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The ability of bacteria to respond to environmental change is based on the ability
to coordinate, redirect and fine-tune their genetic repertoire as and when required.
While we can learn a great deal from reductive analysis of individual pathways and
global approaches to gene regulation, a deeper understanding of these complex
signaling networks requires the simultaneous consideration of several regulatory layers
at the genome scale. To highlight the power of this approach we analyzed the Hfq
transcriptional/translational regulatory network in the model bacterium Pseudomonas
fluorescens. We first used extensive ‘omics’ analyses to assess how hfq deletion affects
mRNA abundance, mRNA translation and protein abundance. The subsequent, multi-
level integration of these datasets allows us to highlight the discrete contributions by Hfq
to gene regulation at different levels. The integrative approach to regulatory analysis we
describe here has significant potential, for both dissecting individual signaling pathways
and understanding the strategies bacteria use to cope with external challenges.

Keywords: Pseudomonas, ribosomal profiling, multi-omics analysis, Hfq, integrative approach

INTRODUCTION

The ability to control expression of their genetic repertoire is a key strategy adopted by bacteria
to adapt to changing environments, and cope with a range of external challenges (Fong et al.,
2005; López-Maury et al., 2008; Silva et al., 2011). However, transcriptional control does not
generally occur independently of other regulatory mechanisms. While regulation at the level of
transcript abundance represents an important level of control, it is emerging that the extent of
post-transcriptional regulation of gene expression in bacteria has been relatively underestimated,
with recent studies highlighting the central importance of integrated post-transcriptional and
post-translational control mechanisms to the formation of a plastic environmental response
(Picard et al., 2009; Jeong et al., 2016). To fully understand how global regulatory responses are
controlled requires the genome-scale characterization of several layers of regulation, including both
post-transcriptional and post-translational events, and the integration of multiple ‘omics’ analyses.

To illustrate the relevance of this approach we focused on the protein Hfq in the plant
growth-promoting bacterium Pseudomonas fluorescens. Hfq is a pleiotropic regulator of bacterial
gene expression impacting, in some organisms, the expression of up to 20% of all genes
(Chao and Vogel, 2010). The regulatory role of Hfq is ascribed mainly to its function as
an RNA-chaperone, facilitating interactions between bacterial non-coding RNAs and their
mRNA targets. Thus, Hfq modulates mRNA stability and translation alongside sRNA-mediated
transcription antitermination (Sedlyarova et al., 2016). Importantly, Hfq can also regulate
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gene expression by acting alone and influencing mRNA
polyadenylation or translation (Valentin-Hansen et al., 2004),
or by directly interacting with DNA (Cech et al., 2016). In P.
fluorescens, Hfq is not essential for survival but plays a critical
role during niche adaptation, with reduced Hfq levels resulting
in pronounced proteomic changes and phenotypes including
increased surface attachment, reduced motility and severely
compromised wheat rhizosphere colonization (Little et al., 2016).

Several studies have been performed to characterize potential
roles for Hfq in different bacteria by phenotypic, transcriptomic
and proteomic analyses of deletion mutants (Sonnleitner et al.,
2006; Torres-Quesada et al., 2010; Cui et al., 2013; Wilf et al.,
2013; Bilusic et al., 2014; Boudry et al., 2014; Deng et al., 2014;
Hämmerle et al., 2014; Holmqvist et al., 2016). However, the
existence of different, interacting regulatory layers markedly
reduces the predictive power of individual transcriptomic
and proteomic studies (Arraiano and Maquat, 2003). For
example, a purely transcriptomic approach to characterize
Hfq-based regulation is likely to miss many important post-
transcriptional interactions. Although measuring changes in
protein abundance will capture translational impacts that
occur without corresponding changes at the transcriptional
level, such proteomic experiments are unable to distinguish
between different levels of regulation. In addition, comprehensive
proteomic analysis relies on state-of-the-art MS combined with
accurate quantification methods.

Recently, RNomics and deep sequencing-led approaches to
detect transcriptome-wide binding sites of Hfq in different
bacteria have enabled researchers to examine the specificity
of Hfq interactions with its RNA ligands (Feng et al., 2015;
Papenfort et al., 2015; Holmqvist et al., 2016). Nonetheless, and
despite these ground breaking analyses, many aspects of Hfq
regulation remain unknown. Moreover, none of these studies
shed light on the Hfq translatome, despite the importance of
Hfq (alongside CsrA/RsmA and ProQ (Holmqvist et al., 2016;
Smirnov et al., 2016) as a global regulator of post-transcriptional
gene expression.

To address the complex role of Hfq in P. fluorescens and build
a comprehensive model of its regulon, we carried out an extensive
multi-omics (mRNA abundance, translatome and proteome)
analysis of the P. fluorescens 1hfq mutant. By combining datasets
from three distinct experimental approaches, we are able to
identify and dissect the effect of hfq deletion on gene regulation
at different levels. Our analysis also provides evidence suggesting
a novel role for Hfq as a non-specific regulator of ribosomal-
RNA interaction. The workflow we describe here has enabled
us to produce a highly comprehensive picture of bacterial gene
regulation.

