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Escherichia coli strains belonging to diverse pathotypes have increasingly been
recognized as a major public health concern. The β-lactam antibiotics have been
used successfully to treat infections caused by pathogenic E. coli. However, currently,
the utility of β-lactams is being challenged severely by a large number of hydrolytic
enzymes – the β-lactamases expressed by bacteria. The menace is further compounded
by the highly flexible genome of E. coli, and propensity of resistance dissemination
through horizontal gene transfer and clonal spread. Successful management of
infections caused by such resistant strains requires an understanding of the diversity
of β-lactamases, their unambiguous detection, and molecular mechanisms underlying
their expression and spread with regard to the most relevant information about individual
bacterial species. Thus, this review comprises first such effort in this direction for E. coli,
a bacterial species known to be associated with production of diverse classes of
β-lactamases. The review also highlights the role of commensal E. coli as a potential
but under-estimated reservoir of β-lactamases-encoding genes.
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INTRODUCTION

Since its discovery in 1885, the status of Escherichia coli has evolved truly. While the commensal
strains for the most part have been shown to lack specialized virulence determinants and be
beneficial to their host, pathogenic E. coli have been reported to cause a spectrum of diseases
(Kaper et al., 2004; Baker, 2015). Among the intestinal pathogenic E. coli, the enterotoxigenic
E. coli (ETEC) and the enteropathogenic E. coli (EPEC) have been recognized as the most
common cause of bacterial gastroenteritis especially, in low income countries with poor sanitation
conditions (Qadri et al., 2005; Croxen et al., 2013). In the developed countries, however, diarrhea
caused by E. coli is usually observed as cases of traveler’s diarrhea (caused by ETEC strains) or
sporadic occurrences (Centers for Disease Control and Prevention, 2016). In these developed
parts of the world, the enterohemmorhagic E. coli (EHEC) represent the most important group
of intestinal pathogenic E. coli, and have been associated with severe morbidity and mortality
(Riley et al., 1983; Majowicz et al., 2014). Distinct from the commensals and intestinal pathogens,
the extraintestinal pathogenic E. coli (ExPEC) cause infections of the urinary tract, bloodstream,
cerebrospinal fluid, respiratory tract, and peritoneum. The pathology in such infections may
be observed as cholecystitis, bacteremia, cholangitis, urinary tract infection (UTI), or neonatal
meningitis. Infections caused by the ExPEC strains have been widely reported in the community
settings as well as hospitals and long-term care facilities thus, causing a pronounced burden on the
medical and economic resources across the globe (Russo and Johnson, 2003; Riley, 2014; Poolman
and Wacker, 2016).
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Different options have been suggested for treating the
infections caused by diverse pathogenic E. coli. For instance,
E. coli diarrhea is usually considered self-limiting or treated by
maintaining adequate rehydration. However, in most instances
especially cases of life threatening extraintestinal infections,
antibiotics form the mainstay of treatment. In this regard,
β-lactam antibiotics have long been used successfully (Paterson
and Bonomo, 2005; Pfeifer et al., 2010). However, concomitant
with their introduction during the early 1980s, β-lactamases
conferring resistance to third generation cephalosporins were
documented in several studies (Jacoby et al., 1988; Jarlier
et al., 1988). These primarily included the extended-spectrum
β-lactamases (ESBLs) observed either as the variants of TEM-
1, TEM-2, and SHV-1 (Philippon et al., 1989; Bradford, 2001),
or the CTX-M enzymes (Bonnet, 2004). Additional resistance to
cephamycins and carbapenems soon followed by the emergence
of the AmpC β-lactamases (Philippon et al., 2002; Jacoby, 2009)
and carbapenemases (Livermore, 2009; Kumarasamy et al., 2010;
Nordmann et al., 2011a).

