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Background: The accuracy of microbial community detection in 16S rRNAmarker-gene

and metagenomic studies suffers from contamination and sequencing errors that lead to

either falsely identifying microbial taxa that were not in the sample or misclassifying the

taxa of DNA fragment reads. Removing contaminants and filtering rare features are two

common approaches to deal with this problem. While contaminant detection methods

use auxiliary sequencing process information to identify known contaminants, filtering

methods remove taxa that are present in a small number of samples and have small

counts in the samples where they are observed. The latter approach reduces the extreme

sparsity of microbiome data and has been shown to correctly remove contaminant taxa

in cultured “mock” datasets, where the true taxa compositions are known. Although

filtering is frequently used, careful evaluation of its effect on the data analysis and scientific

conclusions remains unreported. Here, we assess the effect of filtering on the alpha

and beta diversity estimation as well as its impact on identifying taxa that discriminate

between disease states.

Results: The effect of filtering on microbiome data analysis is illustrated on four

datasets: two mock quality control datasets where the same cultured samples with

known microbial composition are processed at different labs and two disease study

datasets. Results show that in microbiome quality control datasets, filtering reduces the

magnitude of differences in alpha diversity and alleviates technical variability between

labs while preserving the between samples similarity (beta diversity). In the disease study

datasets, DESeq2 and linear discriminant analysis Effect Size (LEfSe) methods were used

to identify taxa that are differentially abundant across groups of samples, and random

forest models were used to rank features with the largest contribution toward disease

classification. Results reveal that filtering retains significant taxa and preserves the model

classification ability measured by the area under the receiver operating characteristic

curve (AUC). The comparison between the filtering and the contaminant removal method

shows that they have complementary effects and are advised to be used in conjunction.
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Conclusions: Filtering reduces the complexity of microbiome data while preserving their

integrity in downstream analysis. This leads to mitigation of the classification methods’

sensitivity and reduction of technical variability, allowing researchers to generate more

reproducible and comparable results in microbiome data analysis.

Keywords: filtering, fast permutation test, quality control, microbiome, contaminants

1. INTRODUCTION

Studies of microbiota association and human disease states
have received increasing attention over the last decade (Nguyen
et al., 2015). It was shown that microbiota composition plays an
important role in the development of multiple diseases, including
inflammatory bowel disease (Huttenhower et al., 2014), diabetes
(Proctor, 2014; Pascale et al., 2019), preterm birth (DiGiulio
et al., 2015; Callahan et al., 2017), and liver diseases (Puri et al.,
2018; Smirnova et al., 2020). Next-generation sequencing (NGS)
of the 16S rRNA marker is currently among the most widely
used methods for microbial organism identification. In these
studies, samples collected at different body sites (e.g., vaginal
swab, stool, or blood) give counts of DNA fragments, which are
then grouped into similar microbial organisms, usually referred
to as taxa. Hence, the resulting data is usually referred to as the
“taxa table” or “derived feature data.” In contrast to other -omics
measurements, microbiome data are very sparse as many taxa are
rare and often have zero counts in most samples.

The extreme levels of sparsity in microbiome datasets are one
of the major challenges in data analysis. Indeed, it is not unusual
to have over 90% of 0s in this data, as it contains a large number
of rare taxa observed in as few as 1 to 5% of samples. Recent
microbiome quality control studies indicate that many rare
taxa are caused by sequencing artifacts (Lahr and Katz, 2009),
contamination, and/or sequencing errors (Knights et al., 2011;
Ravel et al., 2011; Fettweis et al., 2012; Sinha et al., 2015; Callahan
et al., 2016). Common bioinformatics pipelines that derive
taxonomic features tables, such as QIIME (Caporaso et al., 2010)
and dada2 (Callahan et al., 2016), implement a number of quality
control and potential contaminant removal functions. These
functions trim sequences to a specified length, remove sequences
shorter than that length, and filter based on several ambiguous
bases, a minimum quality score, and the expected errors in a read.
Dada2 also, by default, performs low-level filtering by removing
singletons while considering each sample individually. Yet, many
rare and low-prevalence features, as well as contaminants, may
still remain (Davis et al., 2018). The most common approach to
address this problem in the derived feature data, at the same time
increasing the power of subsequent statistical testing by reducing

Abbreviations: AUC, area under the receiver operating characteristic curve; CD,

Crohn’s disease; HC, healthy control; HDC, heavy drinking control; HMP, Human

Microbiome Project; IBD, inflammatory bowel disease; ICL, Imperial College

London; LEfSe, linear discriminant analysis effect size; MAH, moderate alcoholic

hepatitis; MBQC, microbiome quality control; PCoA, principal coordinates

analysis; NGS, next-generation sequencing; PCR, polymerase chain reaction;

rRNA, ribosomal RNA; SAH, severe alcoholic hepatitis; UB, University of

Birmingham; WTSI, Wellcome Trust Sanger Institute.

the number of multiple hypotheses, is filtering: removing
spurious taxa from the 16S data set. Most filtering approaches
are based on the rules of thumb, which vary from lab-to-lab.
Such approaches are implemented in R packages genefilter
(Gentleman et al., 2020) and phyloseq (McMurdie and
Holmes, 2013), as well an in QIIME bioinformatics pipeline
function filter_otus_from_otu_table.py (Caporaso
et al., 2010). Recently, a filtering loss measure and a principled
filtering test, namely PERFect (Smirnova et al., 2019), was
introduced for deciding which taxa to remove. Thesemethods are
implemented in Bioconductor package PERFect (Smirnova
and Cao, 2020), which includes a novel fast implementation of
the permutation PERFect method. The implemented approach
successfully reduces the original algorithm running time by
almost four times.

While some techniques have been proposed to detect and
remove contaminant and/or rare taxa, the literature in this
research area is relatively scarce. Davis et al. (2018) addressed this
problem by introducing the R package decontam that identifies
contaminants by: (1) inversely correlating taxa frequencies with
sample DNA concentration and (2) using the prevalence of
sequenced negative controls (Salter et al., 2014). This method
requires the auxiliary data from DNA quantitation, which is in
most cases intrinsic to sample preparation, or negative controls
data that is intrinsic to the sequencing protocol. This approach is
closely related but not identical to filtering.

