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The importance of the role of environment in the dissemination of antimicrobial resistant

bacteria is now well recognized. Thus, bacterial indicators to monitor the phenomena

are required. The Aeromonas genus is autochthonous in the aquatic environment

and easy to detect in any water type, such as freshwater, or wastewater. These

microorganisms are also causing infections in humans and animals (including fish).

Furthermore, as Aeromonas spp. is able to acquire antimicrobial resistance mechanisms,

it is candidate for indicator bacteria to follow antimicrobial resistance dissemination in

aquatic environments. Unfortunately, to date, interpretation criteria for Aeromonas spp.

for antimicrobial susceptibility tests are scarce in the literature. No epidemiological cut-off

values for Aeromonas are currently available at EUCAST to interpret Minimum Inhibitory

Concentrations (MIC). The only interpretation criteria available are clinical breakpoints

from CLSI that are adapted from Enterobacteriaceae. Based on the results of MIC

distributions obtained for a collection of environmental isolates of Aeromonas, this

study aimed at proposing tentative epidemiological cut-off values (COWT) for Aeromonas

spp. assessing whether the genus is an acceptable level of definition. Thus, 233

isolates collected from 16 rivers were identified at species level using Maldi-Tof (Bruker).

Eleven different species were identified, the most abundant were A. bestiarum (n =

54), A. salmonicida (n = 45), A. sobria (n = 41), and A. eucrenophila (n = 37).

96-well micro-plates containing different concentrations of 15 antimicrobials, namely

cefotaxime, ceftazidime, chloramphenicol, colistin, enrofloxacin, erythromycin, florfenicol,

flumequine, gentamicin, nalidixic acid, oxolinic acid, streptomycin, temocillin, tetracycline,

and trimethoprim-sulfamethoxazole, were prepared. The broth micro-dilution method

was used to determine the antimicrobial susceptibility of each isolate. The estimation
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of COWT values was satisfactory obtained at genus level for all antimicrobials except

cefotaxime and erythromycin. This first step is an invitation for other research teams to

increase the amount of antimicrobial resistance data collected. Then, robustness of our

proposed provisional generic epidemiological cut-off values could be assessed by testing

antimicrobial susceptibility of various Aeromonas collections.

Keywords: Aeromonas spp., epidemiological cut-off, freshwater, ECOFFinder, normalized resistance

interpretation method, antimicrobial resistance, minimum inhibitory concentration

INTRODUCTION

Antimicrobial agents have revolutionized medicine in many
respects, but their use has been accompanied by a rapid
emergence of resistant strains, resulting now in a global health
issue. Shared use of antibiotics in both Humans and animals is
a growing public health concern. Human and animal infectious
diseases are so closely interlinked in a common environment
that the One World - One Medicine - One Health concept
fully applies to tackle the growing issue of antibiotic resistance.
People and animals are connected to each other through the
environment (including air, water, soil...). Aquatic environments
may provide an ideal setting for acquisition and dissemination
of antibiotic resistance: (i) they are frequently impacted by
anthropogenic activities (wastewater, runoff, aquatic farms)
(Marti et al., 2014), (ii) they contain an autochthonous bacterial
microbiota which harbors antimicrobial resistance associated
genes, (iii) they allow the mix of bacteria from different origins
(human, livestock...) (Rizzo et al., 2013), and (iv) they may
contain antimicrobials or biocides which may select resistant
bacteria.

Aeromonas is an autochthonous bacteria of aquatic
environment, which can be isolated from virtually any water
source including freshwater (Goñi-Urriza et al., 2000), estuarine
environments (Silva et al., 2014), drinking waters (Pablos
et al., 2009), wastewaters and sewage (Imziln et al., 1996). This
genus is a major causative agent of infections in fish (Austin,
2015), indeed an increasing range of Aeromonas, including A.
allosaccharophila, A. bestiarum, A. caviae, A. hydrophila, A.
jandaei, A. salmonicida, A. schubertii, A. sobria biovar sobria,
and A. veronii biovar sobria, have become associated with disease
of predominantly freshwater fish in most countries (Figueras and
Baez-Higalgo, 2015). Among them, A. hydrophila, A. caviae, and
A. veronii have been associated with human diarrheal diseases
and wound infections (Janda and Abbott, 2010; Shin et al., 2015).
Natural transformation is a general property of Aeromonas
environmental isolates (Huddleston et al., 2013). Moreover,
integrons, and other genetic elements are frequently detected
in Aeromonas, in respect with these properties, Aeromonas
spp. has been studied as an indicator of the dissemination
of antimicrobial resistance in water (Usui et al., 2016; Varela
et al., 2016) or in fish (Naviner et al., 2006, 2011) excepted for
ampicillin, amoxicillin-clavulanate and cefazolin which is an
intrinsic resistance for Aeromonas (CLSI, 2015). Monitoring
Aeromonas susceptibilities would be much more relevant if
standard interpretative criteria, internationally agreed, are
applied to the generated data.

