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Metagenomes can be considered as mixtures of viral, bacterial, and other eukaryotic
DNA sequences. Mining viral sequences from metagenomes could shed insight into
virus–host relationships and expand viral databases. Current alignment-based methods
are unsuitable for identifying viral sequences from metagenome sequences because
most assembled metagenomic contigs are short and possess few or no predicted
genes, and most metagenomic viral genes are dissimilar to known viral genes. In this
study, I developed a Markov model-based method, VirMC, to identify viral sequences
from metagenomic data. VirMC uses Markov chains to model sequence signatures
and construct a scoring model using a likelihood test to distinguish viral and bacterial
sequences. Compared with the other two state-of-the-art viral sequence-prediction
methods, VirFinder and PPR-Meta, my proposed method outperformed VirFinder
and had similar performance with PPR-Meta for short contigs with length less than
400 bp. VirMC outperformed VirFinder and PPR-Meta for identifying viral sequences in
contaminated metagenomic samples with eukaryotic sequences. VirMC showed better
performance in assembling viral-genome sequences from metagenomic data (based
on filtering potential bacterial reads). Applying VirMC to human gut metagenomes from
healthy subjects and patients with type-2 diabetes (T2D) revealed that viral contigs could
help classify healthy and diseased statuses. This alignment-free method complements
gene-based alignment approaches and will significantly improve the precision of viral
sequence identification.

Keywords: metagenome, Markov chain, virus, assembly, contigs

INTRODUCTION

Viruses are obligate intracellular parasites that probably infect all cellular forms of life (Breitbart and
Rohwer, 2005). At least 1031 virus particles exist globally at any given time in most environments
in which the number of detectable virus particles exceeds the number of bacterial cells by 10-fold
(Edwards and Rohwer, 2005; Rosario and Breitbart, 2011; Mokili et al., 2012; Chow and Suttle,
2015). Bacterial viruses represent the most numerous viral entities, and they affect host bacteria
(Breitbart and Rohwer, 2005). For example, in the human gut microbiome, alterations in the relative
abundances of gut viruses can influence type-2 diabetes (T2D) and inflammatory bowel disease
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(Norman et al., 2015; Ma et al., 2018). In soil and aquatic
environments, phages can also play important roles in
influencing bacterial biogeochemical processes (Wommack
and Colwell, 2000; Suttle, 2005; Kimura et al., 2008).

Traditional views regarding virus–host interactions for viral
communities have been limited due to virus-isolation techniques;
in particular, a small fraction of viruses (less than 15%) could
be isolated from known phyla of prokaryotic hosts (Roux et al.,
2015b). However, high-throughput sequencing and metagenomic
approaches have radically changed the state of virology research,
with many more viruses now known solely based on sequence
data than have been characterized experimentally (Labonte
and Suttle, 2013; Dayaram et al., 2015, 2016; Rosario et al.,
2015; Krupovic et al., 2016). Many metagenomic studies rely
on the approach of selectively capturing and sequencing viral
particles outside prokaryotic host cells; however, sequencing
cellular fraction samples can also reveal viral sequences. Previous
research showed that the human gut prokaryote metagenome
was comprised of 4–17% viral sequences (Minot et al., 2011).
Phage sequences found in the prokaryotic host cell could be from
lysogenic virus that integrated into the host genome, or the lytic
virus bound to specific host cells not released to the surrounding
environment (Knowles et al., 2016; Song, 2020). Thus, existing
virome metagenomic studies cannot capture sequences from
viruses replicating in prokaryotic host cells.

Metagenome sequences can be viewed as a mixture of
viral, bacterial, and other eukaryotic sequences. Mining viral
sequences from metagenomes can increase the understanding of
viruses and their associations with host cells. The first crucial
step is to identify viral sequences from metagenomes. Tools
for identifying proviruses from bacterial genomes have been
developed previously, including Phage_Finder (Fouts, 2006),
Prophinder (Lima-Mendez et al., 2008), PHAST (Zhou et al.,
2011), and PhiSpy (Akhter et al., 2012). These prophage detectors
generally use sliding windows and a reference-based search
for known virus genes, and then predict those regions as
being derived from proviruses. These tools are not suitable for
identifying viral sequences from metagenome sequences because
most assembled metagenome contigs are short and possess
few or no predicted genes; furthermore, most virus genes in
metagenomes are not similar to known virus genes. For example,
it is estimated that only about 15% of viruses in the human gut
microbiome and 10% in the ocean are similar to known viruses
(Hurwitz and Sullivan, 2013; Norman et al., 2015).

Previous studies performed to identify viral sequences from
metagenomic samples mainly used de novo assembly first, after
which viral contigs were predicted from the assembled contigs,
using alignment-based (Roux et al., 2015a) and alignment-free
methods (Ren et al., 2017, 2020; Fang et al., 2019). However,
assembling metagenomic sequence reads to generate viral and
bacterial contigs may produce many errors that are caused by
the mosaic organization of viral genomes or sequence similarities
between viral and bacterial genomes (Hendrix et al., 1999). Thus,
it is necessary to obtain sequencing reads from viral genomes
before assembly to reduce errors.

K-mer-based sequence comparisons have been widely
used in many areas, including phylogenetic tree construction

(Song et al., 2013), metagenomic sample comparison (Jiang
et al., 2012; Song et al., 2019), metagenomic reads binning (Lu
et al., 2017), virus classification (Song, 2020), and identifying
motifs (Narlikar et al., 2013). VirFinder (Ren et al., 2017) is a
k-mer-based machine-learning method that avoids gene-based
similarity searches. Thus, the advantage of this method is that
it can detect viral contigs as short as 1,000 bp. In contrast,
metagenomic assemblies produce contigs of various lengths
ranging from hundreds of base pairs (bp) to 105 bp or more. The
VirFinder tool requires the construction of training models for
contigs of different length ranges. Otherwise, it cannot achieve
the best performance in terms of viral-sequence detection. In
addition, the read length from metagenomic samples is mainly
200–300 bp, which is beyond the accuracy range of the VirFinder
method. PPR-Meta (Fang et al., 2019) is also a k-mer-based
method combined with deep learning. Like VirFinder, PPR-
Meta relies on different modules for predicting sequences of
different lengths, but had superior performance. Therefore, it
is necessary to develop a new method to classify short reads
before de novo assembly that do not rely on the length of contigs
used for training.