Traditional filtering methods were previously compared to
the PERFect approach proposed by Smirnova et al. (2019)
and tested on two datasets acquired from mock community
experiments carried out at Virginia Commonwealth University
(VCU) (Fettweis et al., 2012; Brooks et al., 2015) and a reagent
and laboratory contamination dataset (Salter et al., 2014). The
authors used the number of contaminant taxa removed from
the mock datasets as the method evaluation criteria. However,
in practice, filtering is used as an intermediary step applied
to the derived taxonomic feature table prior to data analysis.
While filtering is a commonly used and recommended approach
(Goodrich et al., 2014; Cullen et al., 2020), its benefits on data
analysis and the effects on the scientific conclusions drawn from
filtered and unfiltered data have not been reported.

The objectives of the current study are to evaluate: (1) the
effects of filtering on technical variability for identical mock
samples processed under different conditions; (2) the advantages
and disadvantages of using filtering for detecting significant taxa
discriminating two groups of medical conditions. To address the
first goal, we analyze the recent MicroBiome Quality Control
(MBQC) project (Sinha et al., 2015) that includes 1, 016 oral
mock samples sequenced at 15 laboratories and the results
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were then randomly distributed to 9 bioinformatics facilities for
taxonomic classification; and the previously studied laboratory
contamination dataset (denoted as Salter data) (Salter et al.,
2014). To address the second goal, we analyze two novel datasets
on the gut microbiome studies on the TREAT consortium
alcoholic hepatitis study (Smirnova et al., 2020) and Human
Microbiome Project inflammatory bowel disease (Lloyd-Price
et al., 2019). To evaluate the effects of filtering, we concentrate on
(1) alpha (within) and beta (between) samples diversity analysis
and (2) identification of significant taxa using random forest
classification, LEfSe and DESeq2 methods. Finally, we discuss the
filtering and contaminant removal methodologies and show that
these approaches have complementary effects.

2. MOTIVATING DATASETS

2.1. Mock Data
2.1.1. The Microbiome Quality Control Data
Consider the dataset from the MBQC project, a collaborative
effort designed to comprehensively evaluate sample processing
and computationalmethods for humanmicrobiome data analysis
(Sinha et al., 2015). There were four types of samples in
the full dataset: (1) 11 unique fresh stool samples; (2) seven
unique freeze-dried stool samples; (3) two unique chemostat
samples generated from a Robogut; and (4) two artificial colonies
representing the gut and oral cavity. The aliquot of these samples
was first randomly sequenced at 15 laboratories, and the results

were then randomly distributed to 9 bioinformatics facilities for
taxonomic classification. Each bioinformatics facility followed
an in-house analysis pipeline to generate the final feature table
(Sinha et al., 2015); protocol details can be obtained from the
MBQC project website (MBQC, 2015). Here, we considered the
oral artificial communities data comprised of 22 true taxa. The
MBQC project identified a total of 27, 140 taxa across the four
types of samples. For this analysis, 14, 861 taxa identified in non-
oral artificial community samples (i.e., fresh stool, freeze-dried
stool, chemostat, and gut artificial colony) were excluded; 1, 277
taxa that matched names at the species level were combined;
finally, 10, 210 taxa that appeared in less than 5% of the samples
were removed. The final dataset considered for this analysis
contained 1, 016 samples and 792 taxa. A limitation of this dataset
is that the samples were created from the species in prescribed
proportions; however, after the samples were processed many
taxa were only identified up to the genus level (higher-order
phylogenetic hierarchy). As a consequence, only two signal
taxa, Veillonellaceae Veillonella Parvula and Coriobacteriaceae
Eggerthella Lentawere correctly detected while the other 20 signal
species are among the 184 taxa identified at the genus level.

Figure 1A displays the log-counts heat map for the 100 most
abundant taxa for the first five labs, arranged in decreasing order
of abundance. Here, we rank taxa abundance by the number of
samples a taxon is present in, where the most abundant taxon
is ranked as 1, the second most abundant as 2, and so on. The
white areas of the heatmap in the lower right corner indicate

FIGURE 1 | Heat map and PCoA plot of MBQC data. (A) The heat map of 100 observed taxa on the log-scale, with taxa on the x-axis arranged in decreasing

abundance order and samples on the y-axis arranged by processing institutes. (B) The PCoA plot of 1016 samples, colored by the processing institutes. Data source:

(Sinha et al., 2015).
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unobserved taxa, showing the decrease of signal strength with
different processing institutes/labs. Figure 1B displays the Bray–
Curtis distance (Quaak and Kuiper, 2011) principal coordinates
analysis (PCoA) plots for 1, 016 samples from the heat map on
the left. The first two axes that explain 32.2% of variability are
shown on the plot. The samples were clustered by bioinformatics
labs, indicating differences across samples processed at different
institutes even though they contain the same signal species. These
observations highlight the strong effects of the sequencing and
bioinformatics protocol choice on taxa identification. Filtering,
which removes rare taxa displayed in columns on the right-
hand side of the heatmap in Figure 1A is one approach that
could mitigate these differences. Left unresolved, this problem
may cause a number of practical issues including (1) falsely
inflating within-sample diversity, called alpha diversity (Park and
Allaby, 2017); (2) obscuring true distances between samples,
called beta diversity (Park and Allaby, 2017); and (3) interpreting
rare taxa as disease biomarkers (especially in low sample
biomass environments).