To study the antimicrobial susceptibility, clinicians
and epidemiologists/ecologists/microbiologists have two
totally different approaches, clinicians focus on the tryptic
microorganism/antibiotic/host and others on the pair
microorganism/antibiotic. Clinicians need to choose the
right treatment in order to have the best chance to achieve the
complete recovery of their patient and avoid development of
antimicrobial resistance. In order to predict the outcome of the
treatment, they need to use so called “Clinical breakpoints.”
Clinical breakpoints allow them to interpret an in vitro measure
or estimation of the minimum inhibitory concentration (MIC),
to categorize their result as Susceptible/Intermediate/Resistant,
meaning high likelihood of therapeutic success/uncertain
therapeutic effect/ high likelihood of therapeutic failure.

Epidemiologists and microbiologists are mainly interested in
evolution or emergence of bacterial populations displaying
resistant traits, regardless of any therapeutic outcome.
Epidemiological cut-off values allow them to interpret an in vitro
measure or estimation of the MIC taking into account only the
pair microorganism/antibiotic to categorize microorganisms as
wild type or non-wild type, meaning for absence or presence of
any acquired and mutational resistance mechanism to the drug
in question. These interpretive criteria, called ECVs and ECOFFs
by CLSI and EUCAST respectively, are based on data derived
from diverse laboratories and represent the upper limit of the
distribution of MIC data of fully susceptible (wild type) strains.

For Aeromonas, ECVs are available but only regarding
the species A. salmonicida and for florfenicol, ormethoprim-
sulfadimethoxine, oxytetracycline and oxolinic acid either MICs
or for Inhibition Zone Diameter (IZD) obtained by disk
diffusion and for gentamicin, erythromycin, and trimethroprim-
sulfamethoxazole (only IZD) (VET03/VET04-S2) (CLSI, 2014b).

If antibiotic susceptibility of clinical isolates of Aeromonas
has been extensively studied, less is known about environmental
strains and particularly those from freshwater not directly
impacted by wastewater input.

The aim of our study was to determine MICs of 15
antimicrobial agents for a collection of Aeromonas isolates from
freshwater autochthonous flora. From these data, we propose
a first set of presumptive interpretative criteria called COWT

(Smith et al., 2016) for Aeromonas spp.

MATERIALS AND METHODS

Bacterial Isolates
During 2014, 16 rivers located in the west part of France
were sampled. Fourteen rivers were sampled once in winter
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(February/March) and once in summer (June/July) and two
were sampled thrice in winter and thrice in summer. Each
water sample was duplicated, and three volumes of each were
analyzed. 10 and 1 mL were filtered onto 0.45 µm cellulose
ester membranes (Millipore, Watford, UK), then filters were
transferred onto glutamate starch phenol-red agar (GSP–Merck)
and 0.1 mL was streaked onto GSP agar. The petri dishes were
incubated at 22 ± 1◦C for 48 h. Yellow colonies on GSP were
considered as presumptive Aeromonas. Ten colonies per sample

were purified on CHROMagar
TM

Orientation. The identification
of isolates was confirmed at the genus level by PCR (Khan
et al., 2009) and identification at the species level was done by
Maldi-Tof (Microflex R©Bruker V4.0.0.1_4613-5627). Up to three
Aeromonas isolates per water sample were included in this study
and stored at−20◦C in peptone water with 20% glycerol.

