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Viruses are key players in ocean ecology and biogeochemistry, not only because of their functional
roles but also partially due to their sheer abundance (Fuhrman, 1999; Wilhelm and Suttle, 1999).
Because viruses cannot replicate without their hosts’ machinery, their abundance is inextricably
related to that of their (mostly microbial) hosts. The relationship between viral and microbial
abundances is thus of great interest.

It is often assumed that the abundance of virus-like particles (V , mL−1) and microbial cells (M,
mL−1) are approximately proportional. A rule-of-thumb “virus-to-microbe” ratio of 10 has been
used (Thingstad, 2000) as measurements of V are frequently an order of magnitude larger than
those of M. However, V/M is known to vary substantially (Maranger and Bird, 1995; Knowles
et al., 2016; Wigington et al., 2016; Parikka et al., 2017).

Wigington et al. (2016) presented an alternative paradigm. They compiled 5,671 V and M
measurements from 25 studies spanning diverse marine environments, an order of magnitude
larger than any previous data compilation of its kind. They definitively showed that a power-law
relationship V = αMβ is a better statistical model than a proportionality V = αM, in terms
of the proportion of variance explained by each. They found β < 1 in most cases, meaning
V/M decreases as M increases. If V does scale nonlinearly with M this has broad implications
for the characterization of marine viruses’ abundance and influence (Wigington et al., 2016), so it
is important to be certain that a nonlinear model is superior to a linear description. It also raises
questions as to how this nonlinear scaling emerges, and what determines α and β .

While several studies (Maranger and Bird, 1995; Danovaro et al., 2011; Knowles et al., 2016;
Wigington et al., 2016) have tested the model V = αMβ by performing ordinary least-squares
(OLS) regression on log-transformed V andM data, to our knowledge none have tested the linear
model V = aM + b. Unlike V = αM, the linear model V = aM + b has the same number of
parameters as the nonlinear model V = αMβ , is consistent with a decreasing V/M asM increases,
and is not a special case of the nonlinear model. We interpret V = aM + b to consider V as
the sum of two pools—a pool of viruses whose abundance is proportional to microbial abundance
(aM), and a background pool of other viruses and virus-like particles whose abundance is unrelated
to microbial abundance (b). Because this model is simple and its parameters are comparatively
straightforward to interpret and possibly predict, its ability to explain observations should be
evaluated before concluding that V andM are nonlinearly related.

Here we evaluate the ability of the linear model V = aM+ b to explain the relationship between
V and M in the marine datasets considered by Wigington et al. (2016), Knowles et al. (2016), and
Parikka et al. (2017). We show that the linear model’s performance is never significantly different
from that of the nonlinear model, and therefore that the linear model is a tenable description of the
relationship between V andM.

We first reanalyzed the datasets considered in Wigington et al. (2016). They analyzed data
from 25 studies, and also aggregated surface (z ≤100 m; n = 2, 921) and subsurface (z >100 m;
n = 2, 750) samples, totaling 27 datasets. We repeated their OLS regression of log10-transformed
V and M data (see Supplementary Material for MATLAB R2017a code). We also fit the model
V = aM + b after log-transformation:

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.00358
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.00358&domain=pdf&date_stamp=2018-03-01
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:snail@mit.edu
https://doi.org/10.3389/fmicb.2018.00358
https://www.frontiersin.org/articles/10.3389/fmicb.2018.00358/full
http://loop.frontiersin.org/people/472877/overview
http://loop.frontiersin.org/people/305930/overview
http://loop.frontiersin.org/people/107891/overview


Cael et al. V(M): A Linear Interpretation

FIGURE 1 | (Left) Example of linear model V = aM+ b (dotted purple curve) compared to nonlinear model V = αMβ (solid red curve) for viral (V ) and microbial (M)

abundance data. Data are the subsurface samples (z > 100 m) from Wigington et al. (2016); compare to their Figure 3b. (Right) Coefficient of determination for linear

model V = aM+ b (r2
l
) vs. nonlinear model V = αMβ (r2n ) for the 29 datasets considered in the text. Dashed red line corresponds to r2

l
= r2n . Scatterpoints are sized

by the logarithm of the number of samples in each dataset. For each point, the difference between it and the red dashed line is not statistically significant at the 90%

confidence level, as estimated by the bootstrap analysis described in the text.

log10 V = log10

(

a10log10 M + b
)

to the log-transformed data via nonlinear least-squares
regression. Note that a linear relationship appears curved after
log-transformation, asymptoting to V = b as M → 0 and to
V = aM as M → ∞. We analyzed log-transformed data to be
consistent with Wigington et al. (2016) and others (Maranger
and Bird, 1995; Danovaro et al., 2011; Knowles et al., 2016), and
becauseM and V span multiple orders of magnitude.

