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Under physiological conditions, most human endogenous retroviruses (HERVs) are
transcriptionally silent. However, re-activation of HERVs is observed under pathological
conditions like inflammation or cancer. In addition to expression of HERV sequences,
an impact of HERV-loci on expression of adjacent genes has been suggested as
probably important patho-physiological mechanism. A candidate for such a gene is
PRODH (proline dehydrogenase 1), which is located on chromosome 22 adjacent
to HERVK-24. Germ cell tumors (GCTs) are known to express high level of HERVK
sequences. In addition, non-seminomatous GCT are useful models to study HERV
expression in the context of differentiation since they reflect aspects of cellular
development during embryogenesis and usually contain different cell types. This is
due to the embryonal carcinoma (EC) cells, which are the stem cell component of
GCT. They are pluripotent, show high expression of pluripotency markers like OCT4
and LIN28A and can differentiate into either somatic derivatives (teratoma cells) or
choriocarcinoma or yolk-sac tumor cells reflecting extra-embryonal differentiation. OCT4
is lost upon differentiation. We used GCT derived cell lines of varying differentiation
stages to analyze expression of HERVK and PRODH. Differentiation status and cellular
relationship of GCT cells was determined using microarray analysis and western blotting
of the embryonic pluripotency markers OCT4 and LIN28A. The highest expression of
HERVK was found in undifferentiated EC cells, which retain a stem cell phenotype
and express both OCT4 and LIN28. In contrast, the lowest expression of HERVK
was observed in somatic differentiated GCT cells which also lack OCT4 and LIN28A
whereas GCT cells with differentiation characteristics of yolk-sac tumor expressed
LIN28A but not OCT4 and showed intermediate level of HERVK. A similar pattern
was found for PRODH. Differentiation of EC cells by siRNA mediated knock-down
of OCT4 or treatment with differentiation inducing medium decreased expression of
HERVK and PRODH. Treatment of differentiated GCT cells with 5′-azacytidine and
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trichostatin A increased expression of HERVK and PRODH, indicating that epigenetic
mechanisms are responsible for altered expression of these genes. Our data suggest
that HERVK expression is dependent on cellular differentiation stages regulated by
epigenetic mechanisms, which can also affect expression of neighboring genes.

Keywords: endogenous retroviruses, germ cell tumor, differentiation, HERVK, PRODH, OCT4, LIN28A

INTRODUCTION

Human endogenous retroviruses (HERVs) are retroviral
sequences that are permanently integrated into the human DNA
and that are inherited from parents to the offspring like other
genes. In addition to HERVs that are present in every individual,
some HERVs are polymorphic and the presence or absence of
these HERVs varies between individuals (Turner et al., 2001).
Interestingly, these HERVs are particularly able to produce virus
like particles (Boller et al., 2008). Re-activation of HERVs has
been found in cancer patients. The patho-physiological function
of this phenomenon is unclear but oncogenic transformation of
cells by HERV gene products has been described (Boese et al.,
2000; Galli et al., 2005; Argaw-Denboba et al., 2017; Lemaître
et al., 2017). In addition, re-activation of HERV-like promoters
has been shown to be involved in the aberrant expression of
transformation associated genes in lymphoma cells (Lamprecht
et al., 2010). Therefore, an impact of HERV-loci on expression
of adjacent genes can be suggested as one probably important
patho-physiological mechanism.

In this study we focused on a specific HERVK locus, which
is referred to as ERVK-24 according to the nomenclature from
Mayer et al. (2011). Formerly, this locus was described as HERV-
K101 (Barbulescu et al., 1999) and c22_A (Ruprecht et al.,
2008). ERVK-24 is located on chromosome 22 between the loci
for proline dehydrogenase 1 (PRODH) and DiGeorge critical
region 5 (DGCR5). DGCR5 has been identified as chromosomal
breakpoint in patients with DiGeorge syndrome (Sutherland
et al., 1996). As DGCR5 did not contain a functional open reading
frame, it was suggested that expression of DGCR5 might reflect a
particular chromatin configuration that is required for regulation
of adjacent genes (Sutherland et al., 1996). One candidate for such
a gene is PRODH. PRODH is an evolutionarily conserved gene
and a homolog of the Drosophila gene sluggish A (Gogos et al.,
1999). Like PRODH, sluggish A is a mitochondrial protein and is
involved in glutamate synthesis (Hayward et al., 1993). Mutations
in PRODH are a cause of hyperprolinemia and a risk factor for
schizophrenia (Bender et al., 2005).