Determination of MICs
The broth micro-dilution method (CLSI, 2006) (VET04-A)
was used to determine the MICs of 15 antimicrobial agents
for Aeromonas isolates. A stock solution of each antimicrobial
agent at 200X concentration was prepared with the solvent
recommended by CLSI (2016) (VET04-A) and aliquots were
stored at −70◦C. Solutions of antimicrobial were diluted 1:100
on the day of testing. 96-well microplates (tissue culture plate,
96 well flat bottom with low evaporation led, Corning) were
used. One hundred microliters of the antimicrobial solution
were added to the first column of the microplate, and 50 µL
of sterile water were added into each well of the microplate
(excepted those of the first column). Serial two-fold dilutions
of antimicrobial solution were performed by transferring 50
µL from column 1 to column 2 and so on up to column
12, to obtain final concentrations of cefotaxime (0.031–64
mg/L), ceftazidime (0.031–64mg/L), chloramphenicol (0.062–
64mg/L), colistin (0.025–51.2mg/L), enrofloxacin (0.008–16
mg/L), erythromycin (0.031–64mg/L), florfenicol (0.062–
128mg/L), flumequine (0.008–16mg/L), gentamicin
(0.062–64mg/L), nalidixic acid (0.062–128 mg/L), oxolinic
acid (0.008–16mg/L), streptomycin (0.125–256mg/L),
temocillin (0.125–256mg/L), tetracycline (0.062–128mg/L)
and trimethoprim-sulfamethoxazole (0.031/0.589–8/152mg/L).
In this study, the five antimicrobial agents labeled in French
aquaculture (flumequine, oxolinic acid, trimethoprim-
sulfamethoxazole, tetracycline, and florfenicol), and other main
antimicrobial agents usually used to monitor the antimicrobial
resistance of gram negative bacteria were tested. In addition,
temocillin was used to evidence carbapenemase production
(Woodford et al., 2014).

The day before the MIC determination assay, colonies of
Aeromonas were inoculated onto Mueller Hinton (MH) agar
and incubated at 22 ± 1◦C for 24 h. 0.5 McFarland bacterial
suspensions, prepared in physiological water, were diluted 1:100
in cation-adjusted MH broth, in order to reach the final
concentration of 5 × 105 CFU/mL. Fifty microliters of the
suspension were added to each well of the microplate. Two
wells were used as positive controls (wells with only bacterial
suspension) and two as negative controls (wells with only sterile

cation-adjusted MH broth used to prepare the inoculum). The
microplates were incubated at 22± 1C for 24 h± 2 h.

Escherichia coli ATCC 25922 and A. salmonicida subsp
salmonicida ATCC 33658 were used as controls, and incubated
respectively at 35 ± 1◦C and 22 ± 1◦C. For all the isolates of
Aeromonas tested, the density of the inoculum was controlled by
inoculation of MH agar with 10 µL of the suspension from the
positive control well before incubation of the microplate.

MIC Analysis and Provisional
Epidemiological Cut-Off Values (COWT)
Determination
From the distribution of MICs values obtained, MIC50, MIC90,
and COWT were calculated. The abbreviation COWT will be used
to refer to these results as the values are proposals based on this
isolate collection. The abbreviations ECV and ECOFF will not
be used as they refer to consensus-based epidemiological cut-off
values from CLSI and EUCAST, respectively.

Provisional COWT values were statistically determined
according to two methods, one proposed by Turnidge et al.
and second one by Kronvall (Turnidge et al., 2006; Kronvall,
2010) which will be referred to later on as “Turnidge method”
or “Kronvall method.” Fully automated and freely available
Excel spreadsheet calculators to apply the normalized resistance
interpretation (NRI) method (Kronvall, 2010) [available at http://
www.bioscand.se/nri/ used with permission from the patent
holder, Bioscand AB, TÄBY, Sweden (European patent No
1383913, US Patent No. 7,465,559)] and ECOFFinder MS
(available at http://clsi.org/standards/micro/ecoffinder/) were
used. Following their author’s recommendation, COWT were
computed for 97.7 and 99% of the population level inclusion in
the wild type population, respectively. Numbers and percentages
of non-wild type isolates were calculated afterwards.