2.1.2. The Reagent and Laboratory Contamination

Data
The reagent and laboratory contamination study was designed to
determine the effects of DNA extraction kits and other laboratory
reagent contamination on sequencing output (Salter et al., 2014).
These data contain mock samples of a pure Salmonella bongori
culture that had been processed at three different institutes: (1)
Imperial College London (ICL); (2) University of Birmingham
(UB); and (3) Wellcome Trust Sanger Institute (WTSI). Each
mock sample underwent five rounds of serial 10-fold dilutions
to generate a series of high (dilution = 0) to low (dilution = 5)
biomass samples. The amplicon sequencing data was processed
using the R package dada2 to generate a table of exact amplicon
sequence variants (ASV); processing steps details are described
in the R markdown script salter_metagenomics.Rmd
Callahan (2018). The data visualization heatmap in Figure 2A

top panel displays the log-counts heatmap for 635 observed taxa
generated using 40 Polymerase Chain Reaction (PCR) cycles. The
taxa on the horizontal axis are arranged in decreasing order of

FIGURE 2 | Comparison of the original data (no filtering), contaminant removal (decontam frequency) and filtering (PERFect simultaneous) methods. (A) Heatmap of

log-transformed taxa counts in decreasing abundance order on the x-axis and samples by dilution level on the y-axis for the original data (top panel), data where

contaminants are removed using decontam (middle panel) and rare taxa filtered using PERFect (bottom panel). True taxa are colored in green to the left of each

heatmap; ovals indicate taxa removed by decontam and PERFect methods. (B) Alpha diversity for the three comparisons colored by dilution level and processing

institute. (C) Beta diversity Bray–Curtis distances plots colored by processing institute and arranged by dilution level (rows) and three taxa removal methods (columns).

Data source: (Salter et al., 2014).
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abundance and the 18 samples on the vertical axis arranged by
high to low (0–5) degrees of dilution. Results indicate that as
the dilution number increases, true taxa contain fewer signals
and are observed in lower counts, which makes it difficult to
separate the signal (i.e., true features of Salmonella bongori
culture in the mock samples) from the noise (i.e., features derived
in the taxa table as a part of sequencing, amplification, or
experimental error).

2.2. Disease Study Data
In many microbiome studies, it is of interest to identify specific
bacterial taxa that discriminate between two or more disease
groups. We investigate the effects of filtering on identifying
specific taxa that contribute to these differences using two
recently reported microbiome studies.

2.2.1. Alcoholic Hepatitis Data
The study to characterize changes in the fecal microbiome due
to alcohol consumption and alcoholic hepatitis was performed
by the sites involved in the TREAT consortium from 2014–
2018 (Smirnova et al., 2020). A total of 78 participants [healthy
control (HC), n = 24; heavy drinking control (HDC), n = 20;
moderate alcoholic hepatitis (MAH), n = 10; severe alcoholic
hepatitis (SAH), n = 24] were studied. To interrogate and
characterize gut microbiome composition, the 16S data was
used. Length Heterogeneity PCR (LH-PCR) fingerprinting was
routinely used to rapidly survey the samples and standardize the
community amplification. The microbial taxa associated with the
gut mucosal microbiome were then interrogated using Multitag
Sequencing (MTS) on the samples (Gillevet et al., 2010). The
operational taxonomic unit (OTU) table was obtained using
customized PERL scripts as described in the Smirnova et al.
(2020) supporting information. Results indicated that in random
forest classification models, alcoholic hepatitis (moderate and

severe alcoholic hepatitis groups combined; n = 34) was
associated with a distinct microbiome signature compared to
heavy drinking controls (AUC = 0.826), and multiple microbial
genera were identified as the key contributors to these differences.

2.2.2. Inflammatory Bowel Disease Data
The inflammatory bowel disease (IBD) data were generated
as a part of the NIH Common Fund’s Integrative Human
Microbiome Project (iHMP/HMP2). The initial findings and
multi-omic datasets from these studies were published in the
Nature family of journals in May and June of 2019 (Lloyd-Price
et al., 2019), and 16S data are publicly available through the
HMP Data Coordination Center (HMP-DACC) and HMP2Data
Bioconductor package (Stansfield et al., 2020) in R and processing
steps are described in Lloyd-Price et al. (2019) and NIH Human
Microbiome Project (2015). The subset of 132 patients [control
(non-IBD), n= 46; Crohn’s disease (CD), n= 86] with the open-
source 16S data available through the HMP2Data package was
selected for the analyses presented in this manuscript.

Figure 3 summarizes the structure of the four motivating
datasets and analyses applied to each dataset. Briefly, alpha and
beta diversity analyses were applied to two mock data sets to
illustrate the effects of filtering on reducing technical variability
between different processing techniques. LEfSe, DESeq2, and
random forest methods were applied to the disease study datasets
to compare the differences in detecting differentially abundant
taxa in a pairwise comparison of cases and controls.

3. METHODS

3.1. Filtering Methods
Currently, there are only a few statistically motivated filtering
methods used to alleviate the issue of contaminant and rare
taxa. The majority of currently used filtering methods are based

FIGURE 3 | Summary of the structure of the four motivating datasets and types of analyses performed on each dataset.
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on a heuristic non-statistical rule, with two methods where a
threshold is derived statistically from the data. Here, we give a
brief overview of these methods.

3.1.1. Rule of Thumb Approaches
In practice, filtering is a variation of an ad-hoc, albeit
simple, procedure. One of the most widely used techniques
for filtering in microbiome studies selects taxa that have
several counts above m=0 in at least k samples. This
approach is borrowed from the RNA-seq gene expression
literature and is implemented in the R package genefilter
(Gentleman et al., 2020) and in QIIME bioinformatics pipeline
function filter_otus_from_otu_table.py (Caporaso
et al., 2010). The choice of the threshold k comes from the count
that is 0.1% of the minimal library size (the total number of count
reads in the sample). For example, often the minimal library
size is set to 5, 000 reads, and popular filtering rules thus keep
taxa present in at least k=5 samples. Another popular approach
is to remove taxa that are observed in fewer than k% of the
samples. The advantage of these methods is that they are simple,
intuitive, and easy to communicate with collaborators. However,
they do not have an explicit loss function and objective criteria
for choosing the tuning parametersm and k.