ERVK-24 belongs to a group of HERVs with high expression
in patients with germ cell tumors (GCTs) that are positive
for antibodies against HERV-proteins (Flockerzi et al., 2008).
It seems to be one of the transcriptionally most active HERV
in GCT cells (Ruprecht et al., 2008). In addition to their
high expression of HERVK sequences, GCTs, in particular
non-seminomatous GCTs are useful models to study HERV
expression in the context of differentiation processes since
they can reflect some aspects of cellular development during
embryogenesis. This is due to the pluripotent nature of
embryonal carcinoma (EC) cells, which are the stem cell

component of GCT. EC cells can be considered as the malignant
counterpart of pluripotent embryonic stem cells, and show
high expression of pluripotency markers like OCT4 (Looijenga
et al., 2003; Sperger et al., 2003). They can differentiate into
either somatic derivatives leading to teratoma tissue or into
tissues like choriocarcinoma and yolk sac tumor reflecting
an extra-embryonic differentiation (Oosterhuis and Looijenga,
2005). OCT4 is lost during differentiation. Therefore, GCT are
usually composed of undifferentiated EC cells and variously
differentiated cell types (Oosterhuis and Looijenga, 2005).

In the present paper we analyzed expression of HERVK and
PRODH in cell lines of GCT with varying differentiation stages
and upon induction of differentiation in undifferentiated cells. In
addition, differentiated cells were treated with agents modifying
DNA methylation and histone acetylation to investigate
epigenetic mechanisms, which are known to be involved in both
differentiation processes and inactivation of HERVs.

MATERIALS AND METHODS

Cell Lines and Cell Culture
The following human GCT cell lines were used: H12.1 and H12.5
(Casper et al., 1987), H12.1D (Mueller et al., 2006), 1411HP
(Vogelzang et al., 1985), GCT72 and GCT27 (Pera et al., 1987),
1777NRpmet, 2102EP, 833K, and NTera2-D1 (Bronson et al.,
1980, 1983; Andrews et al., 1996). The cell lines 1777NRpmet,
1411HP, and 833K were kindly provided by Prof. Peter W.
Andrews (University of Sheffield, United Kingdom). The H12.1
and H12.5 were established in the former group of Prof. H.-J.
Schmoll (University Hospital Halle, Germany) and belong to our
lab. The cell lines GCT72 and GCT27 were kindly provided by
Prof. Martin F. Pera (Monash University, Australia, at the time of
shipping). The NTera2-D1 was kindly provided by Dr. Heiko van
der Kuip (University of Tübingen, Germany).

The Hodgkin lymphoma (HL) cell lines L-1236, L-428, L-540,
KM-H2, and HDLM-2 (Schaadt et al., 1979; Diehl et al., 1982;
Drexler et al., 1986; Kamesaki et al., 1986; Wolf et al., 1996) were
purchased from the German Collection of Microorganisms and
Cell Cultures, Brunswick, Germany.