RESULTS

Parallel Global Analyses of the
P. fluorescens 1hfq Mutant
To detect Hfq-regulated genes in P. fluorescens SBW25, we
determined the transcriptomic, translatomic and proteomic
profiles of the wild type and 1hfq mutant strains (Supplementary

Figure S1). First, to confirm that the 1hfq mutant (Little
et al., 2016) was non-polar we conducted qRT-PCR analysis on
the downstream gene (hflX), whose expression was unaffected
by hfq deletion. In addition, we were able to complement
the hfq deletion phenotype with a plasmid-borne copy of hfq
(Supplementary Figure S2). In each case, the experiments were
carried out in identical conditions, with cells grown to late
exponential phase in defined M9 medium supplemented with
0.4% pyruvate and 0.4% casamino acids. In this medium,
compared to LB, the hfq mutant exhibited a reduced growth
rate and entered stationary phase at a slightly lower cell density
than wild type SBW25 (Supplementary Figure S2). This suggests
that while hfq is not essential, it is required for optimal bacterial
growth in P. fluorescens. Appropriate cell densities were then
chosen to ensure that samples were taken from wild type and
1hfq at comparable growth phases. We decided to characterize
Hfq-mediated regulation in the late exponential phase, as this
allowed us to avoid the drastic changes in gene expression
patterns (both transcriptional and translational) that are often
associated with entry into stationary phase. qRT-PCR performed
on late exponential and stationary phase SBW25 cultures
demonstrated that hfq transcription remains stable during this
growth period (Supplementary Figure S2). Similarly, Western
blotting with a C-terminal flag-tagged protein showed that Hfq
abundance does not change substantially during this part of the
SBW25 growth cycle (Supplementary Figure S2). Two biological
replicates of each strain were analyzed for each dataset.

In our RNA-Seq analysis, 212 mRNAs (out of 5910;
p-value ≤ 0.01) were identified that showed statistically
significant changes (log2FC = 2) between SBW25 WT and
1hfq. A scatter plot of these loci comparing FPKM (Fragments
Per Kilobase Million) expression values for WT and 1hfq
suggests that Hfq exerts a predominantly negative regulatory
effect on transcript levels. Under the conditions tested, 46 mRNA
were down regulated and 166 were up regulated compared
to wild type, equivalent to 3.6% of all P. fluorescens genes
(Figure 1A). Classification of Hfq-controlled mRNA according
to COG database searches revealed that the deletion of hfq
disproportionately affects the steady state transcript levels of
genes involved in bacterial metabolism, with 128 mRNAs
misregulated in the hfq mutant (60.3% of regulated mRNAs) as
opposed to 10 involved in information storage and processing,
22 in cell processes and signaling, and 52 poorly characterized
loci. Further subdivision of these categories revealed that the
most abundant functional classes up regulated in the 1hfq
background (i.e., negatively affected by Hfq) are involved
in amino acid and carbohydrate transport and metabolism
(Figure 1A). Conversely, the transcripts downregulated in the
1hfq mutant were most frequently associated with inorganic
ion transport and metabolism (Figure 1A). These findings were
supported by GO enrichment analysis of the RNA-Seq data
(Supplementary Table S4).

We then purified the soluble proteomes of both strains under
the same experimental conditions, and quantitatively analyzed
them using isobaric labeling (iTRAQ). Following the iTRAQ
analysis, we focussed our attention on the 1874 proteins identified
in both WT and 1hfq lysates (with at least 3 abundance
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FIGURE 1 | Parallel global analyses of the P. fluorescens 1hfq mutant. (A) Transcriptomic analysis: Scatter-plot representing pairwise comparison of mean log2

FPKM expression values for P. fluorescens WT and 1hfq (n = 5910). (B) Proteomic analysis: Scatter-plot representing pairwise comparison of mean log2 protein
abundance values for P. fluorescens WT and 1hfq (n = 2019). (C) Translatomic analysis: Scatter-plot representing pairwise comparison of mean log2 RPKM
expression values for P. fluorescens WT and 1hfq (n = 5910). The pie chart sections indicate the proportion of significantly up- (top left) or down- (bottom right)
regulated genes in the 1hfq background (according to the COG database) in each functional category. Categories are color-coded as follows: blue – metabolism,
green – cellular processes and signaling, orange – information storage and processing, and gray – poorly characterized. The letters in each section of the chart refer
to the respective COG functional categories. The most abundant categories are expanded from the chart in each case. A complete list of genes and information on
their predicted functions are given in Supplementary Table S1.
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counts, p-value ≤ 0.01, and FDR 1%) and representing 66%
of the total predicted non-membrane-associated proteome.
(This sample represents a substantial fraction of the total
cellular proteome, albeit one missing most membrane-associated
proteins.) A scatter plot comparing the proteomic profiles of
WT and 1hfq (Figure 1B) revealed that 99 proteins (5.3%
of the total identified proteome) were differentially present
in the hfq null mutant compared to the WT (64 proteins
with log2FC ≥ 2 and 35 with log2FC ≤ −2). Strikingly,
the distributions of predicted biological functions were heavily
skewed for both the up- and down-regulated samples. GO
enrichment analysis (Supplementary Table S4) showed that
the most enriched group of 1hfq up-regulated proteins were
involved in bacterial metabolism, predominantly of amino acids
and lipids (Figure 1B and Supplementary Table S4). While
some amino acid metabolic genes were down-regulated in 1hfq,
poorly characterized proteins (mainly putative lipoproteins)
represented the predominant down-regulated group (Figure 1B
and Supplementary Table S4).

To explore the translational dynamics of Hfq in P. fluorescens,
we next conducted a ribosome profiling experiment comparing
the SBW25 WT and 1hfq mutant strains. Our analysis
revealed that Hfq controls translation of 5.7% (311 out of
5910; p-value ≤ 0.01 logCPM ≥ 1) of total cellular mRNAs
(Figure 1C). Of these, 255 messengers (4.7% of all genes, 82%
of the mistranslated genes) were significantly more translated
in 1hfq than in the WT while 56 (1% of all genes) were
downregulated, consistent with a predominant function for
Hfq as a translational repressor in SBW25. This finding
is in agreement with both the transcript abundance data
(Figure 1A), and with its published mechanism as an RNA
chaperone that interacts with small regulatory RNAs, which
mainly act to downregulate gene expression (Fröhlich and
Vogel, 2009). The largest class of differentially translated genes
were those involved in bacterial metabolism, with 197 loci
(63.3% of the total misregulated mRNAs) as opposed to 11
in information storage and processing, 23 in cell processes
and signaling and 80 genes with poorly characterized function
(Figure 1C). The GO enrichment analyses of these genes
revealed that the absence of Hfq mainly results in an increased
translation of genes involved in membrane transport and
oxidation-reduction processes (Figure 1C and Supplementary
Table S4). Regulation of the dipeptide (dpp) transport operon
is of particular interest, because of its involvement in the
transport not only of dipeptide containing compounds, but
also aminolaevulinic acid, haem and single amino acids (Kiely
et al., 2008). Conversely, translation of genes belonging to
the functional categories of extracellular transport and protein
transporter activity were downregulated in 1hfq (Figure 1C and
Supplementary Table S4).

