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Dietary inclusion of resistant starches can promote host health through modulation
of the gastrointestinal microbiota, short-chain fatty acid (SCFA) profiles, and lipid
metabolism. This study investigated the impact of a transglycosylated cornstarch (TGS)
on gastric, ileal, cecal, proximal-colonic, and mid-colonic bacterial community profiles
and fermentation metabolites using a growing pig model. It additionally evaluated the
effect of TGS on the expression of host genes related to glucose and SCFA absorption,
incretins, and satiety in the gut as well as host genes related to lipid metabolism in
hepatic and adipose tissue. Sixteen growing pigs (4 months of age) were fed either a
TGS or control (CON) diet for 11 days. Bacterial profiles were determined via Illumina
MiSeq sequencing of the V3–5 region of the 16S rRNA gene, whereas SCFA and
gene expression were measured using gas chromatography and reverse transcription-
quantitative PCR. Megasphaera, which was increased at all gut sites, began to benefit
from TGS feeding in gastric digesta, likely through cross-feeding with other microbes,
such as Lactobacillus. Shifts in the bacterial profiles from dietary TGS consumption
in the cecum, proximal colon, and mid colon were similar. Relative abundances of
Ruminococcus and unclassified Ruminococcaceae genus were lower, whereas that
of unclassified Veillonellaceae genus was higher in TGS- compared to CON-fed pigs
(p < 0.05). TGS consumption also increased (p < 0.05) concentrations of SCFA,
especially propionate, and lactate in the distal hindgut compared to the CON diet
which might have up-regulated GLP1 expression in the cecum (p < 0.05) and mid
colon compared to the control diet (p < 0.10). TGS-fed pigs showed increased hepatic
and decreased adipocyte expression of genes for lipid synthesis (FASN, SREBP1, and
ACACA) compared to CON-fed pigs, which may be related to postprandial portal
nutrient flow and reduced systemic insulin signaling. Overall, our data show that TGS
consumption may affect gastrointestinal bacterial signaling, caused by changes in gut
bacterial profiles and the action of propionate, and host lipid metabolism.

Keywords: pig, resistant starch type 4, gut microbiota, microbial metabolites, lipid metabolism, incretins, satiety,
gene expression
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INTRODUCTION

The gut microbiota has a significant impact on host metabolism,
and may contribute to a variety of metabolic disorders such as
obesity, insulin resistance, and cardiovascular disease (Boulangé
et al., 2016). Extensive research has shown that diet can modulate
the composition and function of the gut microbial community
(Flint et al., 2015). Among the nutritional-based strategies used
to modulate the gastrointestinal microbiota, the use of dietary
fiber, including resistant starches (RS), is well-known (Conlon
and Bird, 2015; Holscher, 2017). RS includes starch and starch
degradation products that escape endogenous digestion in the
small intestine and pass to the large intestine to be fermented
by microbes (Englyst and Cummings, 1985). Dietary inclusion
of various RS have been shown to alter the microbial community
and fermentation intensity in the cecal and colonic digesta of pigs
and in human feces, however, results diverged based upon gut
site and the specific RS (Martínez et al., 2010; Walker et al., 2011;
Haenen et al., 2013; Metzler-Zebeli et al., 2015b; Sun et al., 2016),
indicating the importance of evaluating each RS and its effects at
each gut site individually.

There are currently five classifications of RS based upon
the properties they possess that cause resistance to endogenous
enzymatic digestion in the small intestine (Birt et al., 2013).

The first three types (RS1-3) have been investigated to a
much greater extent than the remaining types (RS4-5). Type
4 RS (RS4) encompasses RS that are chemically modified via
transglycosylation, esterification, or crosslinking (Singh et al.,
2007, 2010). Due to its differing molecular structure, different
bacteria are capable of utilizing RS4, which causes divergent
changes in the gut bacterial community compared to RS2 and
RS3. For example, RS2 and RS3 have been shown to increase
many butyrate-producing bacteria in the hindgut and feces of
pigs such as Ruminococcus, Lachnospiraceae, Faecalibacterium,
Blautia, and Coprococcus (Haenen et al., 2013; Sun et al., 2015;
Umu et al., 2015), whereas RS4 increased other starch-degrading
bacteria such as Oscillibacter and Meniscus (Metzler-Zebeli et al.,
2015b). Likewise, in a direct comparison, RS2 and RS4 elicited
different modulatory abilities on the human fecal bacterial
microbiota (Martínez et al., 2010).

Increased fermentation and short-chain fatty acid (SCFA)
production provides an important link between dietary RS
consumption and host metabolism (den Besten et al., 2013;
Haenen et al., 2013; Upadhyaya et al., 2016). The various RS
differentially enhance acetate, propionate, butyrate, and valerate
in the cecum, colon, and feces of pigs (Haenen et al., 2013;
Newman et al., 2016). SCFA have profound effects on gut health
as energy sources, inflammation modulators, vasodilators, and
on gut motility (Tremaroli and Bäckhed, 2012). Evidence is also
emerging that SCFA play a regulatory role in local, intermediary,
and peripheral metabolism (Morrison and Preston, 2016). After
being absorbed, propionate is primarily taken up by the liver
and used as substrate for gluconeogenesis, whereas acetate is
mostly utilized for lipogenesis in adipocytes (Morrison and
Preston, 2016). Accordingly, dietary RS4 inclusion has been
shown to affect lipid metabolism in pigs, humans, and rodents
(Shimotoyodome et al., 2010, 2011; Metzler-Zebeli et al., 2015a;

Newman et al., 2017). SCFA influence gene expression through
inhibition of histone deacetylase and by binding to fatty acid-
sensing G-protein-coupled receptors (McKenzie et al., 2017).
These receptors play crucial roles in the promotion of gut
homeostasis and modulate intestinal secretion of peptide YY
(PYY), gastric inhibitory polypeptide (GIP), and glucagon-like
peptide 1 (GLP-1; Zhou et al., 2008; Miyauchi et al., 2010; Nøhr
et al., 2013), which have been linked to increased satiety in pigs
and humans.

Available data regarding the effects of RS4 focus on the
large intestine, leaving a considerable dearth of knowledge
regarding its effects on the microbial community and host
interactions in the stomach and small intestine. We recently
showed that dietary inclusion of a transglycosylated starch (TGS)
product altered the acetate and propionate profiles in the blood
(Newman et al., 2017). However, its effects on the gut bacterial
community profiles and SCFA signaling and transport have
not been evaluated thus far. Therefore, this study investigated
the impact of TGS on gastric, ileal, cecal, proximal-colonic,
and mid-colonic bacterial community profiles and fermentation
metabolites in growing pigs. We additionally evaluated its effect
on the expression of host genes related to glucose and SCFA
absorption, incretins, and satiety in the gut as well as host
genes related to lipid metabolism in hepatic and adipose tissue.
We hypothesized that dietary inclusion of TGS would alter
bacterial community profiles throughout the gastrointestinal
tract, thereby altering hindgut fermentation metabolite profiles.
Additionally, due to the expected changes in blood insulin, SCFA,
and lipids that were seen in a previous study regarding the effects
of this TGS product (Newman et al., 2017), we hypothesized
decreased expression of incretin genes and increased expression
of genes related to glucose and SCFA transport, satiety, and lipid
oxidation with TGS consumption. Pigs were used as a model
for humans in this study because they are seen as a reliable
model to study digestive physiology, metabolic responses, and
dietary modulation of the gut microbiota (Guilloteau et al., 2010;
Heinritz et al., 2013).