3.1.2. Statistical Threshold Selection
In contrast to the rule of thumb approaches where thresholds
for filtering taxa are determined heuristically, the statistical
approach selects an empirical filtering threshold based on the
information given by the data. It extends the traditional rule of
thumb filtering approaches to find the best subset of retained
taxa for further analysis by implementing statistical data-driven
significance cut-off thresholds. The current method for such an
approach is PERFect, a principled filtering test that removes
taxa with an insignificant contribution to the total covariance
(Smirnova et al., 2019). Specifically, this method derives a
statistical threshold for separating the signal (features with a
strong contribution to the taxa table) from noise (rare features
derived in the taxa table as a part of sequencing, amplification, or
experimental error) taxa. The threshold is derived based on the
dramatic increases in the loss due to filtering the set of potential
noise features and quantifying the chance that this increase
in the loss due to taxa filtering is due to randomness using
permutation tests. PERFect introduces two filtering algorithms,
namely, PERFect simultaneous and PERFect permutation.
The former algorithm assumes that a large percentage of the taxa
has a low signal and the difference in filtering loss for all taxa
are fit using one distribution, whereas the latter algorithm fits
a distribution for each set of filtered taxa. One drawback of the
permutation filtering method is that it might be computationally
expensive. Indeed, given that k permutations are performed for
each taxon j=2, 3, . . . , p, the algorithm requires a total of k(p− 1)
permutations, where k and p are large. Thus, the newer version of
this package (see Supplementary Information), employs parallel
processing and an unbalanced binary search algorithm (Morin,
2014) that optimally finds the cut-off taxon j to remove the
set of taxa without building the permutation distribution and
computing the p-values for all p− 1 taxa.

3.2. Contaminant Removal Method
Contaminants in microbiome studies may arise from external
sources such as the body of the study participant or sample
collector (Kitchin et al., 1990; Meadow et al., 2015), sample
collection instruments and laboratory reagents (Salter et al., 2014;
Jousselin et al., 2015; Glassing et al., 2016) or from internal
sources (cross-contamination) when samples were mixed with
each other during sample processing (Jousselin et al., 2015)
or sequencing (Larsson et al., 2018). The recently developed
contaminants removal method Decontam (Davis et al.,
2018) identifies external contaminants by either (1) inversely
correlating taxa frequencies with sample DNA concentration or
(2) by using the prevalence of sequenced negative controls. Our
results suggest that Decontam removes abundant taxa that are
likely contaminants but does not address the issue of rare taxa.
A practical limitation of this method is that it requires auxiliary
information from DNA quantitation or negative controls that
is intrinsic to the sequencing protocol and might not always
be available.

3.3. Statistical Analysis Methods
Statistical analyses were performed in R 3.6.0. Within sample
(alpha) (Park and Allaby, 2017) and between samples (beta)
(Park and Allaby, 2017) diversity were used to evaluate the
effects of filtering on reducing technical variability in mock
datasets. Differences in estimated alpha diversity between
processing labs were evaluated using Dunn’s test with Benjamini–
Hochberg controlling the false discovery rate (Benjamini and
Hochberg, 1995) multiple comparisons adjustment. Principal
coordinates analysis was performed using Bray–Curtis distances
to visually display variability between samples. Axes variances
were calculated without zeroing negative eigenvalues.

A number of methods for disease state prediction and
differentially abundant taxa identification commonly used in
metagenomic data analysis are considered in studying the effect
of filtering. These methods were first performed on unfiltered
and filtered data, then features importance for prediction and
differentially abundant taxa selected by each method were
compared. For predictive modeling, random forest (Breiman,
2001), which is extensively applied in computational biology
and genomics (Statnikov et al., 2013), was used to identify the
set of most predictive taxa based on their Mean Decrease Gini
measures. The classification model diagnostic ability in filtered
and unfiltered models was compared using the area under the
receiver operating characteristic curve (AUC).

To identify differentially abundant taxa, DESeq2 (Love et al.,
2014) and linear discriminant analysis effect size (LEfSe) (Segata
et al., 2011) were used. DESeq2 fits a negative binomial
generalized linear model for each taxon count to obtain estimates
of a log-fold change between two classes and performs a Wald
test on this value for significance testing. A detailed guide and
standard workflow for DESeq2 can be found in the package’s
vignette (Love et al., 2020). LEfSe determines differentially
abundant features by pairing non-parametric standard tests
for statistical significance with linear discriminant analysis
(LDA), allowing researchers to further identify features that are
consistent with biologically meaningful categories (Segata et al.,
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2011). However, there are some limitations to these methods
when applied to microbiome data. Our results suggest that in
many instances each of these three methods tends to flag a taxon
as significant when the difference between two classes is driven by
outlier counts. For example, a rare taxon that is absent for most
samples and present in a few samples of one class can potentially
be classified as a differentially abundant taxon.

4. RESULTS AND DISCUSSION

PERFect simultaneous and permutation filtering approaches
were previously validated (Smirnova et al., 2019) on three mock
community data sets (Knights et al., 2011; Ravel et al., 2011;
Fettweis et al., 2012) using the number of contaminant taxa
correctly removed as an efficiency criterion. Here, we concentrate
on the effects of filtering on downstream analyses, using the two
major exploratory analyses used in microbiome research, alpha

and beta diversity, as well as its impact on identifying taxa that
discriminate between disease states.

4.1. The MicroBiome Quality Control Data
Analysis
One of the main goals of the MBQC project was to
understand the major differences in technology and methods
for analyzing human microbiome data. This was achieved
by analyzing the observed taxa variation between (1) the
labs that sequenced samples according to their internal
protocol and (2) bioinformatics pipelines used to perform
taxonomic classification. Here, we concentrate on the effect
of bioinformatics processing laboratories on the observed oral
mock community data measured by alpha and beta diversity,
two of the most commonly used summaries in microbiome
research. Figure 4A shows the Shannon index, the most widely-
used diversity metric that accounts for both abundance and

FIGURE 4 | Diversity comparison on MBQC and Salter data. (A) Shannon index for the original data and two filtered data, colored by the bioinformatics labs. The

horizontal dashed line represents the true Shannon index. (B) PCoA plots of the unfiltered, simultaneous, and permutation PERFect filtered data colored by

bioinformatics processing institutes. Data source for (A) and (B): (Sinha et al., 2015). (C) Shannon index for the original data and two filtered data, colored by the dilution

levels. (D) PCoA plots of the unfiltered and filtered data at different dilution levels, colored by the processing institutes. Data source for (C) and (D): (Salter et al., 2014).
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evenness of the species present (Reese and Dunn, 2018) in the
unfiltered and filtered data. The Shannon index, H is defined
as H = −

∑S
i=1 pi ln(pi), where pi is the proportion of total

sample represented by species i and S is the total number of
species in the community. This plot and the summary statistics
in Table 1 indicate a decrease in the Shannon index between the
unfiltered and filtered data, implying a reduction in the diversity
of taxa. Specifically, the diversity decreases from 792 taxa to 175
and 222 taxa using the simultaneous and permutation method
respectively, while retaining 22 true taxa. Since both filtering
methods remove more than 70% of taxa, the distribution of the
remaining taxa shifts in favor of the true taxa by increasing their
proportions in the samples, resulting in less even communities.
As a result, this reduction of alpha diversity of samples tends
toward the true alpha diversity as indicated by the red dashed line
in Figure 4A.