As the models have the same number of free parameters, we
compared the two models by their coefficients of determination
(r2
l
and r2n for the linear and nonlinear models respectively). We

contend that if one model can be judged superior to the other
based on these data alone, its superiority should be apparent even
in the simplest statistical analyses.

Figure 1 shows r2
l
vs. r2n for all 27 datasets; neither model

consistently outperforms the other and often their coefficients
of determination are virtually the same1 (Table S1). The striking
similarity between the models’ performance suggests that one
cannot discriminate between them based on these data alone.

To quantify the similarity of r2
l
and r2n, we estimated their

confidence intervals with a bootstrap analysis (Efron, 1979). For
each of the 27 datasets, we generated 10,000 replicate datasets
via resampling with replacement, repeated the above analysis on
each replicate, and estimated the 90% confidence intervals of r2

l

and r2n for each dataset by the 5 and 95th percentiles of their
bootstrap distributions (Table S1). For all 27 datasets the 90%
confidence intervals for r2n and r2

l
overlap, indicating that the

1The large fluctuations evident in V compared to the range ofM helps explain the

models’ equivocal performance and can yield correlations between V and V/M

(Parikka et al., 2017).

difference between the two is not statistically significant, even at
the nonconservative 90% confidence level.

Knowles et al. (2016) and Parikka et al. (2017) also compiled
V and M data from different environments, including marine
environments. We repeated the above analyses on the marine
data from both studies, and found that they corroborate our
findings above. For the “Pelagic Marine” data from Parikka et al.
(2017) (n = 221) we found r2

l
= 0.59 and r2n = 0.57 with

overlapping 90% confidence intervals; for the “Deep Ocean”
data2 from Knowles et al. (2016) (n = 18) we found r2

l
=

0.91 and r2n = 0.87 with overlapping 90% confidence intervals
(Table S1).

Two earlier studies further corroborate that statistically a
linear model is a tenable explanation of the V-M relationship.
Maranger and Bird (1995; their Figure 2) (n = 149), and
Danovaro et al. (2011; their Figure 1a) [n = 631, including
the data from (Maranger and Bird, 1995)] also performed OLS
regression of aggregated and log-transformed marine V and
M data. Both studies estimated β ≈ 1 – Maranger and Bird
(1995) found β = 0.93, and Danovaro et al. (2011) found
β = 1.03—though neither study’s data were available to reanalyse
and uncertainties on their estimates for β were not reported.
The closeness of β to 1 is consistent with a linear relationship;
nonlinearity requires β 6= 1.

Thus, we conclude that the linear model V = aM + b and
the nonlinear model V = αMβ fit this series of datasets of
marine viral and microbial abundance equivalently well. This
raises the questions of how each model should be interpreted

2These are compiled fromMuck et al. (2014); the other marine dataset considered

by Knowles et al. (2016) is taken from Parsons et al. (2012) and is included in the

Wigington et al. (2016) dataset and therefore in our analyses above.
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as a description of the relationship between viral and microbial
abundances.