MATERIALS AND METHODS

Ethics Statement
All procedures that involved animal handling were approved by
the institutional ethics committee of the University of Veterinary
Medicine Vienna (Vienna, Austria) and the national authority
according to to paragraph 8 of the Law for Animal Experiments,
Tierversuchsgesetz – TVG (GZ 68.205/0051-II/3b/2013).

Animals, Housing, and Experimental
Design
Sixteen crossbred growing pigs [(Landrace × Large
White) × Piétrain; BW = 45.4 ± 4.24 kg; age = 4 months]
were used in this study. Four days prior to the start of the
experiment, pigs were moved into individual metabolism pens
(1.0 m × 1.2 m) for environmental adaptation, where they were
housed for the duration of the experiment. Pens were made of
Plexiglas walls and completely slatted flooring and were cleaned
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daily. Each pen was equipped with a single-space feeder and
a nipple drinker for ad libitum access to demineralized water.
Pigs were housed in an environmentally controlled room, and
room temperature was checked twice daily to ensure optimal
temperature for the pigs. After the environmental adaptation
period, pigs were randomly allotted to 1 of 2 dietary treatments
in a completely randomized design with two 11-day replicate
batches. Each replicate batch consisted of an 8-day dietary
acclimation period, followed by 2 days of fecal collection to
determine the apparent total tract digestibility of nutrients, and
1 day of serial slaughter. Four pigs were allotted per diet in each
of the two replicate batches, which provided a total of eight
observations per dietary treatment.

Diets
During the environmental adaptation period, pigs consumed
a commercial grower diet (metabolizable energy = 3.19
Mcal/kg; crude protein = 16.8%, as-fed basis). After this
period, pigs were switched to 1 of the 2 experimental diets,
which consisted of 72.1% purified cornstarch, 18.0% casein,
4.0% lignocellulose (FibreCell M1; agromed Austria GmbH,
Kremsmünster, Austria), 1.0% rapeseed oil, 4.0% monocalcium
phosphate, and 0.6% vitamin-mineral premix (Newman et al.,
2017; Supplementary Table S1). Diets were formulated to meet
or exceed current nutrient requirements for growing pigs
(National Research Council, 2012). To evaluate the effect of
TGS on apparent total tract digestibility of nutrients titanium
dioxide (0.3%) was included as an indigestible marker. The 2
experimental diets were identical in their ingredient composition,
except for the starch component. The starch used in the
control diet (CON) was a rapidly digestible waxy cornstarch
(Agrana Research and Innovation Center GmbH (ARIC), Tulln,
Austria), whereas in the test diet (TGS) 50% of the native
waxy cornstarch was replaced by a transglycosylated waxy
cornstarch (ARIC). The TGS product was prepared via an acid-
catalyzed transglycosylation of the native waxy cornstarch, which
rearranges the glycosidic bonds that are present. Native waxy
cornstarch has two types of glycosidic bonds, α(1,4) and α(1,6).
The TGS product, due to the acid-catalyzed transglycosylation
of the waxy cornstarch, has eight types of glycosidic bonds:
α(1,2), α(1,3), α(1,4), α(1,6), β(1,2), β(1,3), β(1,4), and β(1,6).
The analyzed nutrient composition of the diets is presented in
Supplementary Table S1. Feed was offered ad libitum 3 times daily
at 8:00, 12:00, and 16:30 h. At feeding, the experimental diets were
mixed with water in a ratio of about 2:1 and immediately offered
to the pigs. Feed allowances were calculated to exceed the pigs’
appetites. Feed leftovers (feed spillage and feed remaining in the
feeding bowls) were collected, dried, and weighed to determine
dry matter intake.

Sample Collection
Fresh fecal samples were collected from the slatted flooring and
trays beneath the cages on days 9 and 10 via grab sampling
to determine apparent total tract digestibility coefficients of
dietary nutrients. Subsamples of freshly defecated feces were
immediately frozen at −20◦C until analysis. Approximately
3 h after feeding on day 11 of each replicate batch, pigs

were anesthetized via an intramuscular injection of 10 ml/kg
body weight ketamine HCl (Narketan; Vétoquinol AG, Ittigen,
Austria) and 3 ml/kg body weight azaperone (Stresnil; Biokema
SA, Crissier, Switzerland). Blood samples were collected via
cardiac puncture into serum collection tubes (S-Monovette
9.0 mL Z; Sarstedt AG & Co., Nümbrecht, Germany),
placed on ice until they were centrifuged at 1,811 × g for
10 min (Eppendorf Centrifuge 5810 R, Eppendorf, Hamburg,
Germany), and frozen at −20◦C for later analysis. Pigs were
then immediately euthanized via intracardiac injection of
embutramide (T61; 10 mL/kg body weight; MSD Animal Health,
Vienna, Austria). After euthanasia the gastrointestinal tract, liver,
and a subcutaneous abdominal fat sample from the ventral
abdominal wall (level with the last rib) were removed. A 5-cm2

tissue piece from the caudate lobe of the liver and an abdominal
fat sample were immediately washed in phosphate-buffered
saline, blotted dry with paper towel, cut into small pieces, snap
frozen in liquid nitrogen, and stored at−80◦C for RNA isolation.
Meanwhile, the intestines were dissected from the mesentery
and each gut site (stomach, duodenum, jejunum, ileum, cecum,
proximal colon, and mid colon) was tied off to prevent the
mixing of digesta between gut sites. In order to identify the mid-
colonic region, the colon was divided into three equal parts.
To identify the mid jejunum, the small intestine was divided in
half. Digesta from the stomach, ileum (the last 30 cm of the
small intestine), cecum, proximal colon, and mid colon were
collected aseptically after being opened at the mesentery. Digesta
from each gut site was homogenized and subsampled. Digesta
subsamples for microbiota analysis were immediately snap frozen
in liquid nitrogen and stored at −80◦C until analysis. Digesta
subsamples for SCFA and lactate were placed on ice until they
could be frozen at −20◦C. Tissue samples from the duodenum,
mid jejunum, ileum, cecum, proximal, and mid colon were
washed in ice-cold phosphate-buffer. Mucosal scrapings were
then collected from 20-cm tissue sections with a glass microscope
slide, immediately snap frozen in liquid nitrogen, and stored at
−80◦C until analysis.

DNA Isolation, Library Preparation, and
Illumina MiSeq Sequencing
Total DNA was extracted from 250 mg of gastric, ileal, cecal,
proximal-colonic, and mid-colonic digesta samples using a
PowerSoil DNA isolation kit (Mo Bio Laboratories, Carlsbad,
CA, United States) according to the manufacturer’s instructions
with slight modifications (Metzler-Zebeli et al., 2015b). To ensure
proper lysis of bacteria, samples were heated at 70◦C for 10 min
as an additional step between mixing the digesta samples with C1
buffer and bead beating. The DNA concentration was measured
with a Qubit 2.0 fluorometer (Life Technologies, Carlsbad,
CA, United States) using the Qubit double-stranded DNA HS
assay kit (Life Technologies, Carlsbad, CA, United States).
DNA extracts were sent to Microsynth (Balgach, Switzerland)
for 16S rRNA gene PCRs, library preparation, and sequencing
using the Illumina MiSeq sequencing platform (Illumina Inc.,
San Diego, CA, United States). The V3–5 hypervariable
regions of bacterial 16S rRNA genes were amplified using
the primers 357F-HMP (5′-CCTACGGGAGGCAGCAG-3′) and
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926R-HMP (5′-CCGTCAATTCMTTTRAGT-3′) to produce an
amplicon size of approximately 523 bp (Peterson et al., 2009).
Libraries were constructed by ligating sequencing adapters and
indices onto purified PCR products using the Nextera XT
sample preparation kit (Illumina Inc.). Equimolar quantities
of each library was pooled and sequenced on an Illumina
MiSeq sequencing platform using a 300 bp read length
paired-end protocol. After sequencing, the overlapping paired-
end reads were stitched, trimmed, and quality-filtered by
Microsynth.