To study the effect of filtering on differences across
bioinformatics processing labs, we applied Dunn’s test with
a Benjamini–Hochberg correction for multiple testing to all
possible pairwise Shannon alpha diversity comparisons between
processing labs. Results are summarized in Table 2. Since all
samples contained the samemock communities, in the absence of
technical variability, none of the differences should be significant.
For the unfiltered data, 21 out of 28 possible pairs have
significant differences in alpha diversity at the 0.05 significance
level. Applying simultaneous and permutation filtering decreases
differences in alpha diversity for most pairs. Moreover, there
are a total of 4 and 8 pairwise comparisons that are no longer
significant at the 0.05 level after simultaneous and permutation
filtering was applied respectively. While filtering does not remove
all differences due to processing labs, these results indicate that
it dramatically alleviates differences in alpha diversity estimates
caused by the lab-to-lab variability.

To assess the effect of filtering on beta diversity, we calculated
the pairwise Bray–Curtis distances between samples using a
combined taxa matrix which consists of the unfiltered taxa
matrix, and the taxa filtered matrices of PERFect simultaneous
and PERFect permutation each at the p-value threshold of 0.1.
The PCoA ordination plot for the first two axes which explain
30.5% of the variability in the data is shown in Figure 4B. Three
filtering methods (unfiltered, simultaneous, and permutation
PERFect) are arranged in columns, and samples are colored
according to 8 processing institutes. Figure 4B shows that while

TABLE 1 | Summary statistics of the Shannon index for each processing lab. Data

source: (Sinha et al., 2015).

BL-1 BL-2 BL-3 BL-4 BL-6 BL-8 BL-9A BL-9B

Median

Unfiltered 5.301 5.293 5.700 5.622 5.324 5.270 5.317 5.536

Simultaneous 4.122 4.147 4.061 3.998 4.381 3.247 4.332 4.061

Permutation 4.287 4.301 4.261 4.300 4.552 3.519 4.459 4.269

IQR

Unfiltered 0.137 0.175 0.165 0.446 0.181 0.062 0.161 0.477

Simultaneous 0.135 0.231 0.123 0.420 0.205 0.456 0.280 0.083

Permutation 0.166 0.235 0.127 0.475 0.224 0.489 0.288 0.098

data were clustered in a laboratory in each dataset, the proximity
between clusters decreases when simultaneous or permutation
filtering is applied. This observation indicates that filtering
decreases dissimilarity between samples that contain the same
mock communities and slightly alleviates the effects of lab-to-lab
variability. Thus, filtering achieves dimension reduction (reduces
the number of taxa) while preserving beta diversity.

4.2. The Reagent and Laboratory
Contamination Data
Figure 4C displays the difference in the Shannon index of
the filtered outputs, corresponding to the p-value threshold
0.1, using simultaneous and permutation filtering among 6
dilution levels and 3 processing institutes. It is expected that
as the dilution levels increase, more uncertainty in true taxa
identification is introduced into the biological system, thus the
proportion of signal taxa decreases whereas that of noise taxa
increases. This phenomenon is displayed on the top heatmap
in Figure 2A, where taxa are arranged from left to right in

TABLE 2 | Pairwise comparisons of the Shannon index between laboratories

using Dunn’s test for each dataset. Data source: (Sinha et al., 2015).