Intriguingly, a set of 11 genes showed strong differences in
their expression between the two replicates in both the RNA-
Seq and Ribo-Seq experiments (Supplementary Table S1) and
were excluded from subsequent analyses. This is unlikely to be
coincidental or related to the quality of the datasets, as the overall
reproducibility between biological replicates was very high
(R ≥ 0.9, Supplementary Figures S3, S4) for both experiments,

and apart from gene PFLU2997, the differentially expressed genes
clustered in three operons. This stochastic variation between
samples is currently unexplained, but may be linked to specific
RNA structural features that dictate RNA levels and partially
control relative levels of gene expression, or possibly to protein-
mediated feedback mechanisms of transcriptional regulation
(Singh, 2011). In both cases the variability is not suppressed at the
translational level. It is also possible that the expression of these
genes is critically affected by the random variation exploited by
genetically identical cell populations (Norman et al., 2015; Soltani
et al., 2016).

To interrogate our Ribo-Seq dataset for evidence of more
widespread Hfq influences, we calculated the ribosomal
occupancy rate for every SBW25 mRNA, and plotted WT
and 1hfq values against each other (Supplementary Figure
S5). The slope of the resulting scatter-plot (0.726 ± 0.009)
indicated that the ribosomal-mRNA occupancy rate of 1hfq
was less than 73% of WT. This value only modestly increased
(to 0.761 ± 0.009, Supplementary Figure S5) upon the removal
of all Hfq-regulated genes from the analysis, and could not
be explained by a reduction in ribosomal abundance in the
mutant, as qRT-PCR of 16S rRNA abundance showed no
significant difference between WT and 1hfq (1.15 ± 0.20 of
WT). In addition, we did not detect any substantial change
in abundance for the ribosomal proteins and key translation
factors detected in our proteomic dataset. This suggests a role
for Hfq as a non-specific chaperone of the ribosome-mRNA
interaction. The biological relevance of this remains unclear,
as the change in ribosomal-mRNA occupancy in the 1hfq
strain has no effect on translation for the vast majority of
mRNAs.

Although Hfq has been shown to bind directly to A-rich
sequences in mRNAs, the predominant mode of action of Hfq
in vivo is the regulation of targets in conjunction with non-
coding RNAs (ncRNA) (Vogel and Luisi, 2011). To test if the
absence of Hfq affects ncRNA abundance, we identified the
ncRNA sequences in SBW25 using the database Rfam, then
compared their levels in the 1hfq and WT transcriptomes. Out
of 87 ncRNAs identified (Supplementary Table S2), only 4 were
present at altered levels in the mutant, suggesting that Hfq has
little overall effect on ncRNA expression or abundance. For the
4 Hfq-affected ncRNAs, the biological functions of P15 and P6,
the two ncRNAs overexpressed upon Hfq deletion are currently
unknown. The two 1hfq down-regulated ncRNAs belong to the
crcZ subfamily of the Crc ncRNA family. CrcZ members are
common throughout the Pseudomonas genus, and act as global
regulators of carbon catabolite repression (CCR) by sequestering
the RNA-binding protein Crc (Sonnleitner et al., 2009; Moreno
et al., 2012; Filiatrault et al., 2013).

Validation of the Global Datasets
To validate our global regulatory data, we next conducted a
series of conventional molecular biology experiments to measure
mRNA and protein abundance for selected, Hfq-regulated loci.
We chose a set of targets that were up- and down-regulated,
or unaffected in our RNA-Seq, Ribo-Seq and iTRAQ datasets,
and examined their abundance in samples grown under identical
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FIGURE 2 | Validation of candidate loci from the global analysis datasets.
(A) Comparative mRNA abundance data for selected loci from the hfq
transcriptome. (B) Comparative mRNA abundance data for selected loci from
the hfq translatome. In each case, log2 fold-change values are plotted for the
hfq mutant versus WT SBW25. qRT-PCR values are presented alongside the
corresponding fold-change observed in (A) the RNA-Seq experiment and (B)
the Ribo-Seq experiment. The experiments were repeated at least twice. Data
represents mean ± SD. (C) Western blots of selected flag-tagged proteins
whose abundance changes in the Hfq proteome. The experiments were
repeated at least twice. The representative blots are presented.

experimental conditions to those used for the original analyses.
For the transcriptomic and translatomic data, qRT-PCR was used
to measure mRNA abundance from total RNA (Figure 2A) and
ribosomally associated RNA fractions (Figure 2B) respectively.
In each case, independently obtained qRT-PCR data agreed with
the results of the corresponding ‘omic experiment, strongly
supporting the validity of these datasets. For the proteomic
analysis, Hfq-regulated proteins were flag-tagged and expressed
in trans. Western blotting with an anti-flag antibody was used to
examine protein abundance in the WT and 1hfq backgrounds
(Figure 2C). Once again, strong agreement was observed between
these data and the original iTRAQ results.