In this study, I developed a Markov model-based method,
VirMC, to identify viral sequences from metagenomic data.
VirMC uses Markov chains to model the sequence signatures and
construct a scoring model using a likelihood test to distinguish
viral and bacterial sequences. I evaluated the performance of
VirMC in detecting viral sequences (including novel viruses)
over a range of read lengths, including short reads (200
or 300 bp) up to contig-level reads (≥1,000 bp). VirMC
showed better or similar performance with VirFinder and
PPR-Meta in identifying short and long reads. Also, VirMC
exhibited improved performance over VirFinder and PPR-Meta
in correctly identifying viral sequences from contaminated
metagenomic samples with eukaryotic sequences. VirMC was
applied to classify sequencing reads before de novo assembly,
which improved the assembly of viral genomic sequences from
metagenomic samples. VirMC was also used to identify viral
sequences in human gut-metagenomic data from healthy subjects
and patients with T2D. Some of these viral contigs could be
used to predict the disease status, demonstrating the potential
use of viral sequences in diagnosing human diseased states. The
software is available at https://github.com/songkai1987/VirMC.

MATERIALS AND METHODS

Viral and Bacterial Genomes Databases
In this study, I used databases that were also used previously by
Ren et al. (2017). The databases were constructed by downloading
1,562 viral genomes that infected Bacteria and Archaea, and the
31,986 prokaryote genomes (including Bacteria and Archaea)
from the National Center for Biotechnology Information (NCBI)
before 31 May 2015. I collected another 753 viral genomes and
5,865 bacterial genomes from the NCBI after May 2015. To
mimic fragmented metagenomic sequences, for a given length (L)
(L = 200, 300, 400, 500, 1,000, or 3,000 bp), viral genomes were
split into non-overlapping fragments of length L, and the same
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number of non-overlapping fragments of length L were randomly
subsampled from the bacterial genomes. Fragments generated for
viral genomes discovered between 1 January 2014 and 31 May
2015 were used as validation sets, and those generated after 1 June
2015 were used as testing sets. To generate validation and testing
datasets containing 10, 50, or 90% viral contigs, the number of
viral contigs was set as shown in Table 1, and the contigs were
combined with nine times more, equal numbers, or ninefold less
randomly sampled bacterial contigs discovered after 1 June 2015,
respectively. These datasets were named as Simulated Data Set
One which were used to evaluate the performance of VirMC in
classifying the viral and bacterial contigs.

Human, Fungi, and Protozoan Genomes
Databases
The human genome was downloaded from ensemble databased1.
In addition, I downloaded the 277 Fungi genomes and 83
Protozoan genomes that were also used previously (Ponsero and

1http://ftp.ensembl.org/pub/release-104/fasta/homo_sapiens/dna/Homo_
sapiens.GRCh38.dna.alt.fa.gz

TABLE 1 | The number of fragments generated from viral and bacterial genomes
discovered after 1 January 2014.

Number of viral fragments

Fragment length January 2014–May 2015 After May 2015

200 bp 125,666 266,204

300 bp 83,832 177,330

400 bp 62,833 132,890

500 bp 50,350 106,228

1,000 bp 25,087 52,902

3,000 bp 8,246 17,345

Number of bacterial fragments (90%)

Fragment length January 2014–May 2015 After May 2015

200 bp 1,130,994 2,395,836

300 bp 754,488 1,595,970

400 bp 565,497 1,196,010

500 bp 453,150 956,052

1,000 bp 225,783 476,118

3,000 bp 74,214 156,105

Number of bacterial fragments (10%)

Fragment length January 2014–May 2015 After May 2015

200 bp 13,963 29,579

300 bp 9,315 19,704

400 bp 6,982 14,766

500 bp 5,595 11,804

1,000 bp 2,788 5,878

3,000 bp 917 1,928

For testing datasets with 50% viral contigs, the number of bacterial contigs was
the same as the number of viral contigs. For testing datasets with 10 and 90% viral
contigs, the number of bacterial contigs was shown in this table.

Hurwitz, 2019). To mimic fragmented metagenomic sequences,
the genomes were also split into non-overlapping fragments
of length L (L = 200, 300, 400, 500, 1,000, or 3,000 bp). To
generate the metagenomic samples with contaminated eukaryotic
sequences, the contigs were randomly sampled from Human,
Fungi, and Protozoan genomes to combine with viral and
bacterial contigs in testing dataset, respectively. These datasets
were named as Simulated Data Set Two which were used to
evaluate the performance of VirMC in classifying identifying viral
contigs in simulated contaminated metagenomic samples.

Building Markov Models From Viral and
Bacterial Genome Sequences
For a set or a single genomic sequence S, N(w) is the
total number of occurrences of the k-mer w = w1w2 . . .wk
and its complementary k-mer w̄, wi ∈ A = {A,C,G,T} , i =
1, 2, . . . , k. The k-th-order Markov chain is defined using the
4k × 4 transition probability matrix. The maximum-likelihood
estimation of the Markov chain’s conditional probability
of observing nucleotides wk+1 given preceding nucleotides
w1w2 . . .wk is

PM
(
wk+1|w1w2 . . .wk

)
=

N(w1w2 . . .wk+1)

N(w1w2 . . .wk)

The Markov Model-Based Prediction
Method
First, the k-th order Markov chains were used to model
viral and bacterial genomic sequences obtained before 1
January 2014. I calculated the GC frequency of each bacterial
genomic sequence, grouped these bacterial genomic sequences
into different bins using the quantiles of the GC-frequency
distribution, and then constructed Markov models using the
genomic sequences in each bin.

Suppose the M different k-th order Markov chains
(M1,virus

k , M2,virus
k , . . . ,MM,virus

k ) were used to model the
virus genomic sequences before 1 January 2014, so was well
with bacterial genomic sequences. For a contig sequence
y = y1y2 . . . yN , the log-likelihood under the Markov chain Mk
is

LL
(
y|Mk

)
=

1
N − k

N−k∑
i =1

logPMk(yi+k|y1y2 . . . yi+k−1)

Then, the statistic λ was defined to measure the likelihood that
the contig belonged to a virus or bacteria:

λ =
max

(
LL
(
y|M1,virus

k

)
, LL

(
y|M2,virus

k

)
, .., LL

(
y|MM,virus

k

))
max

(
LL
(
y|M1,host

k

)
, LL

(
y|M2,host

k

)
, .., LL

(
y|MM,host

k

))(1)

If λ > 1, then the probability of a contig belonging to virus
was larger than it belonging to bacteria. If λ < 1, then the
probability of a contig belonging to bacteria was larger than it
belonging to a virus.

