
OPINION
published: 03 September 2018
doi: 10.3389/fmicb.2018.02054

Frontiers in Microbiology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 2054

Edited by:

Youssef Rouphael,

Università degli Studi di Napoli

Federico II, Italy

Reviewed by:

Claudio Valverde,

Universidad Nacional de Quilmes

(UNQ), Argentina

Gyöngyvér Mara,

Sapientia Hungarian University of

Transylvania, Romania

*Correspondence:

Camille E. Granada

cegranada@univates.br

Specialty section:

This article was submitted to

Plant Microbe Interactions,

a section of the journal

Frontiers in Microbiology

Received: 09 July 2018

Accepted: 13 August 2018

Published: 03 September 2018

Citation:

Granada CE, Passaglia LMP,

de Souza EM and Sperotto RA (2018)

Is Phosphate Solubilization the

Forgotten Child of Plant

Growth-Promoting Rhizobacteria?

Front. Microbiol. 9:2054.

doi: 10.3389/fmicb.2018.02054

Is Phosphate Solubilization the
Forgotten Child of Plant
Growth-Promoting Rhizobacteria?

Camille E. Granada 1*, Luciane M. P. Passaglia 2, Eduardo M. de Souza 1 and

Raul A. Sperotto 1

1Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil, 2Department of Genetics,

Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Keywords: P-fertilizers, inoculation, P-solubilization, rhizobacteria, sustainable agriculture

CHEMICAL FERTILIZERS × PLANT GROWTH-PROMOTING
RHIZOBACTERIA

Plant growth-promoting rhizobacteria (PGPR) is a well-known group of microorganisms able to
promote plant growth through enhanced biological nitrogen fixation (BNF), synthesis of plant
hormones, soil nutrient solubilization (as phosphorus [P] and potassium [K]; Gupta et al., 2015),
besides preventing deleterious effects of soil-borne phytopathogens (Compant et al., 2005). Due
to the high importance of nitrogen (N) for plant development and the low persistence time that
synthetic N fertilizer presents in the soil (Galloway et al., 2003), most of the studies are focused
on microorganisms able to biologically fix atmospheric N. BNF is performed by symbiotic PGPR,
which are restricted to association of leguminous plants and rhizobial isolates (e.g., Rhizobium
spp., Bradyrhizobium spp.,Mesorhizobium spp., and Allorhizobium spp.), or by free-living bacterial
isolates (e.g., Azospirillum spp., Pseudomonas spp., Burkholderia spp., Gluconacetobacter spp., and
Herbaspirillum spp.; Remigi et al., 2016). However, the research focused only in BNF neglects the
high biotechnological potential of PGPR to agriculture.

Overuse of synthetic fertilizers and agrochemical pesticides has sustained the high crop yield
and, consequently, the population growth in the last century (Stewart et al., 2005). However,
environment does not sustain these practices any more. The consequences are already observed
as high eutrophication of rivers, groundwater contamination, atmospheric pollution, and losses
of soil quality (Stewart et al., 2005; Mondal et al., 2017). These scenarios have stimulated several
agricultural researches. Replacement of synthetic N inputs by PGPR inoculation has been possible
only due to the deep knowledge about BNF. It is interesting to farmers, since it reduces production
costs besides being an environmental-friendly technique. However, PGPR inoculation can go
further, since it presents a potential to reduce the amount of the most important synthetic inputs
applied on crops, which is of paramount importance regarding fertilizers obtained from finite
sources.

SOIL PHOSPHORUS (P) AND P-FERTILIZATION

Phosphorus (P) is a good example of an essential nutrient for plant development derived from finite
resources. P fertilizer is extracted fromP-rich rock in the form of phosphate.Morocco, China, South
Africa and the U.S. account for approximately 83% of the world’s reserves of exploitable phosphate
rock (Vaccari, 2009). Therefore, P deficiency is one of the major limitations to crop production
and it is estimated that 5.7 billion hectares of land worldwide are deficient in P (Mouazen and
Kuang, 2016). These numbers highlight the high importance of P fertilizers for achieving optimal
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crop production. Bouwman et al. (2013) estimated that annual P
consumption in agriculture will increase around 2.5% per year.
Considering the finite sources of P, this data and other studies
indicated that a global P crisis is near (Abelson, 1999; Vaccari,
2009; Jones et al., 2015). However, none of these studies have
considered the residual P in the soil (Sattari et al., 2012).