Sequence Processing and Analysis
A total of 6,016,953 sequences with a mean Phred score of 29
to 35 were attained from Microsynth and were subsequently
processed using QIIME (Caporaso et al., 2010). Reads were
merged using the demultiplexing method, low quality sequences
were removed (q < 20), and chimeric sequences were filtered
out using USEARCH81 and the gold.fa database (Edgar, 2010).
Reads were then aligned using the Greengenes database (version
13.8) and sequences were clustered into operational taxonomic
units (OTUs) using a 16S rRNA distance of 0.03. All OTUs
with less than 10 sequences were removed, which resulted
in 3,890 OTUs for downstream analysis. Microbial richness
and diversity were calculated using the non-parametric species
estimator Chao1 and the Shannon and Simpson diversity
indices. To determine the degree of similarity between samples,
weighted and unweighted Unifrac distance matrices were
calculated and used to generate principal co-ordinates analyses
(PCoA) plots. The raw sequence reads were uploaded to
the NCBI BioProject databank under the BioProject number:
PRJNA396828.

RNA Isolation and Quantitative
Real-Time PCR
Total RNA was isolated from jejunal, ileal, cecal, and mid-colonic
mucosal scrapings as well as hepatic tissue and abdominal fat.
Tissue samples (20 mg) were combined with lysis buffer (RNeasy
Mini QIAcube kit, Qiagen, Hilden, Germany) and autoclaved
ceramic beads (0.6 g; 1.4 mm; VWR). Samples were homogenized
using the FastPrep-24 instrument (MP Biomedicals, Santa Ana,
CA, United States). The remainder of the RNA isolation protocol
was completed according to manufacturer’s instructions using
the automated QIAcube robotic workstation (Qiagen, Hilden,
Germany). After extraction, all samples were treated with the
Turbo DNA kit (Life Technologies Limited, Vienna, Austria)
to remove genomic DNA. The RNA was quantified using a
Qubit HS RNA Assay kit on the Qubit 2.0 Fluorometer (Life
Technologies), and the quality of isolated RNA was evaluated
with the Agilent Bioanalyzer 2100 (Agilent RNA 6000 Nano
Assay, Agilent Technologies, Waghaeusel-Wiesental, Germany).
The RNA integrity numbers (RIN) ranged from 7.3 to 9.9 in most
samples. Only two jejunal samples had a RIN of 6.1 and 6.4.
Complementary DNA was synthesized from 2 µg of RNA using
the High Capacity cDNA RT kit (Life Technologies Limited,
Vienna, Austria) and 1 µl of RNase inhibitor (Biozym, Hessisch
Oldendorf, Germany) was added to each reaction.

Primers utilized for quantitative PCR (qPCR) are listed in
Supplementary Table S2. The primers were designed using and,
together with previously published primers, were verified with
Primer-BLAST1 and tested for efficiencies and specificity using
melting curve analysis (Supplementary Table S2). Amplifications
were performed on a real-time PCR Mx3000P thermocycler
(Agilent Technologies) using the following conditions: 95◦C for
5 min, followed by 95◦C for 10 s, 60◦C for 30 s, and 72◦C
for 30 s for 40 cycles, followed by the generation of melting
curves. Negative controls and reverse transcription controls (RT
minus) were included in order to control for residual DNA
contamination. Each 20 µl reaction consisted of 50 ng cDNA,
10 µl Fast Plus Eva Green master mix with low ROX (Biotium,
Hayward, CA, United States), 200 nM each of forward and reverse
primers, and DEPC-treated water in a 96 well plate (VWR,
Vienna, Austria). All reactions were run in duplicate.

Five housekeeping genes (HKG) were analyzed and the
three best-fit were selected using NormFinder (Andersen et al.,
2004) and BestKeeper (Pfaffl et al., 2004). The geometric mean
expression level of the three most stably expressed HKG (ACTB,
B2M, GAPDH) was used for normalization of target gene
expression levels. For this, the mean raw gene expression data,
obtained as Cq values, of the identified HKG were subtracted
from the Cq of the target genes to determine 1Cq values. Relative
gene expression was calculated relative to the pig with the lowest
expression of the respective gene using the 2−11Cq method
(Livak and Schmittgen, 2001).

Chemical Analyses
All feed and fecal samples were analyzed in duplicate for dry
matter, gross energy, protein, total starch, calcium, phosphorus,
ash, and titanium dioxide as recently described (Newman
et al., 2017). Apparent total tract digestibility coefficients were
calculated for all dietary nutrients according to Oresanya
et al. (2007). Total lactate concentrations in fecal samples
were determined using a commercially available kit (K-DLATE,
Megazyme International, Wicklow, Ireland). The pH of gastric,
ileal, cecal, proximal-colonic, and mid-colonic digesta was
measured using a Beckman 863 pH meter (Beckman Coulter,
Fullerton, CA, United States). Individual SCFA concentrations
in feces were determined using gas chromatography as recently
described (Metzler-Zebeli et al., 2015b).

Biochemical Variables, Acute Phase
Proteins, and Brush Border Enzymes
Serum glucose, urea, cholesterol, triglycerides, and non-esterified
fatty acids were measured via standard enzymatic colorimetric
analysis using an autoanalyzer for clinical chemistry (Cobas
6000/c501; Roche Diagnostics GmbH, Vienna, Austria).
A porcine-specific commercial ELISA kit was used to analyze
serum concentration of haptoglobin (Genway, San Diego, CA,
United States) according to the manufacturer’s instructions.
The activity of lactase, maltase, and sucrase was determined
in mucosal scrapings from the duodenum. Preparation of
duodenal homogenates (20%, w/v) and mucosal enzyme

1www.ncbi.nlm.nih.gov/tools/primer-blast/
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activity measurements were performed as recently described
(Metzler-Zebeli et al., 2017).

Statistical Analyses
This study was designed as a completely randomized design with
two dietary treatments in two replicate batches with four pigs
per treatment in each batch. The UNIVARIATE procedure in
SAS (Version 9.4, SAS Institute Inc., Cary, NC, United States)
was used to verify normality and homogeneity of variances.
The data were normally distributed. To compare differences
between diets, data were subjected to ANOVA using the MIXED
procedure in SAS. Data were analyzed using the fixed effect
of diet and the random effect of replicate batch in the main
model with individual pig considered as the experimental unit.
Degrees of freedom were approximated using the Kenward–
Rogers method (ddfm = kr). The pairwise comparisons among
least-square means were performed using the Tukey-Kramer test.
All p-values from ANOVA and multiple comparison analyses
of the most abundant bacterial genera were adjusted by the
false discovery rate (FDR) (Benjamini and Hochberg, 1995)
using the MULTTEST procedure (SAS). FDR-corrected p-values
below 0.05 were considered significant and as tendencies if
0.05 ≤ p < 0.10. Pearson’s correlation analysis using the PROC
CORR procedure of SAS was used to establish and quantify the
relationships among microbial metabolites, gene expression, and
bacterial genera data. Correlations were considered significant
if p < 0.05. For visualization, correlation matrices were then
generated using the packages ‘corrplot’ (Wei, 2010) and ‘ggplot2’
(Wickham, 2009) in R Studio (version 1.0.136).