Integration of the Three Regulatory
Datasets Reveals Patterns of Global Hfq
Control
To gain further insights into the nature of Hfq regulation in
P. fluorescens, we next integrated the three regulatory datasets
with one another (Supplementary Figure S1). To dissect Hfq
control at the transcript abundance and translational levels, we
first integrated the RNA-Seq and Ribo-Seq datasets. A scatter-plot
representing the pairwise comparison of log2 ratios between the
Hfq transcriptome and translatome (Figure 3) showed a fairly
high correlation (R = 0.71, n = 5401) with a majority of data-
points distributed in the middle of the plot, representing loci
that exhibited little change in the absence of Hfq. Among the
397 P. fluorescens loci that exhibited significant change upon hfq
deletion, 190 genes (47.8%) were regulated at the translational
level only (3.5% of the analyzed genes), compared to 79 (19.9%)
that only showed changes in steady state mRNA levels. 128 genes
(32.2%) were controlled at both regulatory levels.

To analyze how functions controlled by Hfq are split between
different regulatory levels, we dissected the graph into three
main groups (Figure 3 and Supplementary Table S3) based
on the level where gene expression is regulated (Figure 3A).
Loci that showed altered transcript levels in the hfq mutant but
no corresponding change in translation included proteins from
the cytochrome C family (biogenesis loci: PFLU1760-PFLU1765,
cbb3-type cytochrome C oxidases: PFLU4559-PFLU4561) as
well as proteins of the cytochrome bd complex (PFLU5345-
PFLU5346), suggesting a role for Hfq in the control of oxidative
phosphorylation. Several ABC transporter components and
TonB-dependent proteins, as well as the iron scavenging protein
ferredoxin, were also under transcript-level control (Figure 3B).

Analysis of genes showing significant translational
perturbation without a comparable shift in mRNA abundance
enabled the identification of mRNAs under translational
control (Figure 3C). A large number of genes in this group
encode proteins involved in amino acid and carbohydrate
transport and metabolism as well as several poorly characterized
proteins. Interestingly, among the 1hfq down-regulated
loci in the cellular processes and signaling subgroup, we
identified genes from the general secretion pathway (type II),
and PFLU0728, which encodes the regulatory protein RpsR
from the SBW25 type III secretion system. This suggests
a direct Hfq contribution to the control of P. fluorescens
secretory pathways, as reported for several pathogens
(Sittka et al., 2007; Shakhnovich et al., 2009; Schiano et al.,
2010). Conversely, among the positively translationally
regulated genes we found transcription factors belonging
to the AsnC (PFLU2559) and AraC families (PFLU3095,
PFLU4808). Changes in the abundance of these proteins
(and hence altered gene transcription) could explain some
of the transcript-level mis-regulation seen in the 1hfq
mutant.

A substantial fraction (39.8%) of the final group (Figure 3D);
affected at both transcript abundance and translational levels,
functions in the transport and metabolism of amino acids
and carbohydrates. In addition, hupA (PFLU6032) encoding
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FIGURE 3 | Correlation between Hfq transcriptome and translatome. Scatter-plots representing the pairwise comparisons of log2 ratios between Hfq transcriptome
and translatome, highlighting three different regulatory classes of Hfq targets. (A) Illustration of the different regulatory effects on gene expression (B) Scatter-plot
highlighting loci that showed altered mRNA levels in the hfq mutant but no corresponding change in translation (C) Genes showing significant translational
perturbation without a comparable shift in the transcriptome. (D) Genes affected at both transcript abundance and translational levels. (E) The graph shows the
relative abundance of each COG functional category at each of the regulatory levels shown in (B–D).

the DNA-binding protein HU1 was associated with increased
transcript levels, and highly translated in the hfq mutant.
It appears that Hfq not only interacts with DNA, but also
cooperates in the organization of the bacterial chromosome
with other proteins, including HU (Cech et al., 2016). Hfq

and HU associate with the nucleoid in markedly different
ways, bridging and bending the DNA respectively. Nonetheless,
both Hfq and HU regulate a similar set of cellular behaviors
including nucleoid structuring, recombination, transposition,
growth, replication, motility, metabolism, and virulence (Phan
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et al., 2015). The increased abundance of HU1 may therefore
represent a compensatory response to the absence of Hfq.

We next integrated the proteomic data into the pairwise
comparison between the Hfq transcriptome and translatome.
Three-dimensional representations of this data proved
uninformative, so instead loci were colored according to
the effect of hfq deletion on protein abundance (Figure 4A). We
saw a strong agreement in the general direction of regulation
between the proteomic and genetic datasets. Interestingly,
most of the proteins detected in our experiment lay close to
the diagonal regression line corresponding to transcript-level
regulation (Figure 3D), with the vast majority lying within a
two-fold ratio of differential expression on either side of the
regression line.

To examine the impact of post-translational regulatory
mechanisms on the Hfq proteome, we next integrated the
translatomic and proteomic datasets (Figures 4B,C). Once again,
a regression line was calculated and added to the analysis. While
the majority of loci lay within a two-fold differential ratio of
this line (i.e., translation and protein abundance are directly
correlated), two substantial groups of outliers were identified.
The first of these (green in Figure 4C and Supplementary Table
S4) showed little translational regulation but substantially altered
protein abundance, while for the second (blue in Figure 4C and
Supplementary Table S4) translation significantly changes on
hfq deletion but is not accompanied by a corresponding shift in
protein abundance. In both cases, post-translational control (i.e.,
altered protein stability, protease activity etc.) is apparently taking
place, either as a specific means of post-translational regulation
or to compensate for higher-level perturbations, as we saw no
evidence for increased ribosome stalling on these transcripts
(Supplementary Figure S6).