Calculations were performed for each antimicrobial, at genus
level on the whole dataset and at species level, when at least 30
isolates from the same species were encountered in the collection
(CLSI Report cited by Smith et al., 2013).

RESULTS

Species Diversity
233 isolates of Aeromonas spp. were collected from the 16
rivers (Figure 1). Aeromonas spp. was detected in all the 16
sampled rivers, in winter and in summer. In four rivers, less than
six isolates were included due to the non-confirmation of the
presumptive identification Aeromonas (data not shown). Eleven
species were detected and two isolates could not be identified at
the species level. A. bestiarum (n = 54; 23.1%), A. salmonicida
(n = 45; 19.3%), A. sobria, (n = 41; 17.6%), A. eucrenophila (n
= 37; 15.9%), and A. veronii (n = 17; 7.3%) were the five most
abundant species and they accounted for 83.3% of the 233 isolates
of Aeromonas included in this study. The frequency of species
isolation did not differ between summer and winter (Wilcoxon
test p = 0.9). Pooling winter and summer samples from the
same river together, at least four different species per river were
detected.
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FIGURE 1 | Diversity of Aeromonas species isolated from different freshwater sampling points (France, 16 rivers). R: river. *Number of isolates of this

species. **Number of rivers where the species was detected at least one time. #Other species correspond to: 4 A. popoffii, 3 A. caviae, 2: A. media, 2 A. spp and 1

A. hydrophila; and were detected as follow: R1 1 A. popoffii; R2 1 A. spp; R3 1 A. media; R6 1 A. spp and 2 A. caviae; R7 1 A. popoffii, 1 A. hydrophila, and 1 A.

caviae; R14: 1 A. media; R15: 2 A. popoffii.

TABLE 1 | Distribution of MICs (mg/L) in 233 isolates of Aeromonas spp. and interpretive criteria.

White fields represent the range of dilutions tested. MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration. MIC values greater

than the highest concentration tested are presented as one dilution step above the test range.

Red, blue and dotted vertical lines indicate COWT calculated applying Kronvall method, COWT calculated with Turnidge method (in case of agreement purple lines are therefore

represented) and clinical breakpoint proposed by CLSI, respectively for Aeromonas spp. No COWT was calculated for cefotaxime as the mode was out of the range.

HR (%): number (percentage) of isolates for which the MIC value was not in the range test, ie value below and above the range. So in several cases, number of isolates in the raw of the

lower concentration included isolates with MIC below the range.

NWT (%): number (percentage) of isolates of non-wild type using COWT values resulting from Kronvall/Turnidge method respectively.

a: no COWT was calculated.

Antimicrobial Susceptibility
For each MIC determination assay, the results obtained
for the reference strains and the density of the inoculum
complied with CLSI recommendations (data not shown) (CLSI,
2006). Distribution of the MICs of 15 antimicrobials and the
corresponding MIC50 and MIC90 are displayed in Table 1. MIC
values below the tested ranges were observed for 12 out of the 15
antimicrobial agents. For six of them (florfenicol, trimethoprim-
sulfamethoxazole, chloramphenicol, ceftazidime, streptomycin,
and temocillin), less than 5% of the MIC values were concerned.
The most important proportions of isolates displaying MIC

below the tested range were observed for the quinolone class
(oxolinic acid (n = 87; 37.3%), nalidixic acid (n = 75; 32.3%),
enrofloxacin (n = 39; 16.7%) and flumequine (n = 12, 5.1%),
followed by cefotaxime (n= 48; 20.6%) and tetracycline (n= 15;
6.4%).

On the opposite, MIC values above the tested ranges
were observed for 44 isolates and six antimicrobial agents:
cefotaxime, erythromycin, trimethoprim-sulfamethoxazole,
nalidixic acid, flumequine, and colistin. Except for
cefotaxime, the mode was always included in the
range.
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For gentamicin, the MIC50 and MIC90 values were the
same: 1 mg/L. For seven out of the 15 tested antimicrobials
(tetracycline, cefotaxime, nalidixic acid, oxolinic acid,
flumequine, enrofloxacin and colistin), differences between
MIC50 and MIC 90 were at least three dilutions.

