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Gut microbiota is a collection of microbial organisms that naturally exist within the gastrointestinal
(GI) tract. It is clear that the gut microbiota is involved in host physiological development, defense
against pathogens and diseases. Thus, gut microbiota is regarded as a hidden organ composed of
other kinds (Bocci, 1992). A feature of the gut microbiota is that the compositional microbes are
host species-specific. For a given host, a defined core microbes exist which distinguish one host
from another (Kostic et al., 2013). For example, Hawaiian bobtail squid selectively acquires Vibrio.
fischeri (V. fischeri) from environment and maintains them in its light organ. This symbiont is
so selective that other V. fischeri strains, such as a fish-associated V. fischeri strain are not able
to colonize the squid (Mandel et al., 2009; Kostic et al., 2013). Zebrafish gut is predominated by
members of the γ-Proteobacteria and Fusobacteria classes (Kostic et al., 2013). Wild mouse gut
is primarily composed of Bacteroidetes, Firmicutes, Tenericutes, and Proteobacteria (Hoy et al.,
2015; Weldon et al., 2015; Xiao et al., 2015). Interestingly, transfer of the conventional zebrafish
microbe to germ-free (GF) mice did not result in a zebrafish-like gut microbiota in the recipient
mice; vice versa, conventional mouse gut microbe-transplanted GF zebrafish did not resemble the
gut microbes of mice. Rather, the gut microbiota of both recipients after transplantation resembled
the microbiota of their conventional species. Thus, the host gut predefined its microbiota (Rawls
et al., 2006). While host-microbe interaction is a two-way crosstalk (Celluzzi and Masotti, 2016),
in this opinion article, I wish to discuss intrinsic factors that contribute to the development of gut
microbiota. Namely, where the microbes come from and how the host selects them.

THE SOURCE OF MICROBIOTA

Studies of infants prior to delivery and shortly after birth showed that meconiummicrobiota shares
features with the microbiota in the placenta, amniotic fluid, and colostrum, suggesting a route
by which the fetus obtain microbiota (Collado et al., 2016). At the age of 3–4 days, the infant
gut microbiota composition resembles that detected in colostrum. Thus, a stepwise microbial
gut colonization process may be initiated prenatally by a distinct microbiota in the placenta and
amniotic fluid (Collado et al., 2016).

The microbiota link between the mother and offspring is continued at and after birth by
microbes present in birth canal, maternal feces, and skin during delivery; as well as postnatal
breast milk, skin contact, and environmental exposure. Vaginally delivered infants harbor microbes
resembling their mother’s vaginal microbiota, dominated by Lactobacillus, Prevotella, or Sneathia
spp., while cesarean-section infants have microbial feature similar to that of their mother’s skin
and hospital environment, dominated by Staphylococcus, Corynebacterium, and Propionibacterium
spp (Dominguez-Bello et al., 2010; Kostic et al., 2013). Feeding mode is another strong factor
that affects infant gut microbiota development. A major bacterial source for the infant gut
is the maternal milk. Two main bacteria streptococci and staphylococci in the breast milk
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(Heikkilä and Saris, 2003; Mandel et al., 2009; Kostic et al.,
2013) are among the earliest colonizers of the infant gut (Palmer
et al., 2007; Kostic et al., 2013; Avershina et al., 2014). After
birth, as time increases and the host keeps exposing to different
microbes, the intestinal microbiota transits rapidly from less
diverse with a relative dominance of the phyla Proteobacteria and
Actinobacteria to more diverse with dominance of Firmicutes and
Bacteroidetes (Bäckhed, 2011; Hoy et al., 2015; Weldon et al.,
2015; Xiao et al., 2015). By 3 years of age, the diversity and
composition of gut microbiota resemble those of adult human
and become relatively stable (Rawls et al., 2006; Yatsunenko et al.,
2012; Faith et al., 2013).

The availability of microbes determines which microbes
have the chance to colonize the gut. Environmental impacts
(including antibiotic use, geographical location, food, and life
style, etc.) on the microbiota seem to be cumulative across
generations (Rodríguez et al., 2015; Collado et al., 2016). The
diversity of microbiota in the population of the US and earlier
modernized countries is lower than that in the late modernized
countries (Blaser, 2016; Collado et al., 2016). Antibiotic exposures
during early life not only alter bacterial diversity but also delay
microbiota maturation (Bokulich et al., 2016).