All cell lines were cultured in RPMI-1640 (Invitrogen,
Karlsruhe, Germany) supplemented with 10% fetal calf serum,
100 U/mL penicillin, and 100 µg/mL streptomycin at 37◦C
in a humidified atmosphere with 5% CO2. For induction of
differentiation of H12.1 cells, cells were treated with 10 µM
retinoic acid and harvested after 5 days. For re-induction of
HERVK expression, 1777NRpmet cells were treated with 5′-
azacytidine (4 µM) and trichostatin A (10 nM) and harvested
after 5 days.
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Gene Expression Analysis
We used published cell lines and commercially available RNA
from anonymous sources for gene expression analysis. RNA
from cell lines was isolated using Trizol reagent (Invitrogen,
Karlsruhe, Germany) following the manufacturer’s protocol.
Probable DNA contamination was removed by treatment with
DNase (Roche, Mannheim, Germany). In addition, RNA from
human placenta from anonymous donors was obtained from
Becton-Dickinson (Heidelberg, Germany). RNA (2 µg) were
transcribed into cDNA using oligo-dT12-18 primers (Promega,
Mannheim, Germany) and polymerase chain reaction (RT-PCR)
was performed. The following primer combinations were used:
actin beta (ACTB): 5′-GGC ATC GTG ATG GAC TCC G-3′,
5′-GCT GGA AGG TGG ACA GCG A-3′; HERVK primer
combination a (HERVKa): 5′-CCT GCA GTC CAA AAT TGG
TT-3′, 5′-GCA ATG CAA CTC CTG CTA CA-3′; HERVK
primer combination b (HERVKb): 5′-TTC TGC TGG TGA
GAG CAA GA-3′, 5′-TGG ACA CAG CAC ATG TTT CA-3′;
glyceraldehyde 3-phosphate dehydrogenase (GAPDH): 5′-CCA
TGG AGA AGG CTG GGG-3′, 5′-CAA AGT TGT CAT GGA
TGA CC-3′; proline dehydrogenase 1 (PRODH): 5′-GAG GCT
TTG AGA AGC CAG TG-3′, 5′-GGT ATT GCT TGT CCC GCT
TA-3′. The PCR conditions were: 94◦C, 30 s; 60◦C, 30 s; 72◦C, 45 s
(35 cycles). The HERVK primers bind to the following genome
coordinates: HERVKa:NC_000022.11:18945350-18945369 and
NC_000022.11:18946285-18946304; HERVKb:NC_000022.11:
18946101-18946120 and NC_000022.11:18947034-18947049.
The reverse primer from this combination has two mismatches
with the current genome version. The primers should also be
able to amplify additional HERVK elements. However, the very
high expression of ERVK-24 in comparison to other elements
seem to favor amplification of this locus as proved by sequencing
of polymerase chain reaction products (see Supplementary
Material). Absence of DNA contamination was tested randomly
by using RNA without reverse transcription as template for
PCR. See the Supplementary Material for an example. PCR
products were subjected to agarose gel electrophoresis in the
presence of ethidium bromide. Real-time quantitative RT-PCR
(qRT-PCR) was performed using the MaximaTM SYBR Green
qPCR Master Mix (Fermentas, Sankt Leon-Rot, Germany) using
the following conditions: 94◦C, 45 s; 60◦C, 45 s; 72◦C, 60 s (40
cycles).

Global gene expression in GCT cells was analyzed using
Affymetrix HG_U133A arrays (Affymetrix, Santa Clara, CA,
United States). Arrays were processed essentially as described
(Staege et al., 2004). In short, biotinylated cRNA was prepared
by in vitro transcription after synthesis of double-stranded
cDNA. After fragmentation of cRNA and hybridization, signals
were detected with streptavidin-phycoerythrin and signals were
enhanced by using goat-anti-streptavidin antibodies. Arrays were
washed and stained with a GeneChip Fluidics Station 400
and scanned with a GeneArray Scanner G2500A. Affymetrix
cell files were processed using Robust Multi-array Average
(RMA) algorithm with Expression Console 1.1 (Affymetrix).
GCT associated genes were identified on the basis of Wilks’
Lambda score (WLS) by using MAFilter (Winkler et al., 2012).
WLS was used descriptively without significance calculation

for filtering probe sets with high signal intensities in GCT
cells in comparison to normal cells. For this end, WLS was
calculated as quotient of the variance in the total group of
samples and the variance in the group of normal tissues alone.
Microarray cell files have been submitted to the Gene Expression
Omnibus (GEO) data base (Accession No. GSE113423). For
comparative analysis, published microarray data from a panel of
normal tissues [normal body atlas (NBA)] from the GEO data
base (GSE2361) were used (Ge et al., 2005). Cluster analysis