MIC50 values calculated for Aeromonas spp. (MIC
genus
50 ) (n

= 233 isolates; 11 different species) were the same, within one
dilution step, as those calculated for the four most abundant
species (Table 2). Cefotaxime was the unique exception: MIC50

of the 41 isolates ofA. sobriawas smaller than theMIC
genus
50 , 0.031

mg/L, and 0.125 mg/L, respectively.
For the phenicols class (chloramphenicol and florfenicol),

gentamicin and temocillin, the MIC
genus
90 and MIC90 of the four

most abundant species values were not significantly different,
with a maximum of one dilution step variation.

COWT were calculated for 14 antimicrobial agents for the
complete Aeromonas spp. dataset (Table 1). For all tested
antimicrobials, MIC standard deviation never exceeded 1.2
log2 µg/ml, the limit value implemented in Kronvall method
spreadsheet (Kronvall, 2010). No value was computed for
cefotaxime due to the truncated distribution of isolates
with a high number of strains out of the tested dilution
range (Table 1). Similar COWT values were obtained by
Kronvall and Turnidge methods applied for eight antimicrobials
(61.5%). For the cases in which values were different, values
obtained by the Turnidge method were consistently lower
than the Kronvall method result by one dilution step.
Percentages of non-wild type strains ranged from 0.4 to 27.5%,
colistin, quinolone compounds, and tetracycline displaying
the highest percentages. Excluding cefotaxime, 107 strains
(45.9%) could be considered as wild type (WT) for all
tested antimicrobials. The second most frequent phenotype,
reduced susceptibility to colistin only, was represented by 47
strains (20.2%). Remaining isolates were distributed among
46 different combinations of non-wild type (NWT) and
WT to the different antimicrobials (1 to 10 isolates per
category).

Tentative species-specific COWT values (Table 2) could
be computed by at least one statistical approach for all
combinations excepted for cefotaxime. The values obtained
by Turnidge or Kronvall methods were within one dilution
step for a given pair antimicrobial-Aeromonas species, except
for erythromycin. In the frame of one of the two methods,
Aeromonas spp. and species-specific COWT were similar or
within one dilution step for most of the species-antimicrobial
combinations. Finally, combining all computed values obtained
from both methods, for each antimicrobial tested except
erythromycin, COWT ranges are at most three dilution
step wide.

DISCUSSION

The advantage of reporting MIC distributions is to allow
comparison of studies over a long period of time even if
interpretative criteria change over time (Schwarz et al.,
2010), provided that the MIC determination methods
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are comparable. The ability to follow antimicrobial
susceptibility trend over a long period of time is crucial
to monitor antimicrobial resistance dissemination in the
environment.

MIC distributions appeared to be bimodal for some agents:
two clearly distinct populations were identified for oxolinic acid,
tetracycline, and colistin. From these distributions, calculated
MIC50 and MIC90 values were compared to previously published
ones, even though laboratory methods were slightly different.
Gentamicin MIC50 and MIC90, calculated in this study (1 mg/L),
were equivalent to those obtained by Kämpfer et al. (1999) on
a collection of 217 Aeromonas genomic species from various
origins (1 and 2 mg/L) (Kämpfer et al., 1999), by Goñi-Urriza
et al. (2000), on a collection of 138 Aeromonas spp. isolated
from freshwater (1 and 2 mg/L) and by Lamy et al. (2012) on a
collection of 146 isolates from clinical and environmental origins
(0.5 and 1 mg/L) (Kämpfer et al., 1999; Goñi-Urriza et al., 2000;
Lamy et al., 2012). For chloramphenicol, MIC50 and MIC90 were
0.5 mg/L and 1 mg/L, respectively; same as Kampfer et al. and
very similar to Goñi et al. results, 1mg/L and 2mg/L, respectively.
Here, MIC50 for trimethoprim-sulfamethoxazole (0.062/1.178
mg/L) were lower than those observed in the three latter studies
(1/19mg/L in Kämpfer et al., 0.25/4.75mg/L for Lamy et al. and
8/152mg/L for Goñi et al).