RESULTS

Pig Performance, Nutrient Digestibility,
and Serum Parameters
All pigs were clinically healthy during the experiment as intestinal
and systemic disorders were absent. No differences were observed
in feed intake or average daily gain between dietary treatments,
but TGS-fed pigs tended to have a lower feed to gain ratio
compared to CON-fed pigs (p < 0.10, Supplementary Table S3).
The TGS diet reduced apparent total tract digestibility of dry
matter, gross energy, starch, and crude protein compared to
the CON diet (p < 0.05, Supplementary Table S3), but had
no effect on the apparent total tract digestibility of calcium,
phosphorus, or crude ash. Brush border enzyme activities at
the duodenal mucosa showed a trend for lower lactase activity
in TGS- compared to CON-fed pigs (p < 0.10, Supplementary
Table S4). Blood serum parameters were not significantly affected
by dietary treatment (p > 0.10, Supplementary Table S4).

General Bacterial Structure and
Community Composition
Unweighted Unifrac analysis indicated that gastric and ileal
samples clustered separately from those of the large intestine
(Figure 1A). The two most dominant phyla at all five gut
sites were Firmicutes and Proteobacteria, which together

accounted for 93 to 99% of all sequences (Figure 2). Across
all samples, Proteobacteria (83.0%) were the most dominant
phyla in the stomach followed by Firmicutes (14.3%). However,
Firmicutes predominated the ileum (61.8%), cecum (74.3%),
proximal colon (76.5%), and mid colon (81.0%), which
occurred mainly at the expense of Proteobacteria (38.1% ileum,
19.1% cecum, 18.9% proximal colon, 14.4% mid colon). In
the hindgut, Tenericutes also played a significant role in the
general community composition, comprising 3.6, 1.6, and
1.7% of phyla present in the cecum, proximal colon, and
mid colon, respectively. All other phyla were present at less
than 1.5% relative abundance over all samples at each gut
site. At genus level, unclassified Enterobacteriaceae (36.2%)
and Actinobacter (18.6%) were among the most abundant in
the stomach (Supplementary Table S5). The most abundant
OTU belonging to unclassified Enterobacteriaceae was blasted
against the Greengenes database2 and linked with its closest
reference strain, which was Escherichia sp. str. II_B13 (100.0%
similarity). In the ileum Turicibacter (48.8%), unclassified
Enterobacteriaceae (31.0%), and unclassified Clostridiaceae
(11.6%) were the most abundant (Supplementary Table S5).
Through all three hindgut sites, unclassified Veillonellaceae
(19.2–30.4%) and Ruminococcus (15.0–17.4%) were the most
abundant across all samples (Supplementary Table S5). The most
abundant OTU belonging to unclassified Veillonellaceae was also
blasted against the Greengenes database to identify its closest
reference strain, which was Selenomonas sp. str. WG (94.56%
similarity).

Diet-Related Differences in the Bacterial
Community
Beta-diversity analysis showed separate clustering of cecal,
proximal-colonic, and mid-colonic bacterial communities by diet
(Figure 1B). Diet did not affect species richness in gastric or
ileal digesta. However, TGS consumption led to 26, 35, and 36%
lower (p < 0.05) Chao1 estimates in the cecal, proximal-colonic,
and mid-colonic digesta, respectively, compared to the CON diet
(Figure 3). Additionally, a 7% increase (p < 0.05) in the Simpson
index was observed in the cecum of TGS- compared to CON-
fed pigs (Figure 3). Firmicutes and Proteobacteria, the two most
abundant phyla at every gut site, were only modified (p < 0.05)
by TGS consumption in the stomach (Figure 2). The gastric
digesta of TGS-fed pigs showed a 0.2-fold decrease in the relative
abundance of Proteobacteria and a 2-fold increase in Firmicutes
compared to CON-fed pigs. Actinobacteria was the only phylum
whose relative abundance was affected at every gut site (2- to 10-
fold increase, p < 0.10 at the ileum and p < 0.05 at all other gut
sites) by TGS consumption. Relative abundances of Synergistetes,
Spirochaetes, and Bacteroidetes decreased (p< 0.05) at all hindgut
sites with the TGS diet compared to the CON diet. Additionally,
the relative abundance of Verrucomicrobia tended (p < 0.10)
to be lower in the cecum and proximal colon, and was lower
(p < 0.05) in the mid colon of TGS- compared to CON-fed pigs.
Other, less abundant phyla were also modified at the various gut
sites by dietary TGS inclusion (Figure 2).

2http://greengenes.lbl.gov
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FIGURE 1 | Principal co-ordinates analysis of unweighted Unifrac distances
for digesta-associated microbiota (A) by gut site and (B) by dietary treatment
of pigs fed the control (CON) or transglycosylated starch (TGS) diet.

Of the 30 most abundant genera at each gut site, 4,
4, 6, 12, and 12 genera were affected (p < 0.05) and 4,
1, 6, 3, and 0 tended to be affected (p < 0.10) by TGS
consumption in the stomach, ileum, cecum, proximal colon,
and mid colon, respectively (Tables 1, 2). Most genera affected
by the TGS diet belonged to the phylum Firmicutes, except
in the stomach where nearly half belonged to Proteobacteria
and Actinobacteria. Megasphaera was the only genus that
increased (4- to 11-fold, p < 0.10 in gastric digesta and
p < 0.05 at all other gut sites) in relative abundance at
all gut sites with TGS consumption. In gastric digesta, the
most notable change was a 0.6-fold decrease (p < 0.05) in

the second most abundant genus, Actinobacillus, with TGS
consumption compared to the CON diet. Consumption of
TGS also increased (p < 0.05) relative abundances of lesser
abundant unclassified Coriobacteriaceae (20-fold), Lactobacillus
(1-fold), and Succiniclasticum (13-fold) in gastric digesta. The
ileum was the least affected gut site by dietary treatment, with
less than 1% of ileal bacteria at both phylum and genus level
altered by dietary TGS consumption. Changes in ileal digesta
were to lesser abundant genera, including increased (p < 0.05)
Aggregatibacter, unclassified Veillonellaceae, and Mitsuokella
(6−, 4−, and 10-fold, respectively), as well as a tendency
(p < 0.10) for increased unclassified Clostridiales (1-fold) with
dietary TGS consumption. The cecum, proximal colon, and
mid colon showed similar changes in bacterial profiles at
both the phylum and genus level. Also, the beta diversity
plots indicated clear clustering by diet (Figure 1). By far,
the largest changes across the hindgut were to an unclassified
Veillonellaceae genus (best blast hit on most abundant OTU:
Selenomonas) and Ruminococcus. The relative abundance of
Ruminococcus was decreased 0.9-fold in the cecum, proximal
colon, and mid colon with TGS consumption, which was
replaced by an increased relative abundance of unclassified
Veillonellaceae in the cecum, proximal colon, and mid colon
(41-, 33-, and 5-fold, respectively). Other notable changes
that occurred across all hindgut sites included increased
relative abundances of Succiniclasticum and an unclassified
Coriobacteriaceae genus (best blast hit on most abundant OTU:
Olsenella), and decreased relative abundances of an unclassified
Ruminococcaceae genus (best blast hit on most abundant OTU:
Ruminococcus), an unclassified Bacteroidales genus, and an
unclassified Desulfovibrionaceae genus in TGS- compared to
CON-fed pigs. The relative abundance of Mitsuokella was
increased approximately 20-fold in the cecum (p < 0.10) and
proximal colon (p < 0.05), respectively, whereas the relative
abundance of Akkermansia tended (p < 0.10) to be decreased
by approximately 1-fold at both gut sites in TGS- compared
to CON-fed pigs. TGS consumption decreased (p < 0.05)
the relative abundance of an unclassified Clostridiales genus
and an unclassified Clostridiaceae genus 0.9-fold in both the
proximal and mid colon. Additionally, the relative abundance
of Succinivibrio tended to be 0.9-fold lower in the proximal
colon of TGS- compared to CON-fed pigs. Other, less abundant
genera were also modified at the various gut sites by dietary TGS
inclusion (Tables 1, 2).