FIGURE 1 | Expression of stem cell markers in GCT cells. (A) Gene
expression in GCT cell lines was assessed by DNA microarray analysis. Two
independent samples per cell line were analyzed. Gene expression in GCT
was compared with gene expression in a panel of normal tissues (Ge et al.,
2005). Genes with high expression in GCT were filtered by using MAFilter.
Probe sets with a WLS > 10 were considered to be GCT specific. Presented
are signal intensities (arbitrary units) for probe sets with specificity for the
indicated stem cell markers. The following normal tissues are included (from
left to right): heart, thymus, spleen, ovary, kidney, skeletal muscle, pancreas,
prostate, small intestine, colon, placenta, bladder, breast, uterus, thyroid, skin,
salivary gland, trachea, cerebellum, brain, fetal brain, adrenal gland, bone
marrow, amygdala, caudate nucleus, corpus, hippocampus, thalamus,
pituitary gland, spinal cord, testis, liver, stomach, lung, fetal lung, fetal liver. (B)
Western blot analysis of pluripotent stem cell markers OCT4 and LIN28A. In
addition to H12.1 and H12.5, four other cell lines representing the
undifferentiated, pluripotent EC cell type were analyzed: 2102EP, 833K,
GCT27, NTera-D1.
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FIGURE 2 | Relationship of GCT cells (i). Gene expression in GCT cell lines was assessed by DNA microarray analysis using two samples per cell line. Gene
expression in GCT was compared with gene expression in a panel of normal tissues (Ge et al., 2005). Genes with high expression in GCT were filtered by using
MAFilter. Probe sets with a WLS > 10 were considered to be GCT specific. Presented is a cluster analysis using these probe sets. Manhattan distance was used as
distance metric. Signal intensities from microarray analysis were log2-transformed and median centered. Green indicates low expression, red high expression.

and visualization was performed with Genesis (Sturn et al.,
2002).

Sequencing and Bioinformatical
Analyses
Polymerase chain reaction products were purified with
NucleoSpin Gel and PCR Clean-up (Machery-Nagel, Düren,
Germany). Sequencing of PCR products was performed
using the BigDye Terminator v1.1 Cycle Sequencing Kit (Life
Technologies, Austin, TX, United States). The sequences were
analyzed with BLAST (Altschul et al., 1990). Open reading
frames in the intergenic region between PRODH and DGCR5
were identified by using getorf1. Long terminal repeats (LTRs)
were identified using RepeatMasker2.

Western Blot Analysis
Cells were harvested by trypsiniziation, rinsed twice with PBS
and lysed in RIPA buffer (50 mM Tris-HCl pH 8.0, 100 mM
NaCl, 0.5% NP40, 0.5% DOC, 0.5% SDS) supplemented with a
protease inhibitor cocktail (Sigma, St. Louis, MO, United States).
Insoluble components were removed by centrifugation and

1http://www.hpa-bioinfotools.org.uk/pise/getorf.html
2http://www.repeatmasker.org/

protein concentrations were measured (BIO-RAD protein assay,
Bio-Rad, Hercules, United States). After boiling for 5 min in
SDS-loading buffer (500 mM Tris-HCl pH 6.8; 10% glycerol, 2%
SDS, 5% 2-mercaptoethanol, 0.05% bromophenol blue), 20 µg
protein per lane was separated by SDS-PAGE and electroblotted
onto nitrocellulose transfer membrane (Whatman, Maidstone,
United Kingdom). Equal protein loading was controlled by
Ponceau S staining (Sigma, St. Louis, MO, United States).
Membranes were blocked with 5% non-fat dry milk in PBST
for 1 h and probed for 2 h with the primary antibodies diluted
in PBST/5% milk followed by incubation with secondary HRP-
conjugated antibodies. Proteins were visualized by enhanced
chemiluminescence (Carl Roth, Karlsruhe, Germany). The
following primary antibodies were used: OCT4: sc-5279 mouse
monoclonal C-10; β-actin: sc-1615 goat polyclonal C-11 (both
from Santa Cruz Biotechnology, Santa Cruz, CA, United States);
LIN28A: #3978 rabbit polyclonal (Cell Signalling). Horseradish
peroxidase (HRP)-conjugated anti-goat, anti-mouse and anti-
rabbit IgG (all from Santa Cruz Biotechnology, Santa Cruz, CA,
United States) were used as secondary antibodies.