In their study, Goñi-Urriza et al. (2000), considered that
Aeromonas spp. was poorly susceptible to streptomycin due to
a MIC50 value of 16 mg/L; MIC

genus
50 here was lower (2 mg/L). A

MIC90 value of 16 mg/L was observed for the 41 studied isolates
of A. sobria. Isolates here seemed to be more susceptible to
streptomycin. Similarly, MIC50 for tetracycline was lower in the
present study (0.125 mg/L vs. 0.5 mg/L). For cefotaxime, MIC50

was very similar (<0.1 mg/L vs. 0.125 mg/L). For colistin, MIC90

here was higher with a value of 52 mg/L vs. 2 mg/L which could
be linked to the species composition of the collection. The MIC90

values for A. bestiarum, A. salmonicida, and A. eucrenophila were
52 mg/L although MIC90 for A. sobria was 3.2 mg/L.

Two types of thresholds are available: “Clinical breakpoints”
to estimate the odds of therapeutic success to treat infections
and “epidemiological cut-off values” to recognize any emerging
resistance mechanism in the bacterial population studied. To
delineate WT from NWT Aeromonas isolates, epidemiological
cut-off values are needed.

In documentM45-3rd Edition fromCLSI, clinical breakpoints
for 19 antimicrobial agents are proposed for Aeromonas spp.
(CLSI, 2015). Aeromonas spp. includes members of Aeromonas
caviae complex, Aeromonas hydrophila complex, and Aeromonas
veronii complex. A footnote in the document mentions that most
of the published data on susceptibility testing are limited to
these three Aeromonas complexes. Moreover, the interpretative
criteria are adapted from those for Enterobacteriaceae. To the
best of our knowledge, all published studies on environmental
sourced Aeromonas susceptibility tests, whatever their origin was
freshwater (Rhodes and Kator, 1994; Imziln, 2001), wastewater
(Imziln et al., 1996; Igbinosa and Okoh, 2012; Khor et al.,
2015; Kim et al., 2015), aquaculture plants (Penders and
Stobberingh, 2008), drinking water (Figueira et al., 2011), used
these breakpoints. So, information gathered in those studies

might document the hazard represented by these isolates in the
context of human infections, but does not fully enquire about the
issue of environmental antimicrobial resistance dissemination. In
this specific environmental study, focusing on dissemination of
antimicrobial resistance in an ecosystem, we foundmore relevant
to consider epidemiological cut-off values as we only focus on the
pair microorganism/antibiotic and no host or treatment option is
involved.

Numerous methods were proposed to determine COWT, from
“eye-ball” determination to statistically oriented ones (Turnidge
et al., 2006; Turnidge and Paterson, 2007; Kronvall, 2010;
Hombach et al., 2014; Jaspers et al., 2014). These methods
were applied in the present study according to their authors’
recommendation, computing COWT for 99 and 97.7% of the
population level inclusion in the wild type population. Results
from these methods were in accordance, with frequent full
agreement or one dilution step difference. Values could also
be computed using Jaspers method (Jaspers et al., 2014-data
not shown) for three antimicrobials (colistin, erythromycin, and
temocillin) and were in full agreement with those obtained with
other methods. Erythromycin COWT here computed (32 mg/L)
should be interpreted cautiously considering the fact thatMICs of
the supposed WT population are distributed over eight dilution
steps instead of three to five usually.

Few epidemiological cut-off values for Aeromonas could
be found in the literature. On The European Committee on
Antimicrobial Susceptibility Testing website (www.eucast.org),
MIC distributions are available for Aeromonas spp., but
no ECOFFs have been proposed due to the low number
of observations. In the frame of a simulation study to
determine robustness of COWT, Smith and Kronvall published
computed values for Aeromonas spp. and A. salmonicida,
for oxytetracycline, oxolinic acid and florfenicol (Smith and
Kronvall, 2015). The same value of 2 mg/L was proposed for
florfenicol by both studies. For oxolinic acid, the value computed
by Smith and Kronvall (2015) was 0.06 mg/L for Aeromonas spp.
which is in accordance with our value (0.031 mg/L) considering
the double dilution agreed variation for broth micro-dilution
method (Smith and Kronvall, 2015). For A. salmonicida the value
computed by Smith and Kronvall on a different dataset was 0.125
mg/L which is similar to the interpretive value proposed by CLSI
(2014a). The CLSI ECVs for A. salmonicida were established
based on visual inspection of MIC distributions for 217 isolates
(Miller and Reimschuessel, 2006). In addition to oxolinic acid
CLSI interpretive values were published for florfenicol (4 mg/L)
oxytetracycline and ormetoprim-sulfadimethoxine (CLSI, 2015).