In real metagenomic experiments, the assembled contigs or
sequencing reads have various lengths. To compare the scores of
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contigs with different lengths, for each query contig, a p value was
computed by comparing the score with the null distribution, that
is, the distribution of scores for the tested bacterial contigs. The p
value was computed as the fraction of tested bacterial contigs that
had greater scores than the score of the query sequence.

Analysis of Simulated Metagenomic
Samples
Metagenomic samples were simulated based on species-
abundance profiles derived from a real human gut metagenomic
sample (accession ID SRR061166, Platform: Illumina) from
the HMP (Peterson et al., 2009), which is commonly used for
metagenomic data analysis (Boisvert et al., 2012; Luo et al., 2014;
Brittnacher et al., 2016; Rampelli et al., 2016). These datasets
were named as Simulated Data Set Three.

I used the abundance profiles generated by a previous
study with VirFinder (Ren et al., 2017) using 1,562 complete
virus genome sequences and 2,698 complete bacterial genome
sequences downloaded from NCBI RefSeq. Then, I used NeSSM
software (Jia et al., 2013) to simulate metagenomic samples with
paired-end short reads (150 bp in length) in an Illumina MiSeq
setting mode, based on the abundance profiles.

Samples with 20 and 40 million sequencing reads were
generated using the viral and bacterial genomic sequences. The
relative abundances of viral and bacterial reads were kept the
same, and then the virus and bacterium reads were mixed to make
20 and 50% viral samples. The λ score of each paired-end read
was calculated. The paired-end reads with scores higher than a
threshold value were predicted to be from viral genomes and were
used for assembly. metaSPAdes software (Bankevich et al., 2012;
Nurk et al., 2017) was used for de novo assembly of the simulated
metagenome samples, using the command “spades.py–meta.”
Only contigs of ≥300 bp were used for downstream analysis.

To obtain the true labels for the assembled contigs, reads in
the simulated data were mapped to the set of contigs using “bwa
mem.” A contig was labeled as a viral contig if it was assembled
from reads generated by viral genomes. Similarly, a contig was
labeled as a bacterial contig if it was assembled from reads
generated by bacterial genomes. A contig was labeled as chimeric
if it was assembled from a mixture of viral and bacterial reads.
The assembled viral contigs were mapped to the viral genomes
to estimate the assembly precision between filtered and unfiltered
assemblies. The genome completeness of the assembled contigs
was evaluated using the software CheckV (Nayfach et al., 2020).

Assembly and Analysis of Human Gut
Metagenomic Samples From a T2D
Study
Human gut metagenomic samples from T2D patients and healthy
controls in China were downloaded from NCBI Sequence Read
Archive under accession numbers SRA045646 and SRA050230
(Qin et al., 2012). Forty samples were selected randomly as the
“training set” and were comprised of 20 samples from patients
with T2D and 20 samples from healthy controls. Another 40
samples were randomly selected and used as the “testing set.”

The λ score of each paired-end read in the training dataset
was calculated. The reads with the top 10% values were filtered
for assembly. metaSPAdes software (Bankevich et al., 2012; Nurk
et al., 2017) was used to cross-assemble the filtered reads in the
training dataset using the default setting.

COCACOLA (Lu et al., 2017) was used to cluster viral contigs
predicted by VirMC, based on tetranucleotide frequencies and
contig coverages. The fragments per kilobase per million mapped
reads (FPKM) values were determined by mapping sample reads
with Bowtie2 software (Langmead and Salzberg, 2012), using the
default settings, and were averaged for each bin. FPKM values
were used to train a classification model to classify the disease
status (0 for healthy subjects and 1 for patients with T2D).
A logistic-regression model with lasso regularization was used
to enhance the prediction accuracy and interpretability. Thus,
a subset of viral bins was chosen to achieve the best prediction
accuracy. A ROC curve was used to evaluate the classification
performance with another 40 samples in the testing dataset.

RESULTS

Viral and bacterial genomic sequences could be modeled as
different Markov chains, based on their varied GC frequency and
k-mer-usage patterns. The guanine-cytosine (GC) frequency of
each bacterial genomic sequence was calculated. These bacterial
genomic sequences were grouped into different bins using the
quantiles of the GC-frequency distribution, and a Markov model
was constructed for each bin.

The Effects of the Number of Cluster
Bins and the Order of Markov Models
In this part, the Simulated Data Set One was used to determine
how the number of cluster bins and the order of the Markov
model would affect the predictive performance. To generates a
prediction for each query sequence, VirMC first extracted the
k-mer features from the bacterial and viral genomic sequence
before 1 January 2014 and then generated a λ score (query score)
based on the Markov models, with a higher score indicating a
higher possibility that the sequence was viral.

After training the Markov model, VirMC was validated with
equal numbers of viral and bacterial contigs subsampled from
genomes sequenced between 1 January 2014 and 31 May 2015;
these genome sequences were also used in a previous study
(Ren et al., 2017). Receiver operating characteristic (ROC) curves
were used to validate the performance of this classifier. The area
under the curve (AUC) values increased as the Markov order
and contig length increased (Figure 1A, number of bins = 4;
Supplementary Figure 1, number of bins = 1, 2, 3, and 5). For
contigs with a length of 3,000 bp, performance was relatively
stable at a Markov order of ≥8. For contigs with a length
of ≤1,000 bp, the performance still appeared to increase above a
Markov order of 8. Even for contigs with lengths of 300 or 400 bp,
the AUC values were >0.90 when the Markov order was ≥8.
For contigs with a length of 200 bp, the AUC value was almost
0.90 when the Markov order was 9. Thus, these high area under
the curve for receiver operator characteristic (AUROC) curve
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FIGURE 1 | The impact of Markov orders and numbers of cluster bins on the performance of VirMC. Error bars depict the standard error determined from 30
bootstrap samples from the validation dataset. (A) Area under the curve for receiver operator characteristic (AUROC) curves are shown when VirMC was trained
using different Markov orders and tested using different contig lengths. (B) AUROC curve values for VirMC results when the training model used a Markov order of 9
and different numbers of cluster bins.

scores demonstrated that my method could correctly identify
viral sequences with high-throughput sequencing reads.

Next, I determined the relationship between the classification
performance and the number of cluster bins. For contigs with
a length of 3,000 bp, the AUC values slightly decreased
when the number of cluster bins was larger than 4

(Figure 1B, Markov order = 9). For other contigs with
lengths ranging from 200 to 1,000 bp, the AUC values
were relatively stable when the number of cluster bins
was larger than 4. For other fixed Markov orders (ranging
from 5 to 8), the performance was also relatively stable
at cluster bin number of ≥4 (Supplementary Figure 2).
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Markov models constructed from 3, 4, or 5 bins showed
similar performances.