DISCUSSION

Analyzing transcript-level regulation in isolation fails to explain
much of the observed flexibility of bacterial adaptation (Arraiano
et al., 2010). While there is undoubtedly a connection between
protein and mRNA levels, adaptive mechanisms at the post-
transcriptional and post-translational levels are also highly
important, and must be accounted for if we are to produce an
accurate assessment of bacterial regulation. As a core component
of the global post-transcriptional networks of many bacterial
species, Hfq represents a model protein to highlight the power
of a multi-omics approach to gain a more accurate picture
of complex regulatory pathways. By facilitating the pairing of
small RNAs with their target mRNAs, Hfq affects the translation
and turnover rates of specific transcripts and contributes to
complex post-transcriptional networks (Vogel and Luisi, 2011).
In Pseudomonas spp., Hfq plays a critical role during niche
adaptation, with its deletion affecting phenotypes important
for rhizosphere colonization of the soil-dwelling P. fluorescens
SBW25 as well as host interactions by the related pathogens
P. aeruginosa and P. syringae (Little et al., 2016).

The data we present here describe changes that arise as a
consequence of hfq deletion in P. fluorescens at three different

regulatory levels; mRNA abundance, protein abundance, and
analysis of actively translated mRNA. Transcriptome profiling
revealed that Hfq influences 212 genes, affecting in particular
the transcript levels of loci involved in bacterial metabolism.
This finding supports a major role for Hfq in the control of
P. fluorescens metabolic versatility, in agreement with studies in
other bacteria (Sonnleitner et al., 2006; Sittka et al., 2009; Torres-
Quesada et al., 2010). To identify and dissect Hfq-mediated
regulation at the transcript abundance and translational levels,
we next performed ribosome profiling experiments. Ribo-Seq
provides measurements of protein synthesis activity, reflecting
both the translational status of an mRNA, and its underlying
abundance (Ingolia, 2016). Our experiment revealed that Hfq
negatively controls translation of 311 mRNAs. These Hfq targets
mainly encode transporters and enzymes involved in amino
acid and carbohydrate metabolism, as well as secretory pathway
components (Type II and III), siderophore utilization and
chemotaxis loci, and the DNA binding protein HU1. Finally,
we complemented our analysis of Hfq mRNA regulation by
examining the soluble 1hfq proteome. Intriguingly, while this
dataset confirmed the substantial Hfq regulation of amino acid
and lipid metabolism seen in our RNA-based analyses, we
also saw evidence of a second, Hfq up-regulated group of
poorly characterized putative lipoproteins. It is currently unclear
whether Hfq directly controls these proteins, or if they change
abundance as an indirect response to other phenotypic changes
in 1hfq, perhaps as an adaptation to a sessile, aggregative
morphology. The Ribo-Seq dataset also provided evidence for
substantial non-regulatory chaperone activity for P. fluorescens
Hfq, with a significantly lower level of ribosomal occupancy for
mRNAs in the 1hfq mutant than in WT, even once regulatory
targets are excluded.

To gain further insights into the nature of Hfq regulation
in P. fluorescens and to dissect Hfq translational regulation
from transcriptional/post-transcriptional effects on mRNA
abundance, we integrated the RNA-Seq and ribosome profiling
datasets with one another. A direct correlation between
transcript levels and translation emerged for 51% of all
mRNA (R2 0.51). For the Hfq-regulated loci in this group,
increased/decreased mRNA abundance was matched by a
corresponding increase/decrease in translational activity, with
mRNA translated at a constant rate and regulation occurring at
the level of transcript abundance. A second set of genes showed
no change in mRNA levels but significantly altered translation.
Alongside other loci (Supplementary Table S3), translational
changes were seen for several amino acid uptake systems (i.e., dpp
operon, gltJ-I and livJ1). This is supported by previous research
(Pulvermacher et al., 2008; Sharma et al., 2011) that links the
repression of these pathways to the Hfq-associated sRNA GcvB.
Likewise, oligopeptide and dipeptide transport systems are also
targets of ribo-regulatory networks in several α-proteobacteria
(Torres-Quesada et al., 2010).

The methodology we present here does have certain
limitations, primarily the inability to distinguish between direct
control of specific genes by a target protein (in this case Hfq) from
indirectly affected loci that are controlled on the same regulatory
level. Nonetheless, integrating data from different global datasets
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FIGURE 4 | Integration of the regulatory datasets. (A) Color-coded integration of proteomic data into the pairwise comparison between the Hfq transcriptome and
translatome (n = 5910). Red and yellow dots indicate loci that show up- and down-regulated protein abundance, respectively, in the 1hfq mutant. Loci exhibiting no
significant change in protein abundance are indicated in gray (Supplementary Table S4). (B) Illustration of the effects of post-translational control on protein
abundance. (C) Scatter-plot showing the pairwise comparisons of log2 ratios between the 1hfq translatome and proteome (n = 1867). Post-translationally regulated
loci are marked in green, while loci displaying compensatory post-translational effects are marked in blue (Supplementary Table S4). In both cases, dashed lines
indicate two-fold ratios of differential expression from the regression line (in black).

as described here allows us to dissect out individual elements of
complex regulatory networks (e.g., altered translational activity
from transcriptional/post-transcriptional effects), and in this case
reveals the influence of Hfq on a variety of cellular functions
(Figure 5). Our integrated analysis also enables us to identify
regulatory mechanisms that could otherwise be missed, or
misinterpreted. For example, a third set of genes identified in
the integrated analysis were those where altered transcript levels
were not accompanied by a corresponding increase/decrease in
translational activity. Instead, altered mRNA levels for these loci
appear to be compensated for at the translational level, resulting
in little overall translational perturbation compared to WT.