Microbial Metabolites
Total SCFA concentrations tended (p < 0.10) to be 0.2-
fold greater in the proximal colon and were 0.3-fold higher
(p < 0.05) in the mid colon with TGS consumption compared
to the CON diet (Figure 4). Individual SCFA profiles showed
0.4-fold greater propionate and 1.8-fold greater iso-butyrate
concentrations in the cecum as well as 0.6-fold more propionate
in the proximal colon with TGS consumption compared to
the CON diet (p < 0.05). In the mid colon, acetate, valerate,
and iso-butyrate concentrations were increased by 0.5-, 0.6-
, and 0.3-fold, respectively, in TGS- compared to CON-fed
pigs (p < 0.05). Additionally, TGS-fed pigs showed an average

Frontiers in Microbiology | www.frontiersin.org 6 February 2018 | Volume 9 | Article 224

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00224 February 10, 2018 Time: 17:43 # 7

Newman et al. Transglycosylated Starch Fed to Pigs

FIGURE 2 | Microbiome composition at the phylum level for 16S rRNA sequences in gastric (A), ileal (B), cecal (C), proximal-colonic (D), and mid-colonic
(E) digesta of pigs fed transglycosylated (TGS) or control (CON) starch diets. Values are presented as least square means ± SEM; n = 8 pigs per dietary treatment
for stomach, cecum, proximal colon, and mid colon; n = 7 pigs in the CON diet group and n = 4 pigs in the TGS diet group for ileum. ∗∗CON and TGS differ within
the intestinal segment, P < 0.05; ∗CON and TGS tend to differ within the intestinal segment, 0.05 ≤ P ≤ 0.10.
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FIGURE 3 | Chao1 richness estimate (A), Shannon index (B), and Simpson index (C) in gastric (S), ileal (I), cecal (CE), proximal-colonic (PC), and mid-colonic (MC)
digesta of pigs fed the control (CON, �) or transglycosylated starch (TGS, �) diet. Values are presented as least square means ± SEM; n = 8 pigs per dietary
treatment for stomach, cecum, proximal colon, and mid colon; n = 7 pigs in the CON diet group and n = 4 pigs in the TGS diet group for ileum. ∗∗CON and TGS
differ within the intestinal segment, P < 0.05.

TABLE 1 | Differences in the 30 most abundant genera in gastric and ileal digesta of pigs fed transglycosylated (TGS) or control (CON) starch diets1.

CON TGS SEM P-value FDR

Stomach, %

Actinobacillus 26.09 11.02 3.630 0.011 0.033

Megasphaera 0.30 2.09 0.734 0.064 0.083

Unclassified Coriobacteriaceae 0.05 1.15 0.290 0.018 0.036

Lactobacillus 0.31 0.66 0.109 0.036 0.057

Succiniclasticum 0.04 0.55 0.126 0.014 0.033

Unclassified Microbacteriaceae 0.35 0.19 0.085 0.069 0.085

Mannheimia 0.33 0.12 0.112 0.070 0.085

Unclassified Gemellaceae 0.12 0.33 0.088 0.089 0.091

Ileum, %

Unclassified Clostridiales 0.19 0.38 0.104 0.073 0.085

Aggregatibacter 0.03 0.20 0.071 0.025 0.045

Unclassified Veillonellaceae 0.03 0.16 0.047 0.039 0.058

Megasphaera 0.02 0.12 0.008 <0.0001 0.003

Mitsuokella 0.01 0.11 0.028 0.027 0.047

1Data are presented as least square means ± SEM; n = 8 pigs per dietary treatment in the stomach; n = 7 pigs in the CON diet group and n = 4 pigs in the TGS diet
group in the ileum. FDR, false discovery rate. Only values for the 30 most abundant genera per gut site that were different (P < 0.10) after FDR-correction are presented.

of 0.8-fold lower (p < 0.05) iso-valerate concentrations in
the cecum, proximal colon, and mid colon as well as a
trend (p < 0.10) for a 0.6-fold lower caproate concentration
in the proximal colon compared to the CON diet. No
differences were observed in butyrate concentrations between
dietary treatments. TGS-fed pigs also showed 0.5- and 0.7-
fold greater lactate concentrations in the proximal colon and

mid colon, respectively, compared to CON-fed pigs (p < 0.05).
Furthermore, consumption of the TGS diet caused 0.2- to 0.3-
fold lower (p < 0.05) pH in the cecum, proximal colon, and
mid colon compared to the CON diet. Due to insufficient
digesta at the terminal ileum in numerous pigs, data were
not sufficient to provide SCFA or pH values at this gut
site.
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TABLE 2 | Differences in the 30 most abundant genera in hindgut digesta of pigs fed transglycosylated (TGS) or control (CON) starch diets1.

CON TGS SEM P-value FDR

Cecum, %

Unclassified Veillonellaceae 0.90 37.56 6.740 0.002 0.024

Ruminococcus 30.40 3.34 8.880 0.014 0.033

Megasphaera 0.63 7.52 1.799 0.017 0.035

Unclassified Ruminococcaceae 6.54 1.47 1.751 0.023 0.043

Mitsuokella 0.24 5.21 2.399 0.086 0.089

Akkermansia 2.52 0.12 0.881 0.075 0.085

Succiniclasticum 0.07 2.13 0.785 0.058 0.077

Unclassified Bacteroidales 1.70 0.25 0.612 0.040 0.058

Unclassified Christensenellaceae 0.90 0.32 0.219 0.079 0.087

Oscillospira 0.28 0.09 0.068 0.074 0.085

Unclassified Desulfovibrionaceae 0.26 0.09 0.097 0.084 0.089

Unclassified Coriobacteriaceae 0.02 0.31 0.084 0.029 0.049

Proximal colon, %

Unclassified Veillonellaceae 1.54 52.09 6.728 <0.001 <0.001

Ruminococcus 27.46 2.56 6.022 0.005 0.024

Unclassified Clostridiales 11.35 1.02 4.036 0.014 0.033

Unclassified Ruminococcaceae 9.96 1.60 2.061 0.013 0.033

Megasphaera 1.06 6.58 1.195 0.006 0.024

Succinivibrio 3.54 0.24 1.336 0.085 0.089

Mitsuokella 0.17 3.45 1.241 0.012 0.033

Succiniclasticum 0.06 3.27 1.300 0.019 0.037

Akkermansia 1.71 0.02 0.608 0.069 0.085

Unclassified Bacteroidales 1.54 0.09 0.391 0.015 0.033

Unclassified Coriobacteriaceae 0.05 1.17 0.232 0.004 0.024

Desulfovibrio 0.83 0.38 0.101 0.007 0.024

Unclassified Clostridiaceae 1.10 0.06 0.283 0.013 0.033

Phascolarctobacterium 0.58 0.29 0.114 0.098 0.098

Unclassified Desulfovibrionaceae 0.40 0.08 0.108 0.005 0.024

Mid colon, %

Unclassified Veillonellaceae 9.16 51.63 9.241 0.006 0.024

Ruminococcus 31.11 3.60 5.986 0.006 0.024

Unclassified Ruminococcaceae 14.61 2.58 2.386 0.003 0.024

Unclassified Clostridiales 12.74 1.02 4.693 0.031 0.050

Megasphaera 1.50 6.83 1.563 0.007 0.024

Succiniclasticum 0.13 3.63 1.225 0.038 0.058

Unclassified Coriobacteriaceae 0.06 2.00 0.605 0.003 0.024

Unclassified Bacteroidales 1.49 0.06 0.296 0.004 0.024

Unclassified Clostridiaceae 0.62 0.04 0.189 0.048 0.068

Oscillospira 0.33 0.05 0.069 0.015 0.033

Unclassified Desulfovibrionaceae 0.28 0.05 0.059 0.005 0.024

Unclassified Alphaproteobacteria 0.30 0.004 0.096 0.050 0.068

1Data are presented as least square means ± SEM; n = 8 pigs per dietary treatment. FDR, false discovery rate. Only values for the 30 most abundant genera per gut site
that were different (P < 0.10) after FDR-correction are presented.