Metagenomic datasets may contain different proportions of
viral and bacterial contigs, which can potentially affect the
performance of a tool that is validated based on equal proportions
of viral contigs. In practice, the fraction of viral contigs will vary
with different types of samples, so the VirMC was evaluated as
described above using subsampled viral and bacterial contigs,
sequenced between 1 January 2014 and 31 May 2015, but with
mixtures containing 10 and 90% viral sequences. The AUROC
scores did not differ significantly between the mixtures with
different fractions of viral sequences (Supplementary Figure 3).
Therefore, I fixed the number of cluster bins at 4 and the Markov
order at 9 for subsequent analyses. The scatterplots of the log-
likelihoods for contigs with different length under cluster bin
number of 4 and Markov order of 9 for these contigs were shown
in Figure 2.

Comparing the Performances of the
VirMC, VirFinder, and PPR-Meta Tools
I compared the ability of VirMC to correctly identify viral contigs
with the previously developed methods, PPR-Meta (Fang et al.,
2019) and the VirFinder method (Ren et al., 2017). To provide
a fair comparison, the training and validating sets of contigs
subsampled from viral and bacterial genomes sequenced before

31 May 2015 in Simulated Data Sets One were combined and
used for the training datasets. The contigs obtained from viral
and bacterial genomes sequenced after 1 June 2015 with different
mixture fractions were used for the testing datasets.

Area under ROC curves were used to evaluate the
performance of these three classifiers. For contigs with length
larger than 500 bp, PPR-Meta had larger AUROC values than
VirMC and VirFinder, suggesting that PPR-Meta performed
better than VirMC and VirFinder when the contig length was
long (Figure 3). However, for contigs with length less than
400 bp, VirMC had similar performances with PPR-Meta. VirMC
and PPR-Meta all performed better than VirFinder for contigs
length less than 1,000 bp. The AUROC scores also showed no
obvious difference between the equal and unequal fractions of
viral mixtures (Supplementary Figure 4).

Comparing the Performances of VirMC,
VirFinder, and PPR-Meta Tools on
Contaminated Metagenomic Samples
In addition to viral and bacterial genomic sequences,
metagenomic samples also contain eukaryotic sequences,
such as Human, Fungi, and Protozoa. In this part, the Simulated
Data Set Two was used to evaluate the performance of different
tools on contaminated metagenomic samples.

FIGURE 2 | The scatterplots of the log-likelihoods for contigs with different length. The number of cluster bins was 4 and Markov order was 9 for constructing the
training model. The length of contigs were 200, 500, 1,000, and 3,000 bp.
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FIGURE 3 | Performance of VirMC, VirFinder, and PPR-Meta in predicting viruses for contigs with different lengths. The error bars depict standard errors determined
from 30 bootstrap samples from the testing dataset. AUROC are shown when VirMC was trained using a Markov order of 9 and a cluster bin number of 4.

Firstly, I tested the classification accuracy of these three tools
for eukaryotic sequences. VirFinder and PPR-Meta had a much
stronger misclassification of eukaryotic sequences than VirMC
(Figure 4). For contigs from human genomes with a length of
200 bp, the False Positive Rates (FPRs) of VirFinder and PPR were
both more than 50%, while the FPR of VirMC was about 30%. For
contigs with a length of 3,000 bp, the FPR of PPR-Meta was about
20%, while the FPR of VirMC was only 4%. VirMC also had better
performance in classification of eukaryotic sequences from Fungi
and Protozoa (Figure 4).

In order to evaluate the abilities of these three tools to identify
viral sequences from contaminated metagenomic samples, the
contigs were randomly sampled from Human, Fungi and
Protozoan genomes to combine with viral and bacterial contigs,
respectively. The eukaryotic sequences were chosen to account
for 10% of the entire dataset. VirMC performed better than
VirFinder and PPR-Meta, especially for contigs length lower than
400 bp (Figure 5). For samples with human contigs, the AUROC
values of VirMC were 0.871, 0.891, 0.903, 0.910, 0.926, and
0.940 for 200-, 300-, 400-, 500-, 1, 000-, and 3,000-bps contigs,
which were larger than the values of VirFinder and PPR-Meta,
respectively. For metagenomic samples with Fungi or Protozoa
contigs, VirMC also performed better than VirFinder and PPR-
Meta.

The Abilities of VirMC to Predict Novel
Viruses
To assess the ability of VirMC to identify novel viruses, I focused
on the 45 viruses used in a previous study conducted by Ren et al.
(2017) that showed no significant nucleotide similarity (blastn
searches, E values < 10−5) to previously deposited viral genome

sequences, which could be considered novel viruses. Using a p
value cut-off of 0.01, VirMC predicted 38 viruses, while VirFinder
only predicted 30 viruses (Supplementary Table 1).

Application: Assembling Viral Contigs
From Simulated Metagenomic Samples
Using VirMC
Because VirMC showed better performance in classifying viral
sequences with relatively short lengths (200 and 300 bp), I
evaluated the accuracy and total length of viral contigs assembled
from simulated metagenomic samples in Simulated Data Set
Three by filtering the potential non-viral paired-end sequences.
A simulated human gut metagenome with 40 million reads (20
million host reads and 20 million viral reads) was generated using
NeSSM software (Jia et al., 2013) by subsampling reads from viral
and bacterial reference genomes found in a real gut metagenomic
sample (Human Microbiome Project; HMP) at their respective
relative abundances (Ren et al., 2017). The log-likelihood score
of each paired-end read was calculated using VirMC. The reads
with scores lower than a cut off value of 1.0026 (Supplementary
Figure 5, False Discovery Rate ≤ 0.9 and Call Rate ≥ 0.8
for viral reads) were filtered before assembling. Assembly was
performed separately with filtered and unfiltered reads, using
metaSPAdes software (Bankevich et al., 2012; Nurk et al., 2017).
Contigs with lengths of ≥300 bp were reserved for subsequent
analysis, and each contig was definitively assigned as bacterial,
viral, or ambiguously chimeric (see the “Materials and Methods”
section). The assembly precision was defined using the number
of correctly assembled viral contigs divided by the number of
viral and ambiguously chimeric contigs. Assembly with filtered
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FIGURE 4 | The False Positive Rates of VirMC, VirFinder, and PPR-Meta for classifying eukaryotic contigs from Human, Fungi, and Protozoan. The eukaryotic
genomes were divided into fragments of different lengths and then used for evaluation.