HOST GENETIC BACKGROUND
ENDORSES THE GUT MICROBIOTA

A successful arrival of a microbe in the GI tract does not
guarantee colonization. For example, a systematic review of
evidences suggests that the use of probiotics does not change
the composition of fecal microbiota (Kristensen et al., 2016),
suggesting that the host has an intrinsic selection mechanism.

Indeed, twins microbiota studies showed that monozygotic
twin pairs had more similar microbiota as compare to dizygotic
twin pairs (Goodrich et al., 2014). Investigators found that
heritable taxa were the most stable taxa in TwinsUK dataset.
Furthermore, the relative abundances of the heritable genus
Bifidobacterium were associated with genetic variants in the
genomic locus containing the gene LCT (Goodrich et al., 2016).
A large cohort study evaluating the association between healthy
host genetic variation and the composition of microbiota found
that almost one-third of fecal bacterial taxa were heritable.
Specific SNPs were associated with the relative abundance of
specific taxa (Turpin et al., 2016). Thus collectively suggests
that the host genetic background endorses the selection of gut
microbial component.

Indeed, as discussed above, reciprocal gut microbiota
transplantation in which the gut microbiota of adult GF mice
colonized with an unfractionated gut microbiota harvested
from conventional zebrafish was compared with GF zebrafish
larvae colonized with a gut microbiota from conventional
mice. Gut microbiota of zebrafish and mice share six bacterial
divisions, although the specific bacteria within these divisions
differ. The transplanted community resembled its community
of origin in terms of the lineages present, but the relative
abundance of the lineages resembled the normal gut microbial
community composition of the recipient host. This study

clearly demonstrated that whether a bacterial species could be
potentially found in a host is determined by the chance of the host
acquires that bacteria; and the bacterial community structure, in
terms of species and abundance of a particular species, is shaped
by the host habitat (Rawls et al., 2006).

PATHWAYS IN WHICH THE HOST SHAPES
MICROBES

When microbes pass through the GI tract, an environment they
have to encounter is pH. A study of the gut microbiota in
a cohort of 1827 healthy twins identified a significantly lower
gut commensals and lower microbial diversity in proton pump
inhibitor users, suggesting that pH in the gut impacts on the gut
microbiota (Jackson et al., 2016).

Comparison of MyD88-, TLR2-, TLR4-, TLR5-, and TLR9-
deficient mice and their respective wild-type (WT) littermates
demonstrated that the impact of TLR deficiency on the gut
microbial composition is minimal under homeostatic conditions
and after recovery from antibiotic treatment (Ubeda et al., 2012),
suggesting the innate recognition of microbes is not essential
for commensals development. However, autonomous innate
antimicrobial components do affect the microbial community.
Antimicrobial peptides (AMPs) are ancient defense mechanism
found in virtually every multi-cellular organism. They help the
host to exclude a broad-spectrum of microbes. These peptides
are produced by specialized gut epithelial cells and circulating
inflammatory cells. Most prominent AMPs in the intestinal
tract are represented by defensins, cathelicidins (e.g., LL-37),
C-type lectins (such as the regenerating islet-derived protein
(REG) family) (Cash et al., 2006), ribonucleases (RNases) and
S100 proteins (e.g., calprotectin). Different AMP has different
antimicrobial activity. For example, specialized Paneth cells
in the small intestine store and secrete various antimicrobial
effectors (e.g., lysozyme, phospholipase A2 group IIA or REGIII);
but their most abundant products are the α-defensins human
defensin (HD) 5 and HD6. Both α-defensins and β-defensins
are bactericidal, with activity against Gram-negative and Gram-
positive bacteria (Bevins and Salzman, 2011; Ostaff et al., 2013). It
was reported that human gut microbes from all dominant phyla
are resistant to high levels of Cationic AMPs polymyxin B. The
investigators thus hypothesize that AMP is a mechanism that
distinguish commensals from pathogens for colonization (Cullen
et al., 2015). Host defense-related ribonuclease, such as murine
RNase angiogenin 4 has the bactericidal activity both against
Gram-negative and against Gram-positive bacteria (Bevins and
Salzman, 2011).