Strikingly, integration of the three datasets revealed that
the variance in protein levels observed for the 1hfq mutant
closely mapped to changes in mRNA abundance (rather than
translational activity). This suggests that many of the most
pronounced 1hfq translational targets, identified here by Ribo-
Seq, are likely to have remained undetected in earlier studies.
These genes code for enzymes involved in primary metabolism,
transporters (i.e., porins and ABC transporter components),
katB (PFLU 5339), and iron-uptake loci or targets previously

not associated with Hfq-mediated regulation like PYRase
(PFLU4174; a regulator of protein and peptide catabolism; Awadé
et al., 1994). The reason for this discrepancy is likely to be
methodological – quantitative proteomics is limited primarily to
abundant proteins, and cannot currently attain the same level of
coverage as global transcriptome studies. The integrative analysis
also highlighted the presence of substantial post-translational
effects upon hfq deletion, and allowed us to assign these effects to
two broad regulatory groups. In the first, compensatory effects on
protein abundance temper increased (or occasionally decreased)
translational activity in the 1hfq mutant. For the second group,
altered mRNA translation cannot explain the substantial impacts
on protein abundance we see upon hfq deletion. This suggests an
explicit, albeit possibly indirect, Hfq effect on protein stability or
production.

By integrating multiple regulatory datasets, we have been able
to dissect and examine individual elements of this complex web
of intracellular signaling, and to obtain several new insights into
Hfq regulation in P. fluorescens. This integrated approach to data
analysis has substantial promise for future research into bacterial
adaptation to external challenges.
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FIGURE 5 | Regulatory effects of Hfq in P. fluorescens. The key loci controlled by different levels of Hfq regulation are indicated. Blue arrows show positive Hfq
control, red bars denote negative control. Dashed gray arrows show proposed indirect regulations by transcriptional regulation and chromatin remodeling.

MATERIALS AND METHODS

Bacterial Strains, Growth Conditions and
Molecular Biology Procedures
Strains and plasmids are listed in Supplementary Table S5.
Bacterial cultures were grown at 28◦C in defined M9 medium
supplemented with 0.4% pyruvate and 0.4% casamino acids
(M9 pyr-cas), unless otherwise stated. Tetracycline (Tet) was
used at 12.5 µg/ml. For the inducible pME6032-based vectors,
IPTG was added to a final concentration of 10−4 M. Molecular
biology methods including DNA extraction, transformation,
cloning, restriction digests, electrophoresis, purification of DNA
fragments and sequencing were carried out according to
standard protocols (Sambrook and Russel, 2001). We performed
PCR reactions using GoTaq or Phusion DNA polymerase
as appropriate. Oligonucleotides are listed in Supplementary
Table S6.

Chromosomal Flag-Tagging of hfq
PCR fragments amplified with primers 1–2 and 3–4 from
plasmid pSUB11 (Uzzau et al., 2001) were used to produce
a C-terminal hfq fusion. The resulting hfq-flag fragment was
ligated between the NdeI and XbaI sites of pME3087 (Little
et al., 2016) containing the hfq downstream flanking region
previously amplified with primers 5–6. A SBW25 WT strain with
the flag-tagged chromosomal allele of hfq (SBW25-hfq::FLAG)
was constructed according to the allelic exchange procedure
described in (Hmelo et al., 2015).

Flag-Tagging of Candidate SBW25 Genes
C-terminal flag-tagged versions of PFLU2152, PFLU6032,
PFLU0299 and PFLU0494 were produced by amplifying each
gene and its upstream regulatory region with primers 17–18, 19–
20, 21–22, and 23–24 respectively, from SBW25 chromosomal
DNA. The resulting PCR fragments were ligated between BamHI
and KpnI sites of the pME6032 plasmid (Heeb et al., 2002), in
frame with the flag sequence previously amplified with primers
15–16 from plasmid pSUB11 (Uzzau et al., 2001) and cloned
between the KpnI and XhoI sites.

RNA Extraction
Total RNA was extracted from 50 ml cultures of SBW25 WT,
SBW25-hfq::FLAG and the 1hfq mutant strain grown in M9
pyr-cas medium to the indicated OD600. Thirty milliliter of 60%
RNAlater (in PBS) was added to each tube, and sealed tubes
were vortexed and centrifuged for 10 min at 4◦C. Pellets were
resuspended in PBS + chilled β-mercaptoethanol RT solution,
and lysed by mechanical disruption. Finally, we purified RNA
from the lysate by column capture using an RNeasy Mini
Kit (Qiagen). Purified RNA was subjected to additional DNase
treatment (TurboTM DNase, Ambion), and RNA quantification
performed with an ND-1000 Spectrophotometer.

Isolation of Ribosome-Protected mRNAs
SBW25 and SBW25 1hfq cells were cultured to late exponential
phase in defined M9 medium supplemented with 0.4% pyruvate
and 0.4% casamino acids. Cultures were then chilled rapidly
after adding 1 mM of chloramphenicol, and harvested by
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centrifugation (20 min, 4000 g, 4◦C). After resuspension of the
pellets in 2 ml of lysis buffer [20 mM Hepes pH 7.8, 6 mM
MgCl2, 100 mM NaCl, 1 mM PMSF, 16% (w/v) sucrose], cells
were disrupted in a French press at 13,800 psi and the supernatant
was recovered by centrifugation at 30,000 g for 30 min. The
crude lysate was gently layered over a 35% sucrose cushion and
centrifuged (2 h, 50000 RCF, 4◦C). All non-ribosomal debris were
removed by layering the re-suspended pellet over a second 35%
sucrose cushion. RNA isolation with TRI Reagent (Sigma, T9424)
was followed by DNase I treatment.

Quantitative Real-Time PCR (qRT-PCR)
cDNA synthesis was performed as previously described (Little
et al., 2016). We performed qRT- PCR using a 20 µl reaction
mix containing 1 µl cDNA. At least three wells were run
for each sample. Relative quantification was used to compare
the abundance of candidate mRNAs in equivalent WT and
SBW25-hfq::FLAG or SBW25 1hfq samples. In each case, the
abundance of each gene transcript was normalized to the
WT reference sample. For the 2−11Ct method (Livak and
Schmittgen, 2001; Bustin et al., 2009), results were presented as
n-fold increase relative to the reference sample. The 1Ct-values
were examined using the Student’s t test to determine whether
datasets for relative gene expression were significantly different
from those in a chosen calibrator. Primers were experimentally
validated for suitability to the 2−11Ct method, and are listed
in Supplementary Table S6. We used melting curve analysis
to confirm the production of a specific single product from
each primer pair. Each experiment was repeated at least twice
independently.