FIGURE 5 | The AUROC values of VirMC, VirFinder, and PPR-Meta in predicting viral contigs from contaminated metagenomic samples with Human, Fungi, and
Protozoan sequences. The contigs were randomly sampled from Human, Fungi, and Protozoan genomes to combine with viral and bacterial contigs in testing
datasets, respectively.

reads produced more viral contigs and higher precision than
assembly with unfiltered reads (Table 2). For contigs with lengths
of 3,000–5,000, 5,000–10,000, and≥10,000 bp, the precision rates
were as high as 89.3, 91.2, and 88.1%, respectively, for assemblies
with filtered reads. However, the precision rates were only 80.5,
79.8, and 61.7%, respectively, when performing assemblies with
unfiltered reads. Because the genome completeness of short
contigs was very low, I evaluated the completeness of the
assembled contigs longer than 5 kb using the software CheckV
(Nayfach et al., 2020). The assembled contigs with filtered reads
were more complete than the contigs with total reads (Figure 6).
The total length of viral contigs assembled with filtered reads was
47.9 Mb, which was 23% higher than the viral contigs assembled

with total reads (39.0 Mb). The coverages of viral genomes were
61.4 and 50.0% for viral contigs assembled from filtered reads
and total reads, respectively. Because the short contigs (<300 bp)
were filtered in the analysis and the sequencing depth was not
deep enough, the coverages of viral genomes were not very high.
To study the effects of the sequencing depth and the fraction of
viral sequences in each sample, simulated metagenomic samples
were generated for 20 and 40 million total reads using different
viral and bacterial proportions (20% viral reads and 80% bacterial
reads; see the Materials and Methods section). The performances
in terms of the assembled length and precision were better with
filtered reads than those obtained with raw unfiltered reads, for
the depth of 20 and 40 million simulated reads, indicating that

Frontiers in Microbiology | www.frontiersin.org 8 May 2021 | Volume 12 | Article 664560

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-664560 May 15, 2021 Time: 15:16 # 9

Song Reads Binning From Metagenomic Samples

TABLE 2 | Comparison of assembly precision, using filtered reads and total reads.

20 Million reads 40 Million reads

Filtered reads Total reads Filtered reads Total reads

Contig length Contig num Precision Contig num Precision Contig num Precision Contig num Precision

300–500 bp 11,622 0.969 8,339 0.947 9,496 0.959 4,457 0.937

500–1,000 bp 6,740 0.948 6,251 0.918 5,817 0.931 4,157 0.908

1,000–2,000 bp 5,131 0.928 4,605 0.891 5,183 0.901 3,590 0.877

2,000–3,000 bp 1,719 0.929 1,596 0.858 2,030 0.878 1,504 0.843

3,000–5,000 bp 1,359 0.917 1,173 0.833 1,532 0.893 1,250 0.805

5,000–10,000 bp 865 0.935 716 0.812 1,071 0.912 878 0.798

>10,000 bp 697 0.900 628 0.631 828 0.881 886 0.617

Assembly length 44.7 Mb 37.4 Mb 47.9 Mb 39.0 Mb

N50 6.8 kb 5.2 kb 7.2 kb 5.6 kb

Coverage 57.3% 47.9% 61.4% 50.0%

variation in the sequence depth and composition ratio did not
affect the assembly results (Supplementary Table 2).

Application: Identification and Analysis
of Viral Communities in Human Gut
Metagenomes From a T2D Study
Type-2 diabetes is a heterogeneous and multifactorial disease,
influenced by several different genetic and environmental factors,
which has become a major public health issue worldwide. Qin
et al. (2012) previously reported that gut microbiota was linked to
and contributed to T2D, based on deep, next-generation shotgun
sequencing of DNA extracted from stool samples from Chinese
patients with T2D and non-diabetic control subjects. Here, I used
VirMC to reanalyse the dataset generated by Qin et al. to identify
viruses in these metagenomes.

The λ score of each paired-end read from 20 healthy subjects
and 20 patients with T2D (generated from 242 Gb of total

FIGURE 6 | The completeness of the assembled contigs with filtered reads
and with total reads.

sequence data) was calculated. The paired-end reads with the
top 10% values (λ score ≥ 1.016) were filtered for assembly
purposes. Only the resulting 15,390 contigs with high quality
(>80% completeness) and longer than 1,000 bp in length were
retained in order to achieve high prediction accuracy. VirMC
predicted 6,134 contigs as viral sequences, respectively. The False
Positive Rates were estimated at 5% using q values, which were
estimated based on the False Discovery Rate method (Storey,
2003; Dabney et al., 2010).

Contigs were binned using the COCACOLA framework (Lu
et al., 2017), based on k-mer frequencies and abundance patterns
across samples, in order to group similar contigs. This produced
153 bins for contigs predicted by VirMC. The abundance profiles
of the contig bins across 40 samples from healthy subjects and
patients with T2D were used to train classification models and
distinguish the health status. A logistic regression model with
lasso regularization was used to enhance the prediction accuracy
and interpretability. These models were then tested on another 40
samples from the same study using AUROC scores. The binned
contigs had AUROC score of 0.74 which showed that they could
be used to classify disease states.

DISCUSSION

In this study, I developed a Markov model-based method to
identify viral sequences from metagenomic data. The VirMC
method uses Markov chains to model sequence signatures and
construct a scoring model, using a likelihood test to distinguish
viral sequences from bacterial sequences. One of the biggest
contributions of VirMC is that it can correctly identify viral
sequences as short as 200 or 300 bp. In recent years, high-
throughput sequencing technology has been applied to an
increasing number of metagenomic studies and has produced
massive amounts of data (Qin et al., 2010, 2012; Falony et al.,
2016). Assembly of these sequencing data is very time consuming
and requires large computer memory resources; moreover,
assembling metagenomes poses great and complex challenges due
to genetic diversity, DNA repeats, and DNA transfer between
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strains (Miller et al., 2010). Therefore, identifying viral sequences
from assembled metagenomic contigs is difficult and shows low
precision, unless it is a prophage. In this work, I developed
another approach to identify viral contigs from metagenomic
data through two steps. First, I used VirMC to filter the paired-
end sequencing reads to obtain the potential viral reads, and
second, I assembled the filtered reads to obtain the viral contigs.
The assembled length and precision of the viral contigs were both
improved using this approach.