Some tropical agricultural soils are P-fixing, and the vast
majority of P fertilizer added to them are adsorbed onto soil
minerals [metal oxides (mainly iron and aluminum) and clay
minerals], precipitated as P minerals (predominantly apatite-
like minerals), and immobilized as organic P compounds (soil
organicmatter and phytate), making its residual P less available to
crops (Martinez-Viveros et al., 2010; Hinsinger et al., 2011). Due
to such P immobilization and environmental losses, producers
need to apply twice or more P fertilizers than are actually needed
for optimal yield production (Roy et al., 2016). It is estimated
that 2–8 million tons of P fertilizer are applied to the soils every
year, and ∼1–4 million tons remain in the soil as a residual part.
In a future scenario (2050), 4–14 million tons will be applied,
and 2–7 million tons will remain in the soils (Roy et al., 2016).
Considering that P fertilizer costs approximately US$ 400 per
ton, around US$ 400 million to US$ 1.6 billion are lost with P
fertilizers in crops around the world every year. It certainlymeans
a substantial increase on the food prices for consumers.

IS PHOSPHORUS SOLUBILIZATION THE
FORGOTTEN CHILD OF PGPR?

Recently, Roy et al. (2016) made a tricky question: is it possible
that the increasing amount of immobilized P in the tropical
agricultural soils eventually become available to plants and
support crop productivity? In the case we keep using the same

FIGURE 1 | Schematic model of current/traditional approach (A) and proposed/biotechnological approach (B). *On the current agricultural approach, world demand

of P fertilizer is approximately 4.5 million tons, according to FAO (http://www.fao.org/3/a-i6895e.pdf). From these, 2.2 million tons are unavailable to crops (soil

immobilization or surface runoff), and 2.3 million tons are harvested with the crops. On the proposed biotechnological approach, we suggest the reduction of up to

33% on the P fertilizer dose applied on the soil, along with PGPR inoculation. Such reduction on P fertilizer together with PGPR inoculation would result in less P

unavailable to the crops. Nearly half of such unavailable P can be further solubilized by PGPR and uptaked by the crops, resulting in the same 2.3 million tons of

harvested P (adapted from Roy et al., 2016).

fertilization strategies used for many years, the answer is certainly
no. However, we do believe that using adequate biotechnological
approaches, the immobilized P could return to the plants in a
soluble and available form. Screening of new PGP isolates for
inoculant production aiming to optimize plant growth and BNF
comprise an essential stage of in vitro phosphate solubilization
analysis (Collavino et al., 2010; Souza et al., 2013, 2015; Walitang
et al., 2017; Marag et al., 2018). These studies identified
several bacterial isolates able to promote plant growth, improve
rhizosphere area and solubilize different sources of immobilized
P. Given the lowmobility of P in soils, the enlargement of volume
and geometry of the rhizosphere provided by PGPR inoculation
determines the amount of P available to plants (Richardson
et al., 2009). Therefore, inoculation of PGPR seems to be a
reasonable tool to maximize such approach. Microorganisms
increase the availability of inorganic P through the production
of protons, organic acids, and ligands, which are ubiquitous
among rhizosphere P-solubilizing microorganisms (Hinsinger
et al., 2011), and also mobilize phytate (organic P) probably
by phytase production (Jorquera et al., 2008). However, in
greenhouse and/or field conditions, most of the studies do not
evaluate different P-fertilization levels, phosphate solubilization
in the soil and P uptake by the plants. The majority of the studies
considers only plant agronomic parameters and plant N content

in conditions with or without N fertilization.