Relative Expression of Target Genes in
Gut Mucosa, Hepatocytes, and
Adipocytes
Of the genes that were targeted at the intestinal mucosa, no
differences were seen in the jejunum between dietary treatments.
However, in the ileum the mucosal expression of GLUT2 and
FFAR2 were down-regulated in TGS-fed pigs compared to CON-
fed pigs by 0.5-fold (p< 0.10) and 0.3-fold (p< 0.05), respectively

(Figure 5). The cecal mucosa of TGS-fed pigs showed a reduction
(p < 0.05) in SGLT1 (0.4-fold) expression, a tendency (p < 0.10)
for reduced FFAR2 (0.3-fold) and FFAR3 (0.3-fold) expression,
and increased (2-fold, p < 0.05) GLP1 expression compared to
CON-fed pigs (Figure 5). The TGS diet tended (p < 0.10) further
to up-regulate mucosal expression of GLP1 in the mid colon
compared to the CON diet (0.8-fold, Figure 5). However, the
mucosal expression of PYY, GIP, MCT1, and SMCT were similar
between pigs fed TGS and CON diets at all gut sites.
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FIGURE 4 | Total SCFAs (A), acetate (B), propionate (C), butyrate (D), valerate (E), iso-butyrate (F), iso-valerate (G), caproate (H), total lactate (I), and pH values
(J) in gastric (S), cecal (CE), proximal-colonic (PC), and mid-colonic (MC) digesta of pigs fed the control (CON, �) or transglycosylated starch (TGS, �) diet. Values
are presented as least square means ± SEM; n = 8 pigs per dietary treatment. ∗∗CON and TGS differ within the intestinal segment, P < 0.05. ∗CON and TGS tend
to differ within the intestinal segment, 0.05 < P < 0.10.

In the liver, TGS consumption led to up-regulated
(p < 0.05) FASN (0.8-fold), SREBP1 (1-fold), and ACACA
(0.5-fold, p < 0.10) expression compared to the CON diet
(Figure 6). Relative expression of the remaining genes targeted
in hepatocytes was similar between dietary treatments (Figure 6
and Supplementary Figure S1).

Genes that were targeted in the abdominal fat showed down-
regulated (p < 0.05) expression of FASN (0.3-fold), HMGCR
(0.3-fold), FFAR2 (0.3-fold, p < 0.10), FFAR3 (0.5-fold), SREBP1
(0.3-fold), ACACA (0.4-fold), and LEP (0.5-fold) with the TGS
diet compared to the CON diet (Figure 6). Relative expressions
of the remaining genes targeted in abdominal tissue were similar
between dietary treatments (Supplementary Figure S1).

Correlation Analysis
Correlations between selected bacterial genera and microbial
metabolites are presented in Figures 7A–C. Acetate was
negatively correlated (p < 0.05) with 5 and positively correlated
(p < 0.05) with 1 (unclassified Veillonellaceae) bacterial
genera in the mid colon. In both the cecum and proximal
colon, propionate was negatively correlated (p < 0.05) with
Ruminococcus, unclassified Ruminococcaceae, and unclassified
Desulfovibrionaceae. Propionate was also negatively correlated
(p < 0.05) with 1 and 3 other genera in the cecum and proximal

colon, respectively. Iso-butyrate was negatively correlated
(p < 0.05) with 3 and 2 bacterial genera in the cecum and mid
colon, respectively, as well as positively correlated (p < 0.05)
with 4 (unclassified Veillonellaceae, Megasphaera, unclassified
Coriobacteriaceae, and Succiniclasticum) and 1 (unclassified
Veillonellaceae) genera in the cecum and mid colon, respectively.
Butyrate was found to be positively correlated (p < 0.05) with
Megasphaera in the cecum and proximal colon. Iso-valerate was
negatively correlated (p < 0.05) with 1, 2, and 3 genera and
positively correlated (p < 0.05) with 4, 5, and 5 genera in the
cecum, proximal colon, and mid colon, respectively. Valerate
was positively correlated (p < 0.05) with Megasphaera and
unclassified Veillonellaceae in the cecum and mid colon as well as
Megasphaera and unclassified Coriobacteriaceae in the proximal
colon. Valerate was also negatively correlated (p < 0.05) with
five genera in the mid colon. Caproate was positively correlated
(p < 0.05) with Ruminococcus in the cecum, Desulfovibrio
in the proximal colon, and Megasphaera and Succiniclasticum
in the mid colon. Caproate was also negatively correlated
(p < 0.05) with unclassified Veillonellaceae in the proximal
colon. Lactate was negatively correlated (p < 0.05) with 6 and
3 genera in the proximal and mid colon, respectively. Lactate
was also positively correlated (p < 0.05) with Megasphaera,
unclassified Veillonellaceae, and unclassified Coriobacteriaceae
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FIGURE 5 | Relative expression of target genes in jejunal (Jej), ileal (Ile), cecal (Cec), and mid-colonic (C2) mucosa of pigs fed the control (CON, �) or
transglycosylated starch (TGS, �) diet. Relative (A) SGLT1, (B) GLUT2, (C) GIP, (D) GLP1, (E) PYY, (F) MCT1, (G) SMCT, (H) FFAR2, and (I) FFAR3 expression.
Values are presented as least square means ± SEM; n = 8 per dietary treatment. ∗∗CON and TGS differ within the intestinal segment, P < 0.05. ∗CON and TGS
tend to differ within the intestinal segment, 0.05 < P < 0.10.

in the proximal colon and with Megasphaera in the mid
colon.

Relationships between microbial metabolites and gene
expression in gut mucosa in Figure 8. Expression of SGLT1 was
negatively correlated (p < 0.05) with propionate in the cecum
(Figure 8A), whereas GLP1 expression was negatively correlated
(p < 0.05) with iso-valerate in both the cecum and mid colon.
FFAR2 expression was negatively correlated (p < 0.05) with
iso-butyrate in the cecum and with butyrate, valerate, lactate, and
total SCFA in the mid colon (Figure 8B).