siRNA-Mediated Protein Knock-down
For siRNA mediated protein knock-down of OCT4, cells were
transfected with OCT4-specific siRNA or control-siRNA (both
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FIGURE 3 | Relationship of GCT cells (ii). Gene expression in GCT cell lines was assessed by DNA microarray analysis using two samples per cell line. Gene
expression in GCT was compared with gene expression in a panel of normal tissues (Ge et al., 2005). For each cell line individual specific genes were identified by
dividing the mean signal intensity of these cell lines by the 85th percentile of the signal intensities in all other GCT cell lines. Only probe sets that showed a quotient of
greater than two were analyzed further. Presented is a cluster analysis. Manhattan distance was used as distance metric. Signal intensities from microarray analysis
were log2-transformed and median centered. Green indicates low expression, red high expression.

from Santa Cruz Biotechnology, United States). Transfection of
siRNA was performed by the Nucleofector R©-technology (Amaxa
Biosystems, Germany). Cells (2× 106) were suspended in 100 µl
transfection buffer (Amaxa Biosystems, Germany) and combined
with 1 µg siRNA. After reaction in the Nucleofector R©-system,
the transfected cell suspension was diluted in growth media,
seeded in 6 well plates and incubated for indicated times. OCT4
knock-down was confirmed by western blot analysis.

RESULTS AND DISCUSSION

To investigate cellular relationship, we analyzed the gene
expression pattern of six GCT cell lines with varying
differentiation stages in comparison to a panel of normal
tissues (NBA) from the GEO database (Ge et al., 2005).
Microarray data were filtered for up-regulated genes on the basis
of WLS by using MAFilter and 1,104 probes sets were identified

with a WLS > 10 indicating up-regulation of the corresponding
genes in GCT cells. Among the strongest up-regulated genes
we found typical markers of pluripotent stem cells like LIN28A,
NANOG, and OCT4. Based on the expression pattern of LIN28A,
NANOG and OCT4, three groups of GCT cells could be defined
(Figure 1A). Group 1 included the cell lines H12.1 and H12.5,
which represent the undifferentiated, pluripotent EC cell type.
These GCT cells are characterized by the expression of all three
genes. Group 2 included the cell lines GCT72 and 1411HP, which
have characteristics of differentiation toward yolk-sac tumor.
These cells have lost expression of NANOG and OCT4 but still
express LIN28A. Group 3 included the cell line 1777NRpmet and
the H12.1D, which is an in vitro differentiated, stable derivative
of the EC cell line H12.1. These cells have lost expression of all
three stem cell markers. The differential gene expression patterns
were confirmed by western blot analysis of OCT4 and LIN28A
(Figure 1B) indicating that both markers are useful to define the
three groups of GCT cells.
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FIGURE 4 | High expression of HERVK in GCT. Expression of HERVK in GCT
cell lines was assessed by (A) quantitative RT-PCR (qRT-PCR) and (B)
conventional RT-PCR with primers amplifying ERVK-24env. For qRT-PCR,
HERVK specific primers were used and β-actin was used as housekeeping
control. Expression of HERVK in H12.1 cells was set as 1 and relative
expression was calculated according to the 2−11Ct-method (Livak and
Schmittgen, 2001). For conventional RT-PCR two different primer
combinations were employed. cDNA from placenta was used as control.