Unfiltered Simultaneous Permutation

Comparison Difference P-values Difference P-values Difference P-values

BL-1 - BL-2 0.00 0.4990 0.20 0.4214 −0.06 0.4778

BL-1 - BL-3 −10.75 <0.0001 2.52 0.0074 1.27 0.1307

BL-2 - BL-3 −10.83 <0.0001 2.35 0.0115 1.33 0.1283

BL-1 - BL-4 −7.22 <0.0001 3.90 0.0001 0.29 0.4173

BL-2 - BL-4 −7.28 <0.0001 3.73 0.0001 0.35 0.4088

BL-3 - BL-4 3.91 0.0001 1.25 0.1243 −1.01 0.1816

BL-1 - BL-6 −1.63 0.0632 −6.35 <0.0001 −7.10 <0.0001

BL-2 - BL-6 −1.64 0.0646 −6.60 <0.0001 −7.10 <0.0001

BL-3 - BL-6 9.36 <0.0001 −8.78 <0.0001 −8.23 <0.0001

BL-4 - BL-6 5.70 <0.0001 −10.47 <0.0001 −7.55 <0.0001

BL-1 - BL-8 2.47 0.0090 11.30 <0.0001 9.99 <0.0001

BL-2 - BL-8 2.49 0.0089 11.19 <0.0001 10.13 <0.0001

BL-3 - BL-8 13.27 <0.0001 8.51 <0.0001 8.50 <0.0001

BL-4 - BL-8 9.81 <0.0001 7.60 <0.0001 9.92 <0.0001

BL-6 - BL-8 4.16 <0.0001 17.93 <0.0001 17.36 <0.0001

BL-1 - BL-9A −1.09 0.1535 −5.46 <0.0001 −5.74 <0.0001

BL-2 - BL-9A −1.10 0.1583 −5.70 <0.0001 −5.73 <0.0001

BL-3 - BL-9A 9.66 <0.0001 −7.86 <0.0001 −6.88 <0.0001

BL-4 - BL-9A 6.09 <0.0001 −9.46 <0.0001 −6.14 <0.0001

BL-6 - BL-9A 0.51 0.3167 0.77 0.2455 1.24 0.1311

BL-8 - BL-9A −3.57 0.0003 −16.78 <0.0001 −15.76 <0.0001

BL-1 - BL-9B −6.44 <0.0001 3.32 0.0006 1.58 0.0840

BL-2 - BL-9B −6.49 <0.0001 3.14 0.0011 1.65 0.0770

BL-3 - BL-9B 4.55 <0.0001 0.70 0.2609 0.27 0.4090

BL-4 - BL-9B 0.71 0.2556 −0.56 0.2996 1.33 0.1233

BL-6 - BL-9B −4.92 <0.0001 9.79 <0.0001 8.79 <0.0001

BL-8 - BL-9B −9.00 <0.0001 −8.06 <0.0001 −8.49 <0.0001

BL-9A - BL-9B −5.32 <0.0001 8.82 <0.0001 7.37 <0.0001
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decreasing abundance order (noise taxa to the bottom right of the
heatmap). As the dilution levels increase (rows of the heatmap),
each dilution “band” becomes denser due to the increase in noise
taxa counts. Dilution thus causes the true signal to become more,
even with noise, and this consequently leads to a higher Shannon
index. This effect may cause problems comparing alpha diversity
for different groups of samples with variable biomass because it
will be more difficult to differentiate between signal and noise
taxa in low biomass samples. The filtering methods address this
issue by removing noise taxa in highly diluted samples (dilutions
3, 4, and 5), where the simultaneous filtering removes more
taxa than the permutation algorithm and has more impact on
reducing the alpha diversity.

To compare the beta diversity for filtered outputs, the pairwise
between-sample Bray–Curtis distances were calculated using the
taxa matrices’ combination with a similar set up to the analysis
with the MBQC data. The PCoA ordination plot for the first two
axes that explain 81.3% of the variability in the data is shown
in Figure 4D. The six dilution levels and three filtering methods
(none, simultaneous, and permutation PERFect) are arranged in
columns and rows respectively; samples are colored according
to the three processing institutes. Ideally, the samples from all
three processing institutes should have the same composition
of taxa regardless of the dilution levels. However, contaminants
that went into the samples during the DNA extraand PCR
process lead to the differences between the three processing
institutes. Figure 4D shows that filtering does not dramatically
change samples’ pairwise distances in ordination plots. This is
because PERFect, like many other filtering methods, removes
taxa with low abundance which do not contribute to the signal,

and thus do not dramatically affect samples’ pairwise distances.
These observations lead to the important conclusion that filtering
reduces the number of taxa considered in the analysis, and thus
reduces the dimensionality of the taxa table, without affecting
beta diversity.

4.3. Alcoholic Hepatitis Data Analysis
4.3.1. Random Forest Results
The ROC curves of the random forest models between unfiltered
(AUC = 0.826) and filtered (AUC = 0.816) data are shown in
Figure 5A. The predictive abilities of the filtered and unfiltered
models as measured by AUC values are similar, although there is
a small decrease of 0.01 in the AUC for the model built on the
filtered data. This implies that removing rare taxa has little effect
on the classification ability of the random forest model. Further,
the most predictive taxa, as measured by the mean Gini decrease
criteria, also tend to be abundant (see Supplementary Table 1).
Specifically, the ranks of the top 35 predictive taxa in the
unfiltered data vary between the first and 81stmost abundant taxa
out of the total 345 taxa in the unfiltered data set.

To compare the discrepancy of the taxa importance rank
between these two random forest models, we use the elbow
method on the taxa mean Gini decrease in unfiltered data to
choose the top 60 most predictive taxa. The taxa are chosen so
that the differences of consecutive taxa mean Gini decrease are
no less than 0.001. Then, their importance ranks are compared
to those from the filtered data. Results indicate that in general,
while there is minor variation, ranks are consistent and strong
predictive taxa keep their classification ability after filtering (see
Supplementary Table 1).

FIGURE 5 | ROC curves of the random forest models from unfiltered and filtered data that are differentiated by colors. (A) ROC curves from the Alcoholic Hepatitis

data (Smirnova et al., 2020). (B) ROC curves from the IBD data (Lloyd-Price et al., 2019).
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4.3.2. LEfSe Results
The LDA score for all significant taxa using LEfSe from unfiltered
and filtered data are shown in Figure 6A. For each taxon, the log
fold change values from unfiltered and filtered data are similar,
although the values from unfiltered data tend to be slightly higher
(range between 0.01 and 0.75). This indicates that filtering retains
the differential abundance for almost all taxa, thus taxa that are
significant in unfiltered data tend to be significant in filtered data.

There are four taxa that are present in the unfiltered but
absent in the filtered data results, where two are identified at
the family level (Lactobacillaceae and Coriobacteriaceae) and two
are identified at the genus level (Ruminococcaceae Butyricicoccus
and Clostridiaceae Proteiniclasticum). At the family level, filtering
removes rare taxa from each family (3 out of 6 taxa from
Lactobacillaceae and 6 out of 12 taxa from Coriobacteriaceae).
The remaining taxa aggregated to each of the two families do

not discriminate between the heavy drinking control (HDC, n
= 20) and the Alcohol Hepatitis (AH, n = 34) group. At the
genus level, Ruminococcaceae Butyricicoccus and Clostridiaceae
Proteiniclasticum are flagged as significant in the unfiltered
but as non-significant in the filtered data. Both taxa are
overall rarer (42nd and 179th most abundant taxa out of
345 taxa), with relative abundance between 0 and 0.02 (max
without outlier) (see Supplementary Figure 1), one outlier for
Ruminococcaceae Butyricicoccus (relative abundance= 0.08), and
only a few low relative abundance observations in the HDC
group for Ruminococcaceae Butyricicoccus. This suggests that in
the presence of taxa with outliers, the difference between groups
appears to be stronger when tested in the unfiltered dataset with
a large number of rare taxa. However, the strength of the outliers’
effect is reduced when testing is performed in the filtered data,
where extremely rare taxa are removed.