DISCUSSION

Alterations in the gastrointestinal microbiota and fermentation
patterns have been reported to mediate part of the RS-associated
effects on host physiology (Birt et al., 2013; Yang et al., 2017).
Consistent with this view, the present results demonstrated
the capability of TGS to cause major shifts in bacterial
community profiles throughout the gastrointestinal tract and
stimulate hindgut fermentation. TGS-associated changes in the
bacterial community were already apparent in gastric digesta,
and largely differed from the effects of RS2 and RS3 on the

intestinal microbiota (Sun et al., 2015, 2016; Umu et al., 2015;
Venkataraman et al., 2016). Specifically, the TGS consistently
enhanced an unclassified Veillonellaceae genus in ileal, cecal,
proximal-colonic, and mid-colonic digesta, which appeared
to replace other starch-degrading genera belonging to the
Ruminococcaceae family. Present results further indicated a
stronger effect of fermentation on intestinal gene expression
than of the decreased glucose release in the small intestine
at the time of sampling. The enhanced fermentation after
TGS consumption in the hindgut may have up-regulated
GLP1 expression in the cecum and mid colon, thereby likely
modifying insulin-dependent pathways (Bindels et al., 2013).
The reduced glucose and energy availability from the TGS diet,
and the subsequent reduced insulin signaling (Newman et al.,
2017), in turn, likely contributed to the TGS-related decrease
in adipocyte expression of genes related to lipid synthesis.
Nevertheless, when interpreting the current data, it should be
kept in mind that the sample size with eight animals per dietary
treatment was small and that the study was conducted using
young growing pigs of a specific age. Moreover, differences
in gene expression levels are only the initial steps in adaptive
processes and do not necessarily reflect functional protein
patterns.
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FIGURE 6 | Relative expression of target genes in liver and abdominal fat samples that differed between pigs fed the control (CON, �) or transglycosylated starch
(TGS, �) diet. Relative (A) FASN, (B) HMGCR, (C) FFAR2, (D) FFAR3, (E) SREBP1, (F) ACACA, and (G) LEP expression. Values are presented as least square
means ± SEM; n = 8 per dietary treatment. ∗∗CON and TGS differ within the intestinal segment, P < 0.05. ∗CON and TGS tend to differ within the intestinal
segment, 0.05 < P < 0.10.

FIGURE 7 | Correlation coefficients between microbial metabolites and bacterial genera in the cecum (A), proximal colon (B), and mid colon (C) of pigs fed control
and transglycosylated starch diets. Uncl, unclassified.

Compared to the large intestine relatively little information
is available regarding RS-related changes, especially RS4,
in bacterial profiles of the upper gastrointestinal segments.
Although bacteria had access to other more easily fermentable
substrates, such as the waxy cornstarch portion of the TGS diet,
bacterial profile modifications by TGS were already apparent
in gastric and ileal digesta. However, shifts in the gastric
and ileal bacterial communities were less dramatic than those
seen in the hindgut, which was supported by results from
the α- and β-diversity analyses. Due to the relatively high
availability of casein in the diet, which is an easily degradable

protein source, Proteobacteria predominated in gastric digesta.
Regardless, the TGS diet decreased the gastric abundance of the
Gamma-Proteobacterium Actinobacillus. Some Actinobacillus
species were reported to utilize starch (Sharma et al., 2014;
Thuy et al., 2017) and therefore may have been replaced by
genera from the Veillonellaceae (numerical increase of 9% with
TGS) and Coriobacteriaceae families. These two genera were
tentatively identified as Selenomonas and Olsenella, respectively;
both include starch-degrading species (Kaneko et al., 2015; Li
et al., 2015) and were even more drastically enriched by TGS in
the hindgut segments. However, the depression in Actinobacillus
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FIGURE 8 | Correlation coefficients between microbial metabolites and mucosal gene expression in the cecum (A) and mid colon (B) of pigs fed control and
transglycosylated starch diets. Ace, acetate; prop, propionate; but, butyrate; isobut, iso-butyrate; val, valerate; isoval, iso-valerate; cap, caproate; lac, lactate; SCFA,
total short-chain fatty acids; CE, cecum; MC, mid colon.

was not apparent in the hindgut segments, indicating that their
role in starch degradation in the present study primarily occurred
in the stomach. In contrast, gastric and ileal abundances of
starch-degrading Ruminococcaceae (Flint et al., 2008) was small
and unaffected by the TGS diet in gastric and ileal digesta,
emphasizing that their role in starch degradation was mainly
in the hindgut. Most studies that found Ruminococcus as a
significant genus for RS degradation investigated RS2 and RS3
(Martínez et al., 2010; Walker et al., 2011: Umu et al., 2015;
Sun et al., 2016), whereas the majority of studies investigating
other RS4 showed either no difference or a decreased relative
abundance of Ruminococcus (Martínez et al., 2010: Metzler-
Zebeli et al., 2015b), which is in agreement with present results.
A possible rationale for this may be that, due to the α- and β-(1,2)-
and (1,3)-linked glycosidic bonds present in our TGS product,
hydrolysis of starch molecules by host enzymes was restricted,
as reflected in the digestibility data. Moreover, it appears that
the different glycosidic bonds also limited starch hydrolysis by
certain bacterial amylases and pullulanases, which is supported
by the reduced species richness and drastic shifts in the highly
abundant genera in cecal, proximal-colonic, and mid-colonic
digesta. However, we can only speculate about possible changes
in the metabolic functions of the microbiota caused by the TGS
as we did not complement the 16S rRNA sequencing with a
function-based approach. Overall, the proximal colon showed
the greatest bacterial changes, closely followed by the mid colon.
This was reflected by the generally greater changes in SCFA
concentrations and pH in the mid and proximal colon compared
to the cecum, which suggests that microbial hydrolysis of these
complex bonds in the TGS may have taken more time compared
to the waxy cornstarch. In line with that, the retention time of
digesta in the various gut segments and the nutrient availability
may explain the greater effects observed in the stomach compared
to the ileum.

Present digestibility values indicate that the TGS was not
fully degraded in the gastrointestinal tract (4% more starch
excretion in feces) compared to CON. This would allow for
microbes that benefited from the TGS, either directly or through
metabolic cross-feeding, to persist throughout the hindgut
(Louis and Flint, 2017). Stimulation of metabolic cross-feeding
among microbes with the TGS diet may be supported by
the increased lactate concentrations especially in the proximal
and mid colon. Microbial groups that appeared to benefit
were mainly those belonging to the Veillonellaceae family
(Megasphaera, Succiniclasticum, and Mitsuokella), which are
capable of utilizing lactate and/or succinate and producing
propionate, butyrate, and/or valerate (Soto-Cruz et al., 2002;
Duncan et al., 2004; Tsukahara et al., 2006). Different networking
among the dominant bacterial genera in pigs fed the CON
diet compared to the TGS diet may have been supported
by inverse correlations between the dominant bacterial genera
in TGS-fed pigs [i.e., unclassified Veillonellaceae (tentatively
identified as Selenomonas) and Megasphaera] and CON-fed pigs
[i.e.,Ruminococcus and unclassifiedRuminococcaceae (tentatively
identified as Ruminococcus)] with microbial metabolites (i.e.,
with lactate; Louis and Flint, 2017). Gastrointestinal pH, which
was lower in TGS-fed pigs, may also have had a strong
influence on competition between different bacterial groups
in the microbial community, and therefore on the microbial
metabolites produced (Louis and Flint, 2017). Furthermore,
TGS-induced differences in proteolytic bacterial community or
activity were indicated by increased iso-butyrate but decreased
iso-valerate concentrations in the proximal and mid colon. As
casein was the sole dietary protein source, microbe–microbe
interactions, changes in intestinal passage rate and TGS-related
changes in mucus production may explain these findings.