Cluster analysis indicated that the gene expression profile of
cells from group 3 have greater similarity with normal somatic
tissues than the gene expression profiles of the other groups
(Figure 2) indicating a teratoma-like, somatic differentiation
lineage of these cells. This similarity could also be seen in cluster
analysis when we used probe sets that were filtered for cell line-
specificity (Figure 3). For this end, we divided the mean signal
intensity of each cell line (which in our case is identical to the
50th percentile) by the 85th percentile of the signal intensities
in all other GCT cell lines. Using the 85th percentile has the
advantage that outliers from these cell lines have only low impact
on the calculated ratios. Cell line specificity was considered if this
ratio was greater than 2. Based on this filtering criterion, a total
of 1,315 probe sets showed cell line specificity. Cluster analysis
using these probe sets as data points revealed again and more
clearly the higher similarity between normal somatic tissues and
1777NRpmet and H12.1D cells. Interestingly, it also revealed that
among the cells with yolk-sac tumor characteristics, GCT72 cells
are closer related to pluripotent H12.1/H12.5 cells than 1411HP
cells (Figure 3).

FIGURE 5 | Repression of HERVK upon induction of differentiation in
pluripotent GCT cells. Induction of differentiation in pluripotent H12.1 cells was
performed by siRNA mediated knock-down of OCT4. Cells were analyzed
after 24, 72, and 120 h by western blotting to prove knock-down of OCT4 (A)
and by RT-PCR for HERVK expression (B).

Together, gene expression analysis and western blotting
could define three groups of GCT cells: (i) OCT4+/LIN28+
undifferentiated pluripotent, (ii) OCT4−/ LIN28+ differentiated
toward yolk-sac tumor, and (iii) OCT4−/ LIN28− somatic
differentiated.

Germ cell tumors are known for their high expression of
endogenous retroviruses. Therefore, we tested expression of
HERVK in GCT cell lines by conventional and quantitative
RT-PCR. For comparison we used HL cell lines. As shown
in Figure 4A, GCT cell lines showed higher expression of
HERVK than HL cell lines. Although reactivation of HERVs
in HL cells has been described, the expression in HL cells
is low in comparison to GCT at least for HERVK. Next
we asked whether the different differentiation status of our
GCT cell lines might have an impact on HERVK expression.
Among GCT cells expression of HERVK was particularly
high in undifferentiated pluripotent EC cell lines H12.1 and
H12.5 (Figure 4B). Cells with characteristics of yolk-sac tumor
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(GCT72 and 1411HP) showed intermediate expression whereas
somatically differentiated tumor cells (1777NRpmet, H12.1D)
expressed lowest levels (Figure 4B). To prove a direct link
between differentiation processes and HERVK expression, we
performed siRNA mediated knock-down of OCT4 in pluripotent
H12.1 cells which induces differentiation in those cells. As shown

FIGURE 6 | Correlative expression of HERVK and PRODH in GCT cells.
(A) Gene expression in GCT cell lines was assessed by DNA microarray
analysis. Two independent samples per cell line were analyzed. Presented are
signal intensities (arbitrary units) for probe sets with specificity for PRODH as
means ± SD. (B) Presented are results from quantitative RT-PCR analysis with
primers specific for HERVK and PRODH. cDNA was prepared from GCT cell
lines and β-actin was used as house-keeping control. Two additional cell lines
(2102EP, 833K), which represent the undifferentiated, pluripotent EC cell type
were included to support the correlation and to analyze differences among
this group of GCT cells.

in Figure 5, induction of differentiation rapidly led to repression
of HERVK.

Sequencing of PCR products indicated that the primers used
for PCR amplify preferentially ERVK-24 (see Supplementary
Material). ERVK-24 is located between the loci for PRODH