Viral sequences identification based on Markov Chain
(VirMC) works by training Markov models on known viral and
bacterial genomic sequences to predict the likelihood of k-mer
transition patterns used by viruses or bacterium. Compared with
VirFinder and PPR-Meta, the advantage of VirMC is that it
is not necessary to train different models for sequences with
different lengths. VirMC is suitable and flexible for analysing
metagenomic assembly results containing contigs of continuous
lengths. Genomes are complex, hierarchically organized entities
shaped largely by the forces of evolution. The primary sequence
of a genome reflects both short- and long-range correlations,
which can be viewed and modeled as Markov chains (Dehnert
et al., 2005; Ren et al., 2016). Viruses and their prokaryotic hosts
are very different biological entities, so different evolutionary
pressures have shaped their genomic spatial scale correlations.
Thus, the assumption of VirMC is that viruses and bacterial
genomes can be modeled using different Markov chains.

To distinguish viral sequences from bacterial sequences, a
statistic score, λ, which was based on likelihood ratio test was
proposed in VirMC. The larger value of λ, the greater probability
that the contig was from viral genomes. In order to illustrate how
to choose the appropriate λ values in application, the relationship
between Precision, Recall and λ values under different contig
length was given (Supplementary Figure 6). For contigs with
a length of ≤500 bp, when λ = 0.987, the Precision and Recall
curves had an intersection which could be a cut-off value. For
contigs with length of 1,000 and 3,000 bp, the λ value was
0.984. However, for the above λ values, the Precision and Recall
values were all not very high (≤90%). To get viral contigs with
high precision, the λ value should be increased. For contigs
with a length of 200 bp and Precision larger than 0.95, the λ

value should be larger than 1.013. For contigs with length of
1,000 and 3,000 bp, the λ value should be larger than 0.995 and
0.991, respectively.

Using a time point as the dividing criterion, VirMC
was trained with the viral and bacterial genomic sequences
obtained before May 2015 and correctly predicted the viral
sequences found after June 2015, which demonstrates that my
approach can be applied for classifying viral sequences in future

metagenomics studies. It is estimated that only about 15% of
viruses in the human gut microbiome and 10% in the ocean
are similar to known viruses (Hurwitz and Sullivan, 2013;
Norman et al., 2015). High-throughput sequencing technology
has greatly changed viral research, with many more viruses now
known solely from sequence data than have been characterized
experimentally (Simmonds et al., 2017). The assembled contigs
from metagenomic data are mostly short and contain little or no
genes; therefore, reference-based virus prediction is difficult to be
applied in this research field.

VirMC provides a new alignment-free k-mer-based approach
for identifying viral sequences in metagenomic data. In a side-
by-side comparison with VirFinder and PPR-Meta, PPR-Meta
had better performance than VirMC, however, for shorter contigs
(i.e., 200–400 bp), VirMC had similar performance with PPR-
Meta. In addition to viral and bacterial sequences, metagenomic
samples also contained other eukaryotic sequences which could
affect the classification accuracy of these tools. When considering
the contamination of eukaryotic sequences, VirMC had superior
performance compared with VirFinder and PPR-Meta. VirMC
provides another approach to improve the assembly of viral
genomes from metagenomic data. This approach is to first
identify viral reads and then assemble on them, which both
improves assembly accuracy and length.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

KS conceived of the project, developed the methods, performed
the computations, and contributed to the final manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant Number 11701546).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2021.664560/full#supplementary-material

REFERENCES
Akhter, S., Aziz, R. K., and Edwards, R. A. (2012). PhiSpy: a novel algorithm

for finding prophages in bacterial genomes that combines similarity- and
composition-based strategies. Nucleic Acids Res. 40:e126. doi: 10.1093/nar/
gks406

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S.,
et al. (2012). SPAdes: a new genome assembly algorithm and its applications

to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi: 10.1089/cmb.2012.
0021

Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F., and Corbeil, J. (2012).
Ray meta: scalable de novo metagenome assembly and profiling. Genome Biol.
13:R122.

Breitbart, M., and Rohwer, F. (2005). Here a virus, there a virus, everywhere
the same virus? Trends Microbiol. 13, 278–284. doi: 10.1016/j.tim.2005.
04.003

Frontiers in Microbiology | www.frontiersin.org 10 May 2021 | Volume 12 | Article 664560

https://www.frontiersin.org/articles/10.3389/fmicb.2021.664560/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2021.664560/full#supplementary-material
https://doi.org/10.1093/nar/gks406
https://doi.org/10.1093/nar/gks406
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1016/j.tim.2005.04.003
https://doi.org/10.1016/j.tim.2005.04.003
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-664560 May 15, 2021 Time: 15:16 # 11

Song Reads Binning From Metagenomic Samples

Brittnacher, M. J., Heltshe, S. L., Hayden, H. S., Radey, M. C., Weiss, E. J., Damman,
C. J., et al. (2016). GUTSS: an alignment-free sequence comparison method
for use in human intestinal microbiome and fecal microbiota transplantation
analysis. PLoS One 11:e0158897. doi: 10.1371/journal.pone.0158897

Chow, C. E. T., and Suttle, C. A. (2015). Biogeography of viruses in the sea. Ann.
Rev. Virol. 2:41.

Dabney, A., Storey, J. D., and Warnes, G. (2010). qvalue: Q-Value Estimation for
False Discovery Rate Control. R Package Version 1.

Dayaram, A., Galatowitsch, M. L., Arguello-Astorga, G. R., Van Bysterveldt, K.,
Kraberger, S., Stainton, D., et al. (2016). Diverse circular replication-associated
protein encoding viruses circulating in invertebrates within a lake ecosystem.
Infect. Genet. Evol. 39, 304–316. doi: 10.1016/j.meegid.2016.02.011

Dayaram, A., Goldstien, S., Arguello-Astorga, G. R., Zawar-Reza, P., Gomez, C.,
Harding, J. S., et al. (2015). Diverse small circular DNA viruses circulating
amongst estuarine molluscs. Infect. Genet. Evol. 31, 284–295. doi: 10.1016/j.
meegid.2015.02.010

Dehnert, M., Plaumann, R., Helm, W. E., and Hutt, M. T. (2005). Genome
phylogeny based on short-range correlations in DNA sequences. J. Comput.
Biol. 12, 545–553. doi: 10.1089/cmb.2005.12.545

Edwards, R. A., and Rohwer, F. (2005). Viral metagenomics. Nat. Rev. Microbiol.
3:504.