COWT were estimated for Aeromonas spp. and for the four
main species encountered in the collection, in order to check for
any species dependency upon the results. At species level, the
available number of isolates was below the CLSI recommendation
of 100 isolates (Smith and Kronvall, 2015) but close to the
recommended minimal number of 30 WT isolates to form a
Gaussian distribution as mentioned by Smith et al. (2013) and
confirmed by Smith and Kronvall (2015). Nevertheless, some
of the MICs distributions did not allow COWT calculation and
values should be considered cautiously and unprecise (Smith
et al., 2013) due to the low isolate number within a species.
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Species level values were mainly equal to or in the range of one
dilution step around the COWT values determined forAeromonas
spp. (except 3/104 values: A. bestiarum and erythromycin COWT

computed by Kronvall method, A. bestiarum and colistin COWT

computed by Kronvall method, A. sobria, and enrofloxacin
COWT computed by Turnidge method). These results do not
preclude usage of COWT determined at the genus rather than
the species level. The definition of COWT at the genus level
has previously been considered (Miller and Reimschuessel, 2006;
Smith et al., 2013) and applied (Miller and Reimschuessel, 2006;
Smith et al., 2012; Smith and Kronvall, 2015), but contravenes
to the generic principles established to set-up COWT values
(Kronvall, 2010). Smith et al. (2012) addressed the question of
the validity of Aeromonas genus defined COWT for antibiotic
disk diffusion data, through the exploration of standard deviation
of calculated normalized distribution (Smith et al., 2012). We
addressed the same question comparing COWT values obtained
at the genus and specific level, on a limited number ofAeromonas
species. As concluded by Smith et al. (2012) for some agents, our
results provide no reason why a single set of interpretative values
could not be defined for application to all Aeromonas species
included in our study. By projecting into daily business of a
routine laboratory, identification of the genus Aeromonas is easy
and reliable, even phenotypic methods could be used (Lamy et al.,
2010) and several PCR were described, whereas identification
at the species level requires either sequencing or Maldi-Tof
methods. Moreover this genus is abundant and detectable easily
through selective media. Thus, establishing COWT at genus level
when possible seems more relevant to be widely used in future
epidemiological studies. As emphasized by Smith et al. (2013) the
workload would be greatly reduced defining interpretive criteria
at the genus level.

Values obtained in this study are putative ones and should
not be considered as official interpretative criteria. Our values
are based on one laboratory only whereas multiple and diverse
sources and a large number of isolates are recommended to offer
more precise estimates (Smith et al., 2013) to reassess relevant
generic COWTs.

Recently, Aeromonas spp. was proposed as a potential
indicator of antimicrobial susceptibility for aquatic environment
by several authors (Usui et al., 2016; Varela et al., 2016).
Indeed, Aeromonas genus is ubiquitous and its abundance in
aquatic environment allowed its detection all along the year.
Identification methods of the Aeromonas genus are reliable and
costless, which is not the case at species level (Lamy et al., 2010).
Yet large environmental studies on such a complex matrix as

water enforce the need of easy and cheap tools in order to analyze
a large amount of samples. Indeed a large amount of samples
is the only way to apprehend the complexity and the ecological
condition variability of the water matrix. Harmonization of
susceptibility tests at Aeromonas genus level would probably
allow collecting multiple observations to follow antimicrobial
resistance traits in the aquatic environment.

CONCLUSION

Thus, as a first step, it appears to be relevant to determine
Aeromonas spp. COWT values. Further experiments might allow
refining these values.

If Aeromonas spp. is used as an indicator of antimicrobial
susceptibility for aquatic environment, it is absolutely essential
to set epidemiological cut-off values; but this is far from being
enough to be able to share and compare data. Indeed, if methods
for assessing fecal contamination of water are standardized,
it is absolutely not the case for Aeromonas spp. detection.
Harmonization of the methods for detection, identification and
characterization of Aeromonas is urgently needed.
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