FIGURE 7 | Epigenetic regulation of HERVK and PRODH in GCT cells.
Presented are results from quantitative RT-PCR analysis with primers specific
for HERVK and PRODH. cDNA was prepared from GCT cell lines and β-actin
was used as house-keeping control. Expression of HERVK in un-treated cells
was set as 1 and relative expression was calculated according to the
2−11Ct-method (Livak and Schmittgen, 2001). (A) Pluripotent H12.1 cells
were treated with retinoic acid to induce differentiation. (B) Somatically
differentiated 1777NRpmet cells were treated with a combination of
5′-azacytidine and trichostatin A to induce re-expression of HERVK and
PRODH.
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and DGCR5 (see Supplementary Material for the topography of
the complete locus including the position of PCR amplicons).
Organization of the locus suggests that PRODH and ERVK-
24 might be regulated by a bi-directional promoter. We asked
whether ERVK-24 and the neighboring PRODH might be co-
regulated. Analysis of PRODH based on our microarray data
showed a similar expression pattern of PRODH as observed for
HERVK regarding the three groups of GCT cells (Figure 6A).
Notably, GCT72 yolk-sac tumor cells had similar high PRODH
expression as pluripotent H12.1 cells. Next we performed
combined RT-PCR analysis of HERVK and PRODH in our
GCT cell panel and found a correlation between PRODH
and HERVK expression (Figure 6B). The characteristic higher
PRODH expression in GCT72 among the cells with yolk-sac
tumor differentiation could be reproduced. Therefore, PRODH
and HERVK expression pattern of GCT72 confirmed the cluster
analyses and suggest that it is more closely related to pluripotent
H12.1/H12.5 cells than 1411HP.

To further investigate a possible differentiation dependent co-
regulation of HERVK and PRODH, pluripotent H12.1 cells were
treated with differentiation inducing retinoic acid. As shown
in Figure 7A, induction of differentiation led to repression of
HERVK and was accompanied by down-regulation of PRODH.
Next we asked whether HERVK could be re-induced in cells
with low expression, e.g., somatic differentiated cells. As shown
in Figure 7B, treatment of 1777NRpmet cells with 5′-azacytidine
and trichostatin A increased expression of HERVK. Interestingly,
this was accompanied by induction of PRODH expression.
Together these data demonstrate a differentiation-dependent and
epigenetically-regulated expression of HERVK and suggest co-
regulation of PRODH expression.

Expression of HERV sequences has been observed in different
diseases including cancer. It remains unclear whether HERV
expression is directly involved in pathogenesis or whether HERV
expression is only an epi-phenomenon of altered gene regulation
under pathological conditions. More recently, it was shown
that activation of an endogenous retroviral LTR-like promoter
is responsible for the expression of growth factor receptors
in cancer cells (Lamprecht et al., 2010). However, the reasons
for the aberrant activation of such promoters in cancer cells
require further investigation. In the present paper we analyzed
the expression of the PRODH/ERVK-24 locus. PRODH has been
identified as a putative tumor suppressor gene (Liu et al., 2008,
2010). On the other hand, knock-down of PRODH decreases
the viability of oxidized low-density lipoprotein (OxLDL)-treated
cancer cells (Zabirnyk et al., 2010). OxLDL induce PRODH-
dependent autophagy which may explain some of the effects
of PRODH, because limited autophagy is a cell survival factor
whereas excessive autophagy promotes cell death (Degenhardt
et al., 2006).

In general, a large number of human genes are regulated
by bi-directional promoters (Trinklein et al., 2004) and highly
active HERV promoters might serve as bi-directional promoters
(Domansky et al., 2000). The chromosomal organization of the
PRODH/ERVK-24 locus together with our expression data in
GCT suggests that both genes are co-regulated. Interestingly,
expression of PRODH in germ line cells is evolutionarily highly
conserved since germ line stem cells from Drosophila express
high amounts of the PRODH homolog sluggish A (Kai et al.,
2005). These data suggest that expression of PRODH is a feature
of cells with an embryonic phenotype. The co-expression of
ERVK-24 together with PRODH might be a consequence of the
active chromatin state in GCT. Whether the expression of ERVK-
24 and PRODH has consequences for the tumor cell biology
requires further investigation.

CONCLUSION

In addition to direct effects of HERV expression, co-regulation of
neighboring genes should be considered as possible mechanism
for HERV-associated diseases. This co-regulation can be
associated with differentiation processes regulated by epigenetic
mechanisms, as we have shown using GCT cell lines reflecting
different stages of development.
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