The adaptive immunity affects gut microbiota as an altered
microbiota was observed in immunodeficient Rag1−/− mice.
The bacterium Akkermansia muciniphila was highly enriched in
Rag1−/− mice compared with the wild type. This enrichment
was suppressed when Rag1−/− mice received bonemarrows from
wild-typemice (Zhang et al., 2014). As part of adaptive immunity,
polymeric IgA from intestinal plasma can be secreted into the
lamina propria and then transported into the gut in the form
of secretory IgA (SIgA). SIgA may shape the gut microbiota
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through twomechanisms: in one ’immune exclusion’ mechanism
it interacts with antigens including microbes and limits the
access of intestinal antigens to the blood circulation and thus
controls the intestinal microbiota. The second mechanism is
synergies between the SIgA and innate responses of the intestinal
epithelium. SIgA can limit innate responses against commensal
bacteria. Lack of SIgA results in enhanced stimulation of innate
responses in gut epithelial cells (Peterson et al., 2007; Pabst,
2012).

While the above discussed mechanism act in a negative
(punitive) selection way, recent found mechanisms arise as
positive selection on the microbiota.

Foster group proposed a positive control model, in which
a host acts in a way that promotes beneficial microbes, rather
than inhibits harmful ones. In this individual-based “selectivity
amplifier” model, epithelial secretions permeate upwards
the whole microbial community, while lumen compounds
preferentially affect cells that are soon to slough off (Schluter
and Foster, 2012). They proposed that modest amounts of
moderately selective epithelial secretions cause a complete shift
in the strains growing at the epithelial surface. Possible molecules

for such selection include epithelial-derived nutrients, such as
fucose (Schluter and Foster, 2012). They recently explored the
model to include adhesion as a key factor. They found that if the
host secretes large amount of a matrix, such as mucus, positive
selection via adhesion could be transformed into negative
selection. The mucus glycans and IgA were experimentally tested
in this model (McLoughlin et al., 2016).

An active selection mechanism observed by us, however, does
not rely on the AMPs or adaptive immune response. Others
and we found abundant of microRNAs in the animal gut lumen
and feces (Ahmed et al., 2009; Link et al., 2012; Liu et al.,
2016). We found that the microRNAs in the gut lumen were
actively generated by the host intestinal epithelia (Liu et al.,
2016). These microRNAs were able to enter bacteria and regulate
bacterial gene expression. Interestingly, such regulation can be
either up-regulating or down-regulating. We observed that this
inter-kingdom regulation was important for the establishing
of a core microbiota. Mice deficient of fecal microRNA were
not able to establish a core gut microbiota, while receiving
fecal microRNA from wild type mice was able to re-establish a
microbiota resembling that of wild type (Liu et al., 2016). The

FIGURE 1 | The development of gut microbiota. A schematic of the proposed model showing the main factors involve in the development of the core gut

microbiota. The acquirement of bacteria from different sources is the initial step. The microbes get into the gut then undergo both negative (right) and positive (left)

selections from the host. Antimicrobial activities reduce unfavorable microbes. Positive selection promotes the abundance of favorable commensals. Host genetic

background and host gene expression are important factors endorse the selection.
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detailed regulating mechanisms are yet to study. One possible
transfer mechanism is through extracellular vesicles (EV), as we
observed abundant of EV in the feces containing microRNA (Liu
et al., 2016). As a membrane surrounded cargo with informative
components (lipids, proteins, and RNAs including microRNA),
EV is an emerging mechanism bridging interkingdom crosstalk
(Celluzzi and Masotti, 2016).

SUMMARY AND FUTURE DIRECTION

Gut microbiota has been proved to be important in health and its
dysfunction has been linked to many diseases. Different diseases
have been associated with changes in different microbial species.
Current available antibiotics generally non-specifically eliminate
large spectrum of bacteria, which is a disaster for gut commensals
and public health as increasing antibiotic-resistant pathogens
emerge. Fecal microbiota transplantation (FMT) is undergoing

trial for the treatment of Clostridium difficile infection not
responding to standard therapies. However, besides lack of
specificity, the use of FMT in other diseases faces biosafety
concerns (Ianiro et al., 2014). These call for more detailed studies
on species- and gene- specific manipulation. As one side of host-
microbe crosstalk, the mechanisms of how host shapes its gut
microbiota (Figure 1) provide strategies to improve gut health.
Particularly, the active positive selection mechanisms provide
a promising species-specific strategy. However, the detailed
molecules involved in these mechanisms; how each bacterial
species can be manipulated; and how the community as a whole
can be manipulated for the wellness of health require future
study.
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