The linearmodel can be interpreted as decomposing virus-like
particle abundance into two terms:V = aM+b = Va+Vb. In this
interpretation, the first term Va is the abundance of viruses that
infect organisms included inM, and it is assumed thatVa ∝ M as
captured by the parameter a. In marine systems,M is dominated
by the abundance of prokaryotes, thus Va can be considered
to generally represent the abundance of bacteriophage (Suttle,
2007). a can then be considered a characteristic virus-to-microbe
ratio, and can be understood in the context of dynamical models.
For example, consider arguably the simplest model for virus-
microbe dynamics (Lotka, 1920; Volterra, 1928; Lauro et al.,
2011; Yau et al., 2011),

dV

dt
= γ ϕVM − λV ,

dM

dt
= µM − ϕVM

where (γ , ϕ [mL s−1], λ [s−1], µ [s−1]) represent burst size,

virus-microbe interactions, viral decay, and microbial growth
respectively (Record et al., 2016). At steady state, this model
predicts V/M = γµ/λ. Predictions for a can therefore
be derived from such models. In the above model, a is the
product of the viral burst size, the host growth rate, and
the viral decay timescale—though most of these are poorly
parameterized in environmental populations. Across the 29
datasets we considered, our estimates of a ranged from 0 to 92,
with a median of 8.2 (Table S1). This large variation is similar
to that of α and β (Table S1; Knowles et al., 2016; Wigington
et al., 2016), and is also consistent with the large range in virus-
to-microbe ratios observed across marine environments (Parikka
et al., 2017). In a majority of cases a was within a factor of two of
the “rule of thumb” virus-to-microbe ratio of 10.

The second term Vb is an additional “background pool” of
virus-like particles, whose abundance is assumed to be unrelated
to microbial abundance. Different types of particles other than
infective bacteriophage may be present in this background pool,
which could plausibly be variable and non-negligible. Virus-like
particles are operationally defined as particles < 0.2 µm in size
containing nucleic acids; their abundance is measured by treating
samples with a fluorescent nucleic acid stain, then counting
fluorescing particles with epifluorescencemicroscopy (Noble and
Fuhrman, 1998; Patel et al., 2007). Several non-viral sources are
known to be captured by these methods whose contribution to
total counts can be large, such as free nucleic acids (Bettarel et al.,
2000), DNA-containing extracellular vesicles that are secreted
by numerous marine microbes (Soler et al., 2015; Biller et al.,
2017), gene-transfer agents (Biers et al., 2008), and decomposing
viral material (Wommack et al., 1996). Additionally, while the
relationship between microbes and viruses is generally thought
to be dominated by prokaryotes and bacteriophage, eukaryote-
infecting viruses (Nagasaki and Bratbak, 2010), zooplankton-
infecting viruses (Fischer et al., 2010), and virophage (La Scola
et al., 2008)may also contribute toV without their corresponding
hosts contributing toM. Finally, virus-like particles andmicrobes
have overlapping sizes and counting each population has a
significant degree of subjectivity. Therefore, many different

kinds of particles might be subsumed into Vb; this background
pool could change across environmental gradients (Biller et al.,
2017) and with host types in ways unrelated to microbial
density. Predictions for b could be made depending on which
combination of these particle types b is assumed to represent.
Across the 29 datasets we considered, our estimates of b also
ranged substantially, from 0 to 6×107 mL−1, with a median of
6×105 mL−1. Biller et al. (2014) reported vesicle abundances of
3×105 and 6×106 mL−1 for coastal surface water and Sargasso
Sea samples; interestingly, a majority of our estimates for b were
between these two values (Table S1).

Interpreting the nonlinear model is less straightforward.
Knowles et al. (2016) developed a theory of viruses switching
from lytic to lysogenic lifestyles to explain the sublinear scaling
relationships they observed, but their theory has been disputed
(Weitz et al., 2017) and broadly speaking the relationships
between viral andmicrobial abundances they find tend to be weak
or have β ≈ 1 (not indicative of nonlinearity); see their Figures
1a, 2. Empirical sublinear relationships are ubiquitous in biology
(Hatton et al., 2015), but the underpinnings of the metabolic
theory commonly invoked to explain these relationships have
also been disputed (Dodds et al., 2001). It is unclear how the
nonlinear model would account for virus-like particles other
than bacteriophage, or how α and β would be interpreted and
predicted.

These analyses highlight the need for alternative methods
to quantify viruses in the environment relative to their hosts.
Measurements from marine environments with extremely low
microbial densities (because the two models diverge for low
values of M), novel experiments with model systems, or other
types of data that improve upon the indiscriminant measure of
virus-like particles may help answer this question (Baran et al.,
2018), and may also be useful for making accurate estimates of b.
For now, we contest that a linear model remains plausible.
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