentrations of IFN in the late 
phases of the infection were inefficient in decreasing the viral load 
and that IFN possibly was the most potent in the early phases of 
the disease (Wei et al., 2020).

Hyperglycemia can impair adaptive immunity through the 
induction of oxidative stress. Specifically, the increase in 
intracellular glucose concentration increases the mitochondrial 
proton gradient, releasing ROS through different sources 
(Rask-Madsen and King, 2013). Oxidative stress has a 
detrimental effect on CD8+ T-cell responses. Specifically, 
oxidative stress reduces the production of crucial effector 
cytokines, such as TNF-α and IFN-gamma, by peripheral blood 
T cells after stimulation with an MHC-I-specific influenza 
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virus peptide (Malmberg et  al., 2001). This effect is more 
pronounced in memory T cells (Hofstetter et  al., 2016). 
Uncontrolled oxidative stress directs T-cell signaling and 
activation, potentially leading to its dysfunction.

Recently, the stress response at the cellular level was 
reorganized into a convergent signaling pathway called integrated 
stress response (ISR), which can be  activated by multiple 
physiological and pathological situations or stressors, including 
hypoxia, viral infection, and intrinsic stress to cells, such as 
endoplasmic reticulum (ER) stress. The ISR signaling pathway is 
initiated when different stressors activate at least one member of 
a family of four serine/threonine kinases PKR-like ER kinase 
[PERK double-stranded RNA-dependent protein kinase (PKR)], 
heme-regulated eIF2a kinase (HRI), and general control 
nonderepressible 2 (GCN2) (Pakos-Zebrucka et  al., 2016). A 
decrease in protein synthesis is caused by phosphorylation of 
E74-like factor 2 (elF2) and, at the same time, promotes cell 
survival and recovery, but the final response depends on whether 
cell stress is severe or not (Santos et al., 2021).

Specifically, for COVID-19, viral RNA fragments can activate 
PKR, which will induce serine phosphorylation of IRS-1 and IR 
(Figure 2). In addition, the cytokine storm and an increase in 
hormone signaling, such as cortisol, can activate some of the four 
kinases and contribute to IR. In addition, IR in adipose tissue can 
induce macrophage infiltration, leading to an inflammatory state. 

An important molecular mechanism associated with insulin 
signaling is the protein complex called mTORC2, which is 
activated by AKT and is an essential mediator of glucose 
metabolism and gene expression. An important gene suppressed 
by mTORC2 is the chemokine Ccl2, a key monocyte-
chemoattractant (Huang et  al., 2016). Thus, in IR, there is a 
reduction in mTORC2 and an increase in the infiltration of M1 
macrophages into tissues. These data show that inflammation 
induced by IR may aggravate the cytokine storm characteristic of 
COVID-19 (Santos et al., 2021).

In CD4+ and CD8+ T cells, COVID-19 inhibits the activation 
of mTORC1, which reduces glycolytic activity, causing 
mitochondrial dysfunction and increased susceptibility to 
apoptosis (Liu et al., 2021). Accordingly, the expression levels of 
GLUT1 are decreased in the T cells of patients with severe 
COVID-19 compared to healthy controls or patients infected with 
influenza virus. However, there are contradictory results. De Biasi 
et al. showed that T cells of patients with COVID-19 have a similar 
capacity for metabolic reprogramming as compared to cells from 
uninfected patients (De Biasi et al., 2020).

In patients with DM (type 1 and type 2) (especially people 
with overweight and IR), COVID-19 can elevate IR. Even mild 
COVID-19 infection can promote pro-inflammatory responses, 
characterized by increased TNF-α, IL-10, IL-1β, IL-6, and Ccl2, 
leading to IR. Moreover, overweight, which is generally 

FIGURE 1

Possible Role of Sars-Cov-2 in Monocyte Metabolism. After the interaction of SARS-COV-2 with ACE2, the viral fragment binds to TRL3, leading to 
the decrease of genes related to TCA activity. There is a mtROS increase and HIF-1α activation, followed by the increase of genes related to 
glucose uptake. HIF-1α and TLR3 leads to transcription of genes related to pro-inflammatory cytokines, expression of ACE2 and genes related to 
response to virus infection and viral replication. SARS-CoV-2, Severe Acute Respiratory Coronavirus 2; HIF-1α, Hypoxia inducible factor-1 α; TCA, 
citric acid cycle; GLUT, glucose transporter; mTROS, mitochondrial reactive oxygen species; TLR, toll like receptor.

https://doi.org/10.3389/fmicb.2022.1037469
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lobato et al. 10.3389/fmicb.2022.1037469