Immunoblot Analysis
Protein concentrations of lysate supernatants were estimated
via an A280 measurement, and gels/blots were normalized
by loading equal amounts of total protein per well (this
was subsequently validated by Coomassie Blue staining).
In the case of the C-terminal flag tagged Hfq protein,
samples were normalized following comparison of optical
density for the initial cell samples. Samples were separated
on 15% Tris-HCl gels, then blotted onto polyvinylidene
difluoride (PVDF) membranes (Millipore). Membrane was
incubated overnight in blocking solution (1X PBS pH 7.4,
0.01% Tween20, 5% milk powder), then protein was detected
with 1/5000 ANTI-FLAG antibody (Sigma) and 1/6,000 anti-
rabbit secondary antibody (Sigma). Bound antibody was
visualized using ECL chemiluminescent detection reagent (GE
Healthcare).

RNA-Seq
SBW25 WT and 1hfq cultures were grown at 28◦C in M9 pyr-cas
medium to the late exponential phase. RNA was then extracted
as reported in the ‘RNA extraction’ section, and treated with the
Ribo-Zero rRNA Removal Kit (Bacteria) (Illumina) to remove
ribosomal RNA. RNA libraries were prepared using the TruSeq
Stranded mRNA Library Prep Kit (Illumina), and deep sequenced
by Illumina NextSeq500 Sequencing.

RNA-Seq Data Analysis
Paired end reads were aligned to the P. fluorescens SBW25
reference genome (Genbank accession number NC_012660)
using Bowtie2 version 2.2.9 (Langmead and Salzberg, 2012). All
libraries had an overall alignment rate of over 98 percent. The
resulting SAM files were processed using Perl scripts to calculate
coverage at each nucleotide position of the genome and to arrive
at two column text files containing counts of reads mapping to
each gene in the SBW25 genome. These files were used for the
calculation of FPKM values for each gene and also as input for
differential gene expression analysis using Bioconductor package
edgeR, according to the procedure described in the edgeR user
guide. Briefly, the data was read in using the readDGE function
and after the estimation of common and tagwise dispersions, the
function exactTest was used to carry out pair-wise comparisons
(Robinson and Smyth, 2008). Finally, the function topTags
(Benjamini and Hochberg method) was used to output a table of
genes with their log fold-changes and associated false discovery
rates. The limma function plotMDS was used to make the PCA
plots.

Searching for ncRNAs in the SBW25
Genome
The Rfam database version 12.1 was downloaded from the EBI
FTP site. The program cmscan from the Infernal package was
used to search the SBW25 genome for the covariance models in
the Rfam database. The output produced by cmscan was used to
make a bed file for viewing in IGV/IGB.

Ribosomal Profiling
SBW25 WT and 1hfq cultures were grown at 28◦C in M9 pyr-
cas medium to the late exponential phase. Cells were harvested
by rapid filtration as described in Oh et al. (2011). Collected
cells were flash frozen in liquid nitrogen and cryogenically
pulverized by mixer milling (Retsch). Pulverized cells were
thawed and clarified by centrifugation. Resulting lysates were
digested with MNase, quenched with EGTA and resolved by
sucrose density gradient ultracentrifugation. Ribosome-protected
mRNA footprints were processed as previously described (Oh
et al., 2011; Becker et al., 2013) and sequenced by Illumina
HiSeq2000.

Ribo-Seq Data Analysis
Reads in fastq files received from the sequencing contractor were
adaptor trimmed using a Perl script which implemented the
procedure described in (Becker et al., 2013). Ribosomal RNA
sequences were filtered out of the trimmed reads by aligning them
against a Bowtie2 index containing only the ribosomal RNAs of
SBW25. Reads not aligning to the ribosomal RNAs were then
aligned to the genomic sequence of SBW25 to get SAM files.
The SAM files were then used to calculate the center-weighted
coverage for at each nucleotide position of the genome. For this,
a Perl script was used to select alignments that were between
23 and 41 nucleotides in length and counted for nucleotide
positions after trimming 11 nucleotide positions from either end
of the alignment. This was done separately for reads aligning to
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the forward and reverse strands of the genome and the center-
weighted coverage was stored in separate files for the two strands.
Another Perl script was used to calculate the RPKM values for
each gene based on the strand specific center-weighted coverages
along the genome. The limma function plotMDS was used to
make the PCA plots.

Translation Efficiency
Read counts for each gene were normalized to gene lengths for
both the Ribo-Seq and RNA-Seq data and then scaled to the
same totals between the WT and Hfq. Translation efficiency was
calculated as Ribo-Seq read counts divided by the RNA-Seq read
counts. Finally, the fold change in translation efficiency of each
gene was calculated between the WT and Hfq.

Ribosome Stalling
Coverage at each nucleotide position for both RNA-Seq and
Ribo-Seq were normalized for their sequencing depths. Then
Ribo-Seq coverage for each gene was normalized to the median
of the RNA-Seq coverage for the corresponding genes. Then, the
maximum and average Ribo-Seq coverage, and the ratio between
the maximum and average were calculated. These ratios were
compared between the WT and 1hfq to see if any genes showed
altered stalling.