Falony, G., Joossens, M., Vieira-Silva, S., Wang, J., Darzi, Y., Faust, K., et al. (2016).
Population-level analysis of gut microbiome variation. Science 352, 560–564.

Fang, Z., Tan, J., Wu, S., Li, M., Xu, C., Xie, Z., et al. (2019). PPR-Meta: a tool
for identifying phages and plasmids from metagenomic fragments using deep
learning. GigaScience 8:giz066.

Fouts, D. E. (2006). Phage_finder: automated identification and classification of
prophage regions in complete bacterial genome sequences. Nucleic Acids Res.
34, 5839–5851. doi: 10.1093/nar/gkl732

Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E., and Hatfull, G. F. (1999).
Evolutionary relationships among diverse bacteriophages and prophages: all the
world’s a phage. Proc. Natl. Acad. Sci. U.S.A. 96, 2192–2197. doi: 10.1073/pnas.
96.5.2192

Hurwitz, B. L., and Sullivan, M. B. (2013). The Pacific Ocean Virome (POV):
a marine viral metagenomic dataset and associated protein clusters for
quantitative viral ecology. PLoS One 8:e57355. doi: 10.1371/journal.pone.
0057355

Jia, B., Xuan, L. M., Cai, K. Y., Hu, Z. Q., Ma, L. X., and Wei, C. C. (2013). NeSSM:
a next-generation sequencing simulator for metagenomics. PLoS One 8:e75448.
doi: 10.1371/journal.pone.0075448

Jiang, B., Song, K., Ren, J., Deng, M. H., Sun, F. Z., and Zhang, X. G.
(2012). Comparison of metagenomic samples using sequence signatures. BMC
Genomics 13:730. doi: 10.1186/1471-2164-13-730

Kimura, M., Jia, Z. J., Nakayama, N., and Asakawa, S. (2008). Ecology of viruses
in soils: past, present and future perspectives. Soil Sci. Plant Nutr. 54, 1–32.
doi: 10.1111/j.1747-0765.2007.00197.x

Knowles, B., Silveira, C. B., Bailey, B. A., Barott, K. L., Cantu, V. A., Cobianguemes,
A. G., et al. (2016). Lytic to temperate switching of viral communities. Nature
531, 466–470.

Krupovic, M., Ghabrial, S. A., Jiang, D. H., and Varsani, A. (2016). Genomoviridae:
a new family of widespread single-stranded DNA viruses. Arch. Virol. 161,
2633–2643. doi: 10.1007/s00705-016-2943-3

Labonte, J. M., and Suttle, C. A. (2013). Previously unknown and highly divergent
ssDNA viruses populate the oceans. ISME J. 7, 2169–2177. doi: 10.1038/ismej.
2013.110

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie
2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Lima-Mendez, G., Van Helden, J., Toussaint, A., and Leplae, R. (2008). Prophinder:
a computational tool for prophage prediction in prokaryotic genomes.
Bioinformatics 24, 863–865. doi: 10.1093/bioinformatics/btn043

Lu, Y. Y., Chen, T., Fuhrman, J. A., and Sun, F. Z. (2017). COCACOLA:
binning metagenomic contigs using sequence COmposition, read CoverAge,
CO-alignment and paired-end read LinkAge. Bioinformatics 33, 791–798.

Luo, C. W., Rodriguez, L. M., and Konstantinidis, K. T. (2014). MyTaxa:
an advanced taxonomic classifier for genomic and metagenomic sequences.
Nucleic Acids Res. 42:e73. doi: 10.1093/nar/gku169

Ma, Y., You, X., Mai, G., Tokuyasu, T., and Liu, C. (2018). A human gut phage
catalog correlates the gut phageome with type 2 diabetes. Microbiome 6:24.

Miller, J. R., Koren, S., and Sutton, G. (2010). Assembly algorithms for next-
generation sequencing data. Genomics 95, 315–327. doi: 10.1016/j.ygeno.2010.
03.001

Minot, S., Sinha, R., Chen, J., Li, H. Z., Keilbaugh, S. A., Wu, G. D., et al. (2011). The
human gut virome: inter-individual variation and dynamic response to diet.
Genome Res. 21, 1616–1625. doi: 10.1101/gr.122705.111

Mokili, J. L., Rohwer, F., and Dutilh, B. E. (2012). Metagenomics and future
perspectives in virus discovery. Curr. Opin. Virol. 2, 63–77. doi: 10.1016/j.
coviro.2011.12.004

Narlikar, L., Mehta, N., Galande, S., and Arjunwadkar, M. (2013). One size does not
fit all: on how Markov model order dictates performance of genomic sequence
analyses. Nucleic Acids Res. 41, 1416–1424. doi: 10.1093/nar/gks1285

Nayfach, S., Camargo, A. P., Schulz, F., Eloe-Fadrosh, E., Roux, S., and Kyrpides,
N. C. (2020). CheckV assesses the quality and completeness of metagenome-
assembled viral genomes. Nat. Biotechnol. 1–8.

Norman, J. M., Handley, S. A., Baldridge, M. T., Droit, L., Liu, C. Y., Keller, B. C.,
et al. (2015). Disease-specific alterations in the enteric virome in inflammatory
bowel disease. Cell 160, 447–460. doi: 10.1016/j.cell.2015.01.002

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017). metaSPAdes: a
new versatile metagenomic assembler. Genome Res. 27, 824–834. doi: 10.1101/
gr.213959.116

Peterson, J., Garges, S., Giovanni, M., Mcinnes, P., Wang, L., Schloss, J. A., et al.
(2009). The NIH human microbiome project. Genome Res. 19, 2317–2323.

Ponsero, A. J., and Hurwitz, B. L. (2019). The promises and pitfalls of machine
learning for detecting viruses in aquatic metagenomes. Front. Microbiol. 10:806.
doi: 10.3389/fmicb.2019.00806

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012). A metagenome-wide
association study of gut microbiota in type 2 diabetes. Nature 490, 55–60.

Qin, J. J., Li, R. Q., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., et al.
(2010). A human gut microbial gene catalogue established by metagenomic
sequencing. Nature 464, 59–65.

Rampelli, S., Soverini, M., Turroni, S., Quercia, S., Biagi, E., Brigidi, P., et al.
(2016). ViromeScan: a new tool for metagenomic viral community profiling.
BMC Genomics 17:165. doi: 10.1186/s12864-016-2446-3

Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A., and Sun, F. Z. (2017). VirFinder:
a novel k-mer based tool for identifying viral sequences from assembled
metagenomic data. Microbiome 5:69.