Frontiers in Microbiology 11 frontiersin.org

associated with DM2, elevates the cytokine response, 
exacerbating IR (Pal and Bhadada, 2020). SARS-CoV-2 also 
increases serum levels of fetuin-A, an a2 Hermans-Schmid 
glycoprotein associated with IR (Yamasandhi et  al., 2021). 
Therefore, glycemia adjustment in hospitalized COVID-19 
patients is vital, and the screening to identify undiagnosed 
cases of DM is markedly relevant (Hafidh et al., 2020). On the 
other hand, hypoglycemia promotes an increased incidence of 
cardiovascular episodes in patients with DM, raising platelet 
activity, and mobilizing pro-inflammatory mononuclear cells. 
Therefore, COVID-19 worsens the glycemic profile in 
individuals with underlying DM, further weakening the innate 
immune response and promoting the liberation of 
pro-inflammatory cytokines (Gazzaz, 2021).

In addition to exacerbated glycemic changes, SARS-CoV-2 
also activates complement regulators and complement (Bhaskar 
et  al., 2020), which increases coagulopathy and the cytokine 
storm, two dangerous complications in severe COVID-19 
(Bhaskar et al., 2020). The SARS-CoV-2 invasion triggers a fast 
innate immune action by leukocytes (e.g., neutrophils and 
macrophages), mostly by type I IFN. Then, viral particles stimulate 
a complement cascade via the lectin pathway. The complement 
peptides C3a and C5a are important chemoattractant molecules 
and promote the migration of neutrophils to the site of infection. 

The complement membrane attack complex (MAC) causes cell 
death, releasing damage-associated molecular patterns (DAMPs) 
(Larenas-Linnemann et  al., 2020). If this immune response is 
ineffective, considerable damage might emerge in capillaries (or 
other small vessels nearby the alveolar spaces), an event that can 
activate a pro-coagulant condition. With further virus persistence, 
complement-initiated damage to vessels increases, and 
inflammatory cells promote a stronger and wider burst of 
cytokines, which sustains bidirectional progress of the immune–
coagulation axis (Pryzdial et al., 2022).

C3a, and C5a (together with immunoglobulin IgG and C4 
consumption) have been found at high levels in patients with 
COVID-19, elevating according to the severity of the disease (Gao 
et  al., 2020; Marcos-Jiménez et  al., 2020). C5a has a strong 
chemotactic action, influencing the formation of NETs (de Bont 
et  al., 2019) and the migration of neutrophils (Ehrengruber 
et al., 1994).

Complex type serine proteases are extended by independent 
additional areas primarily at the N-terminus and interact with 
many other proteins in complex patterns. In this sense, typical 
representatives are clotting components and elements of the 
complement cascade (Pryzdial et al., 2022). Interestingly, the 
acceleration of the clotting process and clot formation in whole 
blood and platelet-poor plasma are physiological events that 

FIGURE 2

Potentiating Mechanisms of Virus Infection on Insulin Resistance State in Dm2 Patients. In patients with DM2 infected with COVID-19, there is an 
increase of cytokines, including IL-6, TNF-α, IFN-gamma, IL-1β, IL-10, and IL-2 leading to cytokine storm. IL-6 is related to the differentiation of Th-
17 lymphocytes profile. This polarization process occurs with increased metabolic demand of lymphocytes, mainly through TCA and OXPHOS. On 
the other hand, the viral fragment of SARS-CoV-2 leads to activation of PKR (Protein kinase R), resulting in the serine phosphorylation of IRS-1/2, 
leading to the progression of insulin resistance. Together, cytokine storm and insulin resistance increase the risk of severity/mortality in individuals 
with DM2. TCA, citric acid cycle; OXPHOS, oxidative phosphorylation; PKR, Protein kinase R.
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FIGURE 3

Interplay among Neutrophil, Cytokine Storm, AND Multi-Organ Dysfunction In Covid-19 Patients. Following the host-viral interaction, the SARS-
CoV-2 conducts a signaling cascade of crosstalking among the virus recognition mechanism, neutrophil activation, and inflammatory stimuli. After 
chemotaxis and neutrophil (PMNs) recruitment (i), it occurs cell activation followed by inflammation (ii), and cytokine storm (iii). During these 
immune events, the NETosis process can protect the host during the virus response by NET clearance (iv). However, exacerbating 
hyperinflammation in COVID-19 patients is also possible, thus leading to endothelial dysfunction (v), oxidative stress, and metabolic disturbances, 
which can later result in multiple organ disorders. SARS-CoV-2: severe acute respiratory syndrome coronavirus-2; PMNs, neutrophils; NETs, 
neutrophil extracellular traps; TNF, tumor necrosis factor; IL, interleukin; NE, neutrophil elastase; MPO, myeloperoxidase.

can be  noted in the pathophysiology of COVID-19 (Parato 
et al., 2021).