FIGURE 6 | Alcoholic Hepatitis analysis results for Random Forest, LEfSe, and DESeq2. (A) Log fold changes for all significant taxa from LEfSe results from unfiltered

and filtered data that are differentiated by colors. Taxa that are present in filtered data but are not significant are colored in dark blue. (B) Barchart of log(count+1) for

significant taxa from DESeq2 results, colored by the disease states. Taxa that are present in filtered data but are not significant are colored in dark blue. (C) Barchart of

log(count+1) for common significant taxa between random forest models, LEfSe, and DESeq2 results on unfiltered data, colored by the disease states. From filtered

data, while black taxa are common results with those from unfiltered data, blue taxa are non-significant in DESeq2 results and green taxa are not in the top 60

predictive taxa in the random forest model. Data source: (Smirnova et al., 2020).
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4.3.3. DESeq2 Results
The DESeq2 method based on log(Count + 1) transformed
data was used to identify differentially abundant taxa in filtered
and unfiltered taxa tables; results are shown in Figure 6B. Taxa
colored in black were identified as significant in both filtered
and unfiltered datasets, while the taxon in blue (Lachnospiraceae
Anaerostipes) was present in filtered data but was not significant.
Specifically, at the alpha level of 0.1, this taxon was significant
for both unfiltered and filtered data with a raw p-value of
0.028 and 0.035, respectively. After the p-value adjustment step
using Benjamini–Hochberg procedure, it remained significant
in unfiltered data (p = 0.093) but became non-significant
in filtered data (p = 0.113). Since the change between raw
p-values is relatively small and the adjusted p-values are
close to the alpha level, we may conclude that for DESeq2
method, there are no major differences due to filtering in this
dataset.

4.3.4. Summary of Discrimination Results
Common significant taxa between random forest models LEfSe
and DESeq2 results on unfiltered data are shown in Figure 6C.
There are two taxa that are significant in the unfiltered but
not significant in the filtered: Lachnospiraceae Anaerostipes (not
significant if DESeq2) and Fusobacteriaceae Fusobacterium (low
importance in the random forest). Results indicate that these
discrepancies occur for the borderline significant taxa.

4.4. IBD Data Analysis
Filtering analysis on the IBD data is performed using the
workflow of Alcoholic Hepatitis data and the results are shown
in Figures 5B,7. We observe similar results’ patterns with the
Alcoholic Hepatitis analyses: (1) significant taxa tend to be highly
abundant; (2) predictive abilities of the filtered and unfiltered
random forest models as measured by AUC values are similar
(Figure 5B: unfiltered AUC= 0.852; filtered AUC= 0.853); (3) in

FIGURE 7 | IBD analysis results for LEfSe and DESeq2. (A) Log fold changes for all significant taxa from LEfSe results from unfiltered and filtered data that are

differentiated by colors. Taxa that are present in filtered data but are not significant are colored in dark blue. Taxa that are present in unfiltered data but are not

significant are colored in dark red. (B) Barchart of log(count+1) for significant taxa from DESeq2 results colored by the disease states. Taxa that are present in

unfiltered data but are not significant are colored in dark red. Data source: (Lloyd-Price et al., 2019).
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the discriminant analysis, the differences between LDA scores for
all significant taxa from unfiltered and filtered data are small; (4)
the significance effect of more rare taxa with outliers is stronger
in the unfiltered compared to filtered dataset.

Compared to Alcoholic Hepatitis data, DESeq2 identified
three additional significant taxa in the filtered data:
Lachnospiraceae Eubacterium (p = 0.080), Fusobacteriaceae
Fusobacterium (p = 0.0999) and Enterobacteriaceae
EscherichiaShigella (p = 0.070). Since these adjusted p-values
are borderline significant in the filtered data that includes fewer
taxa, these genera are non-significant when DESeq2 is run on the
unfiltered data due to a larger number of taxa used in multiple
comparison adjustment.

4.5. Comparison With Contaminant
Removal Method
Contaminant removal and filtering methods have a common
goal of identifying potential features derived due to technical
limitations that occur with sequencing and taxonomic
classification. However, the main goal of each method is
different, which led to complementary effects in our comparison
studies. Filtering concentrates on removing rare taxa relying
mostly on sparsity assumptions and using no auxiliary
information about the derived feature data. Contaminant
removal methods implemented in R package decontam use
additional information from the sequencing process to apply
statistical threshold rules marginally to one taxon at a time.
The decontam package implements two methods, each using
specific auxiliary information about derived feature data: (1) the
frequency method uses DNA quantitation data recording the
concentration of DNA in each sample, and (2) the prevalence
method employs a set of “negative control” samples in which
sequencing was performed on blanks without any biological
sample added. We applied decontam frequency method (Davis
et al., 2018) to the reagent and laboratory contamination data
to compare filtering and contaminant identification methods
in terms of the type of taxa they remove and their effects on
diversity. Results are illustrated in Figure 2, which compares
the heatmaps, alpha, and beta diversity for the derived feature
data without filtering the data where taxa are removed using
decontam frequency and PERFect simultaneous filtering
methods. Heatmaps in Figure 2A indicate that decontam
frequency identifies abundant taxa as contaminants (left oval
in the middle panel heatmap) leaving rare taxa to the right of
the plot in the data set. In contrast, PERFect removes rare
taxa (right oval in the bottom panel heatmap) that decontam
was not able to detect, while leaving abundant taxa in the data
set. These observations highlight important methodological
differences between two methods. Specifically, decontam
frequency fits a regression model to compare a contaminant
model, in which expected frequency varies inversely with total
DNA concentration, and a non-contaminant model, in which
expected frequency is independent of total DNA concentration
(Davis et al., 2018). For a rare taxa regression model fit is
unstable due to the small number of observations (a few samples
where rare taxa appear), and thus decontam returns missing

values for the taxa significance. Specifically, out of a total of
635 taxa, decontam identified 61 taxa as contaminants and
was not able to evaluate statistical significance for 221 taxa.
This filtering approach has a major limitation of being skewed
toward retaining more dominant features, as a result, a persistent
contaminant feature might appear in a large number of samples,
have a high contribution toward covariance, and would not be
removed from the data set.