Ren, J., Song, K., Deng, C., Ahlgren, N. A., Fuhrman, J. A., Li, Y., et al. (2020).
Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8,
64–77. doi: 10.1007/s40484-019-0187-4

Ren, J., Song, K., Deng, M. H., Reinert, G., Cannon, C. H., and Sun, F. Z. (2016).
Inference of Markovian properties of molecular sequences from NGS data
and applications to comparative genomics. Bioinformatics 32, 993–1000. doi:
10.1093/bioinformatics/btv395

Rosario, K., and Breitbart, M. (2011). Exploring the viral world through
metagenomics. Curr. Opin. Virol. 1, 289–297. doi: 10.1016/j.coviro.2011.06.004

Rosario, K., Schenck, R. O., Harbeitner, R. C., Lawler, S. N., and Breitbart,
M. (2015). Novel circular single-stranded DNA viruses identified in marine
invertebrates reveal high sequence diversity and consistent predicted intrinsic
disorder patterns within putative structural proteins. Front. Microbiol. 6:696.
doi: 10.3389/fmicb.2015.00696

Roux, S., Enault, F., Hurwitz, B. L., and Sullivan, M. B. (2015a). VirSorter: mining
viral signal from microbial genomic data. PeerJ 3:e985. doi: 10.7717/peerj.985

Roux, S., Hallam, S. J., Woyke, T., and Sullivan, M. B. (2015b). Viral dark matter
and virus-host interactions resolved from publicly available microbial genomes.
eLife 4:e08490.

Simmonds, P., Adams, M. J., Benko, M., Breitbart, M., Brister, J. R., Carstens, E. B.,
et al. (2017). Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol.
15, 161–168.

Song, K. (2020). Classifying the lifestyle of metagenomically-derived phages
sequences using alignment-free methods. Front. Microbiol. 11:567769. doi: 10.
3389/fmicb.2020.567769

Song, K., Ren, J., and Sun, F. (2019). Reads binning improves alignment-
free metagenome comparison. Front. Genet. 10:1156. doi: 10.3389/fgene.2019.
01156

Song, K., Ren, J., Zhai, Z. Y., Liu, X. M., Deng, M. H., and Sun, F. Z. (2013).
Alignment-free sequence comparison based on next-generation sequencing
reads. J. Computat. Biol. 20, 64–79. doi: 10.1089/cmb.2012.0228

Frontiers in Microbiology | www.frontiersin.org 11 May 2021 | Volume 12 | Article 664560

https://doi.org/10.1371/journal.pone.0158897
https://doi.org/10.1016/j.meegid.2016.02.011
https://doi.org/10.1016/j.meegid.2015.02.010
https://doi.org/10.1016/j.meegid.2015.02.010
https://doi.org/10.1089/cmb.2005.12.545
https://doi.org/10.1093/nar/gkl732
https://doi.org/10.1073/pnas.96.5.2192
https://doi.org/10.1073/pnas.96.5.2192
https://doi.org/10.1371/journal.pone.0057355
https://doi.org/10.1371/journal.pone.0057355
https://doi.org/10.1371/journal.pone.0075448
https://doi.org/10.1186/1471-2164-13-730
https://doi.org/10.1111/j.1747-0765.2007.00197.x
https://doi.org/10.1007/s00705-016-2943-3
https://doi.org/10.1038/ismej.2013.110
https://doi.org/10.1038/ismej.2013.110
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btn043
https://doi.org/10.1093/nar/gku169
https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.1101/gr.122705.111
https://doi.org/10.1016/j.coviro.2011.12.004
https://doi.org/10.1016/j.coviro.2011.12.004
https://doi.org/10.1093/nar/gks1285
https://doi.org/10.1016/j.cell.2015.01.002
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.3389/fmicb.2019.00806
https://doi.org/10.1186/s12864-016-2446-3
https://doi.org/10.1007/s40484-019-0187-4
https://doi.org/10.1093/bioinformatics/btv395
https://doi.org/10.1093/bioinformatics/btv395
https://doi.org/10.1016/j.coviro.2011.06.004
https://doi.org/10.3389/fmicb.2015.00696
https://doi.org/10.7717/peerj.985
https://doi.org/10.3389/fmicb.2020.567769
https://doi.org/10.3389/fmicb.2020.567769
https://doi.org/10.3389/fgene.2019.01156
https://doi.org/10.3389/fgene.2019.01156
https://doi.org/10.1089/cmb.2012.0228
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-664560 May 15, 2021 Time: 15:16 # 12

Song Reads Binning From Metagenomic Samples

Storey, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and
the q-value. Annl. Stat. 31, 2013–2035.

Suttle, C. A. (2005). Viruses in the sea. Nature 437, 356–361. doi: 10.1038/
nature04160

Wommack, K. E., and Colwell, R. R. (2000). Virioplankton: viruses in aquatic
ecosystems. Microbiol. Mol. Biol. Rev. 64:69. doi: 10.1128/mmbr.64.1.69-114.
2000

Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J., and Wishart, D. S.
(2011). PHAST: a fast phage search tool. Nucleic Acids Res. 39,
W347–W352.

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Song. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 12 May 2021 | Volume 12 | Article 664560

https://doi.org/10.1038/nature04160
https://doi.org/10.1038/nature04160
https://doi.org/10.1128/mmbr.64.1.69-114.2000
https://doi.org/10.1128/mmbr.64.1.69-114.2000
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Reads Binning Improves the Assembly of Viral Genome Sequences From Metagenomic Samples
	Introduction
	Materials and Methods
	Viral and Bacterial Genomes Databases
	Human, Fungi, and Protozoan Genomes Databases
	Building Markov Models From Viral and Bacterial Genome Sequences
	The Markov Model-Based Prediction Method
	Analysis of Simulated Metagenomic Samples
	Assembly and Analysis of Human Gut Metagenomic Samples From a T2D Study

	Results
	The Effects of the Number of Cluster Bins and the Order of Markov Models
	Comparing the Performances of the VirMC, VirFinder, and PPR-Meta Tools
	Comparing the Performances of VirMC, VirFinder, and PPR-Meta Tools on Contaminated Metagenomic Samples
	The Abilities of VirMC to Predict Novel Viruses
	Application: Assembling Viral Contigs From Simulated Metagenomic Samples Using VirMC
	Application: Identification and Analysis of Viral Communities in Human Gut Metagenomes From a T2D Study

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