Extensive information is available on detection, distribution,
classification and molecular characterization of β-lactamases
(Bradford, 2001; Philippon et al., 2002; Queenan and Bush,
2007; Jacoby, 2009; Nordmann et al., 2011a). However, much of
this information is being published from the perspective of the
enzyme per se, i.e., ‘β-lactamases’, with much less attention to
organism-specific details. A platform which succinctly provides
such details for individual bacterial species having clinical
relevance to humans is highly desirable. This would help
the modern microbiologists and clinicians to develop targeted
combat strategies and address better the public health concerns
raised by antibiotic resistant pathogens. As a first effort of its
kind in this direction, the present review focuses on what needs
to be culled out from the vast knowledge on “β-lactamases
mediating antibiotic resistance in E. coli” – what is more relevant
today. In the latter part, this review also addresses the role of
commensal E. coli as potential reservoir of β-lactamase-encoding
genes.

β-LACTAMASES OF CRITICAL
CONCERN

CTX-M Type ESBLs
Although, more than 150 different TEM- and SHV- type
ESBLs are known (http://www.lahey.org/Studies/), the CTX-M
enzymes have been recognized as the most prevalent among
Enterobacteriaceae (Bush, 2010; Cantón et al., 2012; D’Andrea
et al., 2013; Day et al., 2016). In fact, E. coli was the first
species in which the CTX-M type ESBLs were reported as
early as 1990 (Bauernfeind et al., 1990). Since then, the E. coli
strains carrying CTX-M have been isolated from both nosocomial
and community-acquired infections (Bonnet, 2004; Woodford
et al., 2004; Smet et al., 2010). More recently, the CTX-M
phenotype has also been reported in E. coli strains isolated from
healthy humans, livestock, companion animals, food products,
and sewage (Pallecchi et al., 2007; Ewers et al., 2012; Tacão
et al., 2012; Zheng et al., 2012; Franz et al., 2015), indicating the

large-scale of the reservoirs harboring and disseminating these
ESBLs.

Such global dissemination of the CTX-M type ESBLs has
primarily been attributed to the extremely mobilizable genetic
platforms which harbor blaCTX−M genes (Cantón et al., 2012),
association of these platforms with E. coli genotypes showing
clonal dissemination (Coque et al., 2008; Nicolas-Chanoine et al.,
2008; Woodford et al., 2011), and frequent co-existence of
blaCTX−M with genes conferring resistance to other classes of
antibiotics like fluoroquinolones and aminoglycosides leading to
high rates of co-selection (Cantón and Ruiz-Garbajosa, 2011;
Bajaj et al., 2015). Analysis of the genetic environments of
blaCTX−M genes has revealed that the promoter sequence present
in the upstream region significantly affects gene expression as
well as its dissemination (summarized in Table 1). The genetic
elements downstream of the genes encoding CTX-M ESBLs,
on the other hand, have been identified in most instances but
very little has been established regarding their association with
a specific type of blaCTX−M or their role in gene selection and
mobilization, if any.

In particular, the E. coli strains carrying CTX-M-14 and CTX-
M-15 ESBLs have been observed notably for their widespread
dissemination (Bonnet, 2004; Coque et al., 2008; Nicolas-
Chanoine et al., 2008). These have also been reported to
show differential demographic associations such that the strains
producing CTX-M-15 ESBLs have been mainly isolated from
patients related to the Indian subcontinent whereas, those
producing the CTX-M-14 ESBLs have been isolated from patients
related to China and the rest of the South East Asia (Hawkey and
Jones, 2009; Freeman et al., 2012; Liao et al., 2015). The E. coli
strains carrying CTX-M-14 or CTX-M-15 ESBL have also been
observed for differential susceptibilities to fluoroquinolones and
amoxicillin-clavulanic acid (Freeman et al., 2012). This infact,
should be considered as an important observation because both
these antimicrobials constitute important alternatives for the
treatment of infections caused by β-lactamase-producing strains
of E. coli.