Quantitative Analysis Using Isobaric
Labeling (iTRAQ)
50 ml SBW25 WT and 1hfq cultures were grown in M9
pyr-cas medium to late exponential phase at 28◦C. Cellular
activity was then frozen by addition of 30 ml of RNAlater
[saturated (NH4)2SO4, 16.7 mM Na-Citrate, 13.3 mM EDTA,
pH 5.2] containing protease inhibitors. Cells were pelleted by
centrifugation and washed three times with 10 mM HEPES
pH 8.0 + protease inhibitors, before re-suspension to a
final volume of 200 µL. Seven hundred microliter pre-cooled
RLT + β-mercaptoethanol buffer (RNeasy Mini Kit, QIAGEN)
was added and samples lysed with two 30 s Ribolyser pulses at
speed 6.5. Supernatant was removed, and the soluble fraction
separated by ultracentrifugation (279,000 g, 30 min, 4◦C). After
determination of protein concentration, the soluble proteins
were precipitated with chloroform-methanol. Two biological
replicates of wildtype and mutant samples were analyzed in
one iTRAQ 4-plex experiment. Specifically, aliquots of 100 µg
of protein were dissolved in 5% sodium deoxycholate (SDC),
20 mM sodium phosphate buffer pH 8, reduced and alkylated,
and trypsin digested with 1% SDC final concentration. After
SDC removal and concentration, the samples were labeled
with iTRAQ tags according to the manufacturer’s instructions
(AB Sciex, Framingham, MA, United States). Labeled samples
were mixed, desalted on a C18 SepPak column (Waters Ltd,
Manchester, United Kingdom) and fractionated by high-pH
reversed phase chromatography on an XBridgeTM Peptide BEH
C18 column, 4.6 × 250 mm (Waters) generating 14 fractions.
The fractions were then analyzed by nanoLC-MS/MS on an
Orbitrap FusionTM TribridTM Mass Spectrometer coupled to an
UltiMate R© 3000 RSLCnano LC system (Thermo Fisher, Waltham,

MA, United States). Aliquots of the re-dissolved peptides were
loaded and trapped using a pre-column which was then switched
in-line to an analytical column (Acclaim PepMap C18, 2 µm,
75 µm × 250 mm, Thermo) for separation. Peptides were eluted
with a main gradient of 6–36% acetonitrile in water/0.1% formic
acid in 74 min at a flow rate of 0.3 µl min-1. The column
was connected to a 10 µm SilicaTipTM nanospray emitter (New
Objective, Woburn, MA, United States) for infusion into the mass
spectrometer. The acquisition was performed using a multi-notch
MS3 reporter ion method (McAlister et al., 2014). The following
acquisition parameters were used: MS1 (precursor): orbitrap
resolution 60k, Scan Range (m/z) = 400-1600 (quadrupole),
AGC Target = 2e5, DataType = Profile; MS2 with CID in IT:
Top 10, threshold 2e4, AGC Target = 5e3, Collision Energy
(%) = 30, dynamic exclusion 60 s, DataType = Centroid;
MS3 Multi-notch Isolation (SPS): Number of Notches = 10,
ActivationType = HCD, Collision Energy (%) = 55, MS2
Isolation Window = 2.5, Orbitrap Resolution = 30K, AGC
Target= 7e4.

Protein Quantification and Statistical
Analysis
The set of 14 raw files was processed for reporter ion
quantification using Proteome Discoverer 2.1.1.21 (Thermo)
with Mascot 2.4.1 (Matrixscience, London, United Kingdom)
as the search engine. The database search was performed
on the protein sequences of Pseudomonas fluorescens SBW25
downloaded from Uniprot.org (6388 sequences) and the
MaxQuant contaminants database (249 sequences1) with trypsin
as protease, 2 missed cleavages, 6 ppm precursor and 0.6 Da
fragment tolerance and a minimum peptide length of 6 amino
acids. Carbamidomethylation of cysteine was used as static
modification, oxidation (M) and deamidation (N,Q), as variable
modifications. Strict FDR was set to 0.01 in Percolator. Reporter
ion intensities were calculated as intensities from the MS3
spectra with 20 ppm tolerance using the most confident centroid.
Reporter ion values were corrected for isotopic impurities using
the manufacturer provided factors. Missing values were replaced
with the minimum value. The PSM table was exported from
Protein Discoverer and filtered for peptides unique to protein
groups with a co-isolation threshold of ≤ 30%, an average S/N
ratio of≥ 3 and a q-value of≤ 0.01. The values were transformed
to log2 and quantile normalized using the normalizeQuantiles
function in the BioConductor package limma (Ritchie et al.,
2015). Log2 ratios were calculated for reporter ion values 116
and 114 (bioreplicate 1) and 117 and 115 values (bioreplicate
2). The mean of the PSM reporter ion abundances ratio was
calculated for each protein (minimum 3 abundance counts).
The resultant two sets of ratios calculated for all peptides
of a given protein were subjected to a paired Wilcox test.
The same procedure was applied to all proteins to obtain the
corresponding P-values. P-values were adjusted for multiple
testing by applying the Bonferroni method in the p.adjust
function in R (Signal P-values in Supplementary Table S1).

1www.coxdocs.org
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After filtering proteins for signal quality, the variability between
the samples was taken into account to identify the significantly
regulated protein. A biological sample P-value was calculated
by making a dataframe in R, in which the rows correspond
to proteins filtered on the basis of the signal P-value and two
columns corresponding to ratio 116/114 and ratio 117/115. The
limma function lmFit was used to fit a linear model to each
gene treating the two columns as biological replicates. The
limma function ebayes was used to get P-values which were
then adjusted by the function p.adjust using the Benjamini and
Hochberg method (Biological sample P-values in Supplementary
Table S1). Finally, to apply a protein level identification filter to
the data, the FDR was calculated by the Protein FDR Validator
Node in Proteome Discoverer and considered to select only those
proteins with high confidence (1% FDR).

Integrative Data Analysis
RNA-Seq, Ribo-Seq and iTRAQ data sets were combined and
viewed in as described in the manuscript, using bespoke Perl and
R scripts and by using R interactively.
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