Although TGS modulated the gastric bacterial community
and decreased starch digestibility, SGLT1 expression in the
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small intestine, as the main route of mucosal glucose transport
(Gorboulev et al., 2012), and serum glucose levels were similar
between diets. Additionally, the jejunal and ileal incretin
expression between diets indicated similar luminal glucose
availability in the small intestine at the time point of sampling.
As shown in our previous study with serial blood samplings,
clear decreases in blood glucose and insulin were only discernible
at very specific time points (30 and 210 min postprandially).
Due to the nature of sample collection in a serial slaughter
model, not all pigs were sampled within a 15–30 min time-
frame. Therefore, it is not surprising that differences in blood
glucose were not detected as reported in the companion paper
(Newman et al., 2017). Overall, due to the high starch content
in the CON diet, starch digestion may have been incomplete
in the small intestine, leading to similar SGLT1 expression
levels between diets. Subsequently, a greater portion of the
waxy cornstarch may have been available for degradation in
the cecum (Moran et al., 2010), which could explain the lower
expression of SGLT1 in the cecal mucosa of TGS- compared
to CON-fed pigs. Lower ileal substrate availability and the
fact that GLUT2 can translocate to the apical membrane to
facilitate luminal glucose uptake in response to high dietary
levels of rapidly digestible starch (Leturque et al., 2009)
may have caused the down-regulated expression of GLUT2
at the ileal mucosa of the TGS- compared to CON-fed
pigs.

Despite TGS-related differences in lactate and SCFA
concentrations in the cecum and colon, SCFA transporters
SMCT and MCT1 were not differentially expressed. Nevertheless,
present correlations indicated a positive relationship between
luminal SCFA (i.e., acetate) and MCT1 expression in the cecum.
As simple diffusion is accelerated at lower pH values (Suzuki
et al., 2008), it is possible that this transport route compensated
for the increased SCFA and lactate concentrations in the colon
of TGS-fed pigs, as large intestinal pH values were significantly
lower in TGS compared to CON-fed pigs. After crossing the
epithelium, acetate and propionate are transported through the
portal vein to the liver, where propionate can induce intestinal
gluconeogenesis (De Vadder et al., 2014). Therefore, the greater
propionate concentrations in the cecum and proximal colon of
TGS-fed pigs may have provided an additional energy source
for these pigs compared to those fed the CON diet. This may
be also supported by our recent findings of greater propionate
levels in the peripheral blood of TGS- compared to CON-fed
pigs (Newman et al., 2017).

Luminal SCFA, especially acetate, propionate, and butyrate,
act as agonists of G protein-coupled receptors (e.g., FFAR-2
and FFAR-3) and can modify gut mucosal signaling with
effects on appetite and energy homeostasis (McKenzie et al.,
2017). Propionate mainly binds to FFAR-3, whereas acetate
equally binds to FFAR-2 and FFAR-3 (McKenzie et al., 2017).
From the SCFA data, it may be reasonable to assume an
activation of FFAR-3 in the cecum and of FFAR-2 and FFAR-3
in mid colon of TGS-fed pigs. However, present results were
contradictory, in that FFAR2 and FFAR3 tended to be less
expressed in the cecum and were similarly expressed in the
mid colon of TGS- compared to CON-fed pigs. These results

were similar to those found in pigs fed an arabinoxylan-rich
diet which had elevated levels of cecal SCFA (including acetate,
propionate, and butyrate) and a down-regulated cecal FFAR2
expression (Nielsen et al., 2014, 2015). Likewise, feeding RS3 to
growing pigs elevated cecal and colonic SCFA concentrations,
but showed similar mucosal FFAR2 and FFAR3 expression
(Haenen et al., 2013). Despite the contradictory FFAR responses,
GLP1, which is induced by intestinal SCFA (Tolhurst et al.,
2012) via GPR signaling (e.g., FFAR-2 and FFAR-3; Chambers
et al., 2015; Pais et al., 2016), was up-regulated in cecal
and, to a lesser degree, mid-colonic mucosa in TGS-fed
pigs.

The elevated expression of GLP1 in TGS-fed pigs likely
modulated insulin secretion (Bindels et al., 2013), which together
with the decreased serum insulin observed in our previous
TGS-fed pigs (Newman et al., 2017) and the lower energy
digestibility of the TGS diet, likely contributed to the down-
regulated expression of genes related to fatty acid synthesis in
adipose tissue. The present effects on lipid metabolism are in
general agreement with previous studies investigating the effects
of CMS, which have shown numerous effects on lipid metabolism
in healthy humans, mice, and pigs (Shimotoyodome et al., 2010,
2011; Metzler-Zebeli et al., 2015a; Newman et al., 2017). Genes
involved in fatty acid synthesis were conversely regulated by
dietary TGS consumption in adipose tissue as compared to the
liver, which is in agreement with previous findings showing
that fat synthesis in adipose and hepatic tissues in pigs may be
differentially regulated (Duran-Montgé et al., 2008). Unlike in
humans and rodents, de novo lipid synthesis in pigs primarily
occurs in adipose tissue (O’Hea and Leveille, 1969). Since
insulin is needed for adipocytic triglyceride storage (Dimitriadis
et al., 2011), the TGS-induced decrease in postprandial insulin
secretion likely explains the down-regulation of fatty acid
and cholesterol synthesis genes in adipocytes and hence the
utilization of serum lipids for peripheral lipid synthesis in
TGS-fed pigs, whereas in hepatocytes nutrients deriving from
the portal vein may have induced the expression of genes for
lipogenesis. Although not measured in the present study, the
TGS-related reduction in insulin was probably accompanied by
increased postprandial levels of glucagon, thereby decreasing
the insulin:glucagon ratio and further diminishing the effect of
insulin signaling. Haenen et al. (2013), for example, showed
enhanced cecal expression of glucagon after RS3 consumption.
Gene expression data support up- and down-regulation of
enzymes in de novo lipogenesis via nuclear transcription factor
SREBP1 in hepatic and adipose tissues, respectively, and via
down-regulation of FFAR2 and FFAR3 expression in adipose
tissue. By contrast, the expression of CPT1, which is involved
in fatty acid oxidation (Warfel et al., 2017), remained unaffected
by dietary treatment. Moreover, in contrast to our assumption,
the TGS did not appear to increase satiety in our pigs as
the feed intake between TGS- and CON-fed pigs was similar.
This may be supported by similar intestinal expression levels
of the appetite-suppressing hormone PYY between feeding
groups. In addition, the down-related expression level of the
satiety hormone LEP, likely a consequence of decreased storage
of lipids, in adipocytes of TGS-fed compared to CON-fed
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pigs may have modulated the feed intake behavior of our pigs
(Polyzos et al., 2015).

CONCLUSION

The consumption of the TGS diet altered the most abundant
bacterial genera in the stomach, cecum, proximal colon, and
mid colon as well as caused greater microbial metabolite
concentrations in the hindgut compared to the CON diet. Greater
relative abundances of an unclassified Veillonellaceae genus,
Megasphaera, Mitsuokella, and Succiniclasticum – which contain
many propionate-producing species – appeared to replace
other starch-degrading genera belonging to the Ruminococcaceae
family. Many TGS-associated changes in the bacterial community
were already apparent in gastric and ileal digesta. Consumption
of the TGS diet enhanced propionate fermentation in the cecum
and proximal colon, which may have induced the up-regulated
expression of GLP1 in the cecum and mid colon. However,
genes involved in fatty acid synthesis (FASN, SREBP1, and
ACACA) were conversely regulated in adipocytes as compared
to hepatocytes in TGS-fed pigs. This was likely associated with
the decreased starch digestibility of the TGS diet, which reduced
insulin signaling and hence contributed to the down-regulated
expression of lipid synthesis genes.
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