Comparison of alpha diversity in Figure 2B reveals that both
decontam and PERFect reduce Shannon diversity. Based on
this data, decontam leads to greater alpha diversity reduction,
which is expected since it removes more abundant taxa. However,
it should be noted that this is a small sample size study with
only 18 observations (six observations per each of the three
institutes), and the results may not be conclusive. Figure 2C
compares beta diversity Bray–Curtis distance plots for each
method (rows) by dilution level (columns) with samples colored
by processing institutes. All samples contain the same biological
material, thus under no technical variability scenario, the points
should overlap on the plot. This is the case for undiluted samples
(first column dilution = 0); however, the observed dissimilarity
between samples increases with dilution. Davis et al. (2018)
showed that removing abundant contaminants (second row in
Figure 2C) reduces technical beta diversity. Comparing these
results with filtering output confirms our previous observations
based on the Microbiome Quality Control data set that removing
rare taxa via filtering does not significantly effect beta diversity.

5. CONCLUSIONS

It is generally believed that filtering rare taxa is an effective quality
control approach to remove possible contaminants, sequencing,
and taxonomic assignment artifacts. The current study supports
this paradigm and demonstrates that filtering has a strong
potential to reduce lab-to-lab variability between samples that
contain similar microbial species and are processed according
to different protocols. Moreover, filtering removes rare taxa
that have a low contribution to the signal, thus reducing the
dimensionality of the data with minimal information loss. The
ability of the methods to detect taxa significantly different across
two disease groups is almost unaffected by filtering. Except for
a small number of taxa detected as significant in unfiltered
but not filtered (or visa versa) data, each method produces the
same results. Major discrepancies in taxa that are identified as
significant come from the data analysis method choice (Random
Forest, LEfSe, or DESeq2) but not from filtering. To the best of
our knowledge, this is the first report entirely dedicated to the
analysis of the effects of filtering rare taxa from the derived feature
table on commonly used statistical analyses of microbiome data
and detection of differentially abundant taxa in comparison of
two disease groups. The presented analysis is further facilitated by
utilizing novel large microbiome quality control mock datasets
and clinically relevant disease study datasets.

The statistical methodology literature on quality control for
the derived feature data is scarce. Most previous studies either
recommended filtering without a thorough evaluation of its
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effects (Goodrich et al., 2014; Cullen et al., 2020), or focused on
the number of taxa removed from the mock artificial community
studies (Smirnova et al., 2019) and on contaminant identification
(Knights et al., 2011; Davis et al., 2018). We have previously
demonstrated that filtering methods were effective in identifying
true species in mock data (Smirnova et al., 2019). An underlying
assumption of filtering is that most rare taxa are not informative
in the analysis; however, the presence of rare taxa in the derived
feature data increases sparsity and affects the performance of
statistical methods. The current study supports earlier hypotheses
and validates that removing rare taxa does not impact the
scientific conclusions.

It has also been established that the contaminant removal
method implemented in decontam package (Davis et al.,
2018) was effective in reducing technical variability across
processing institutes. Comparison of filtering and contaminant
removal methods on the reagent and laboratory contamination
data (Salter et al., 2014) reveals that the two methods
have complementary effects: decontam removes persistent
contaminant features that appear in a large number of samples
while filtering removes rare taxa that appear in a small number
of samples. This is not surprising because this is exactly the
assumptions of these two methods; nevertheless, this is a
significant finding which suggests that in practice both methods
may be used to remove sequencing artifacts from the derived
feature data.

Another noteworthy finding is that most significant taxa
in unfiltered data were abundant. The random forest variable
importance ranks of the top 35 predictive taxa in the unfiltered
data ranged between (1) the 1st and 81st most abundant taxa
out of the total 345 taxa in alcoholic hepatitis and (2) the 1st
and 93rd most abundant taxa out of the total 409 taxa in the
inflammatory bowel disease data set. Furthermore, in LEfSe and
DESeq2 discrimination models, taxa that were found significant
in filtered but not unfiltered data (or similarly in unfiltered but
not filtered data) were overall more rare (present in small number
of samples) andwith low relative abundance. This is an important
observation that may guide researchers’ decisions regarding how
aggressive filtering should be.

A limitation of filtering is that the reduction of type I errors
(probability of removing important taxa) will inevitably increase
type II errors (probability of keeping unimportant taxa). Indeed,
if we want to be cautious in removing rare taxa to ensure that
important taxa will remain in the data, we will not remove many
taxa and will likely have a lot of unimportant taxa remaining; if
we remove taxa aggressively, there is a high chance of filtering
important rare taxa. In particular, in studies that aim to discover
rare taxa, filtering would not be advisable since it will likely
remove the rare but important taxa. This issue can be moderated
by having a good understanding of the data (where the data are
sampled and how they are generated) and using auxiliary study
information that allows us to filter with confidence. In particular
for predictive modeling, for example using a random forest
approach in predicting alcoholic hepatitis, building a model with
more abundant taxa may lead to higher reproducibility across
studies as rare taxa may not be observed in another cohort
sampled at different conditions. Another limitation of this study

was the use of derived feature data that were obtained using
an internal bioinformatics processing pipeline for each dataset.
Future studies that start with the raw sequencing data and use
the same bioinformatics pipeline may produce the evidence of
the efficiency of filtering and contaminant removal methods.

We would like to stress that the goal of the current study is the
evaluation of filtering methods on commonly used microbiome
analyses. As a part of this study, filtering was compared to
a closely related contaminant removal method implemented
in R package decontam using a dataset that was previously
illustrated by the package developers (Davis et al., 2018). It
would be of interest to perform a thorough comparison of these
methods on other datasets used in this study, however this is
outside of the scope of this paper.

In summary, the current study provides information on the
effects of removing rare taxa on technical variability and scientific
conclusions drawn from statistical analyses. We provide insights
into the role of filtering in microbiome studies, and highlight
the importance of derived feature data quality control prior to
scientific analysis.
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