Furthermore, it has been observed that unlike
majority of CTX-Ms which exhibit better hydrolysis of
cefotaxime (cefotaxime minimum inhibitory concentrations,
MIC ≥ 64 µg/ml) than ceftazidime (ceftazidime MIC 2–
8 µg/ml), CTX-M-15 possesses increased activity against both
these antibiotic substrates (Poirel et al., 2001; Paterson and
Bonomo, 2005). In most instances, the E. coli strains associated
with the carriage of CTX-M-15 type ESBLs have been identified
to belong to the international sequence type (ST) 131 (Coque
et al., 2008; Nicolas-Chanoine et al., 2008; Peirano et al., 2014b);
discussed in greater details with other major resistance-associated
genotypes.

AmpC β-Lactamases
The AmpC β-lactamases comprise another important group of
β-lactamases from E. coli which exhibit a hydrolytic profile
similar to the ESBLs while having an additional hydrolytic activity
toward cephamycins like cefoxitin and cefotetan. The inhibition
of AmpCs is usually caused by cloxacillin and boronic acid, but
not by the common β-lactamase inhibitors viz. clavulanic acid
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TABLE 1 | Details of the upstream regions associated with different blaCTX−M genes.

Upstream region blaCTX−M Reference

ISEcp1 Most blaCTX−Ms Poirel et al., 2005;
Cantón and Coque, 2006

Intact ISEcp1or its remnants flanked by IS26, 48 bp
upstream of CTX-M encoding gene

blaCTX−M−15 and most
genes encoding for
CTX-M-1 group

Cantón and Coque, 2006;
Eckert et al., 2006

ORF513, often associated with complex sul1-type
integron bearing a common region (CR1)

blaCTX−M−9 Sabaté et al., 2002;
García et al., 2005;
Novais et al., 2006

Phage related invertase blaCTX−M−10 Oliver et al., 2005

ISEcp1 disrupted by IS50 blaCTX−M−25 Munday et al., 2004

and tazobactam (Bradford, 2001; Jacoby, 2009; Thomson, 2010;
Helmy and Wasfi, 2014).

In E. coli, regulation of AmpC production by the
chromosomal ampC gene is distinctly characterized by the
lack of AmpR which constitutes a member of the LysR
transcriptional regulator family (Honoré et al., 1986). Therefore,
unlike most other members of the family Enterobacteriaceae,
E. coli exhibits a non-inducible AmpC phenotype (Jaurin et al.,
1981) and the wild-type strains constitutively produce low
levels of AmpC enzyme. In most cases, hyperproduction is
governed by mutations in the promoter/attenuator region that
maps between –42 to +81 positions with respect to the ampC
open reading frame (Caroff et al., 1999; Nelson and Elisha,
1999; Peter-Getzlaff et al., 2011; Haenni et al., 2014). In others,
the chromosomal AmpC hyperproduction has been reported
to be caused by the presence of >1 copy of the ampC gene,
incorporation of a stronger promoter sequence as part of an
insertion element, or acquisition of stronger promoter from
other bacterial species (Jaurin et al., 1981; Jaurin and Normark,
1983). It is important to note that irrespective of the mechanism
involved, all such strains are collectively known as ‘derepressed
mutants’ (Hanson and Sanders, 1999).

Besides hyperperproduction of the chromosomally encoded
enzyme, the presence of one or more plasmid-mediated ampC
genes has often been observed as a common, rather more
widespread mechanism of production of high levels of AmpC.
Based on the sequence similarities, six families of plasmid-
mediated AmpC β-lactamases were described by Pérez-Pérez
and Hanson (2002) as CIT, FOX, MOX, DHA, EBC, and
ACC. Among the strains of E. coli, the most commonly
recognized plasmid-mediated AmpC includes the CMY-2 type
which belongs to the CIT family and shares homology with
the chromosomally encoded AmpC from Citrobacter freundii
(Sidjabat et al., 2009; Oteo et al., 2010; Helmy and Wasfi,
2014). Single nucleotide variants of blaCMY−2 have recently been
described and have been associated with extended-spectrum
of activity and increased MICs of cefotaxime, ceftazidime,
cefepime and aztreonam (Hentschke et al., 2011; Kotsakis et al.,
2013). Another variant of CMY-2 namely, CMY-13 has been