NE is a serine protease stored within the primary granules of 
neutrophils. Both the activity and level of NE are higher in blood 
samples from patients with severe COVID-19 with ARDS (Guéant 
et  al., 2021). After being liberated into plasma, NE is quickly 
inactivated by endogenous protease inhibitors. In vitro analysis 
demonstrates that sera from COVID-19 patients restrain the 
activity of exogenous NE, indicating that the NE in the blood of 
patients with COVID-19 presents a degree of resistance to its 
endogenous inhibitors (Leppkes et al., 2020).

The plasma kallikrein–kinin system (KKS) includes a group 
of plasma proteins that respond to tissue damage and 
pathophysiological stimuli, specifically a non-enzymatic cofactor 
(high-molecular-weight kininogen) and two serine proteinases 
(prekallikrein and coagulation factor XII) (Colman and Schmaier, 
1997). KKS proteins interact with many pathophysiologic systems, 
such as the complement and immune systems (Wu, 2015). SARS-
CoV-2 disrupt the renin-angiotensin–aldosterone system (RAAS) 
and KKS, leading to the bradykinin storm, a response associated 
with increased expression of bradykinin and of its resulting 
downstream mediated effects. In such a condition, bradykinin is 
at the center of many important symptoms of COVID-19, such as 
leaky blood vessels, loss of sense of taste and smell, organs 
abnormal coagulation, and fluid accumulation in tissues (Rex 
et al., 2022).

Complement activation also triggers NETs in COVID-19 
(Skendros et al., 2020). The sera from COVID-19 patients trigger 
NET release by healthy control neutrophils in vitro (Zhou et al., 
2020b), and viable SARS-CoV-2 directly promotes human 
neutrophils to release NETs in a dose-dependent manner (Veras 
et al., 2020).

COVID-19 patients who were admitted to the ICU had a 
greatly elevation in blood neutrophil counts as compared to other 
SARS-CoV2-positive patients with less severe symptoms (Delgado-
Rizo et  al., 2017; Zhou et  al., 2020a). Besides, an elevation in 
neutrophils and the neutrophil-to-lymphocyte ratio (NLR) suggests 
the occurrence of severe or critical diseases with a poor prognosis 
(Zhang et  al., 2020). Nicolai et  al. found that patients with 
COVID-19 have neutrophil–platelet aggregates in blood samples 
and a different platelet and neutrophil response pattern, which 
changes with the disease severity (Nicolai et al., 2020).

Middleton et al. (Middleton et al., 2020) showed that plasma 
MPO-DNA complexes are elevated in COVID-19 patients and 
that the increased NET formation correlates with COVID-19-
related ARDS. These findings indicate the timely application of 
therapeutic interventions that can disrupt the vicious cycle of 
COVID-19 immunothrombosis/−thromboinflammation by 
targeting neutrophil response and NET formation (Figure  3). 
More in-depth research into the neutrophil response mechanism 
targeting NETosis in the different phases of COVID-19 is 
discussed by Borges et al. (2020).

https://doi.org/10.3389/fmicb.2022.1037469
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lobato et al. 10.3389/fmicb.2022.1037469

Frontiers in Microbiology 13 frontiersin.org

Concluding remarks

A better understanding of obesity and type 2 diabetes mellitus 
and severe complications after COVID-19 infection is crucial for the 
treatment to prevent severe symptoms and complications in these 
patients. Chronic inflammation and hyperglycemia, specific and 
usual characteristics of obesity and DM2, contribute to metabolic 
disturbances in different leukocytes, including neutrophils, 
lymphocytes, and macrophages, favoring the pro-inflammatory 
response of these cells. In addition, SARS-CoV-2 replication is 
favored by metabolic characteristics of these cells in DM2 and 
obesity condition. Thus, obesity and DM2 are important risk factors 
for pro-inflammatory response and metabolic dysregulation that can 
favor the occurrence of the cytokine storm, implicated in the severity 
and high mortality risk of these patients with COVID-19. At the 
present, there are limited and few detailed studies about the 
metabolic changes in leukocytes of obese and type 2 diabetic patients 
during COVID-19. Additional works addressing the modulation of 
metabolic pathways are required for the comprehension of the 
mechanisms involved in this process. Therefore, this better 
comprehension will be fundamental to direct further studies for the 
investigation and identification of potential molecular and metabolic 
targets for the prevention and/or treatment of COVID-19 in obese 
type 2 diabetic patients, aiming to reduce the pro-inflammatory 
response and metabolic disturbances associated with the worse 
prognosis in these individuals.
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