REDUCTION OF P-FERTILIZATION
THROUGH PGPR INOCULATION

Increasing P efficiency in crops without increasing or even
decreasing P inputs requires a more efficient exploitation of
soil microbial resources in agroecosystems. Some studies clearly
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report that plant inoculation with new PGPR can improve
P uptake. Rudresh et al. (2005) showed that chickpea plants
inoculated with Rhizobium sp. and Bacillus sp. present higher
yield (two-fold) and higher P content (four-fold) in the grain.
Vyas and Gulati (2009) and Granada et al. (2013) demonstrated
that inoculation of maize (Zea mays) with Pseudomonas spp.,
and Lupinus albescens plants with free-living Sphingomonas
sp. results in almost three-fold increases in their shoot P
contents, respectively. Studying wheat (Triticum aestivum L.)
plants, Kumar et al. (2014) showed that inoculation of Bacillus
megaterium, Arthrobacter chlorophenolicus, and Enterobacter
improves grain yield and the amount of P in the straw and grain
up to two-fold in greenhouse and field experiments. Thus, it is
already known that inoculation of efficient P-solubilizer bacteria
significantly improve P absorption by plants, even though most
of the experiments use the recommended P fertilizer dose, and
reduction of the P-fertilization has not been evaluated.

Khalafallah et al. (1982) developed an important work
inoculating Vicia faba plants with P-solubilizing bacteria. This
work showed the possibility of reducing the P-fertilization up
to 50%, once plants that received half of the recommended
P-fertilizer dose presented similar plant dry weight and P-
uptake when compared to plants that received usual P-fertilizer
dose. More recently, Lavakush et al. (2014) observed the same
potential in rice plants inoculated with the P-solubilizing bacteria
Azotobacter chroococcum, Azospirillum brasilense, and combined
Pseudomonas spp. culture. Inoculated rice plants presented
similar performance in plant height, panicle length, grain number
per panicle and grain yield when fertilized with 30 and 60 kg
P ha−1 in a greenhouse experiment. Dutta and Bandyopadhyay
(2009) showed that reduction of up to one-third in P-fertilization
of chickpea plants (inoculated with P-solubilizing Pseudomonas
sp.) did not cause any decrease in plant development parameters.

Therefore, PGPR inoculation can probably be used to reduce
P-fertilization, being an excellent biotechnological tool. However,

this research area is neglected by researches and certainly
needs more investigation. All plant species are able to establish
a relationship with some PGPR, and the selection of new
bacterial isolates, able to solubilize different forms of P in
vitro, is an important and necessary first step. We hope the
results obtained in greenhouse and field inoculation experiments
with selected P-solubilizing bacterial isolates and plant species
subjected to reduced amounts of P-fertilizer could serve as
an alert to producers about the high costs of normally used
fertilization strategies, the concerns about finite P sources,
and the environmentally friend biotechnological option of
using PGPR. Based on previous works which addressed P-
solubilization potential by PGPR inoculation in plants (mainly
Khalafallah et al., 1982; Dutta and Bandyopadhyay, 2009; Kumar
et al., 2014; Lavakush et al., 2014; Anzuay et al., 2015; Kaur
and Reddy, 2015), we consider that an average reduction of
33% in P-fertilization could be achieved with the use of high
efficient P-solubilizing bacterial isolates as crop inoculants,
as indicated on the proposed biotechnological approach in
Figure 1. Therefore, future experiments need to be specifically
designed for such purposes. Considering the complexity of
these mechanisms, an interdisciplinary approach taking into
account molecular, biochemical, physiological, and agronomic
parameters has a good probability to generate positive results.
We have a long way to cross until reaching similar knowledge
and applicability achieved by bacterial inoculants regarding
the reduction of N-fertilizers. However, reasonable use of
environmental resources should be the basis for modern and
sustainable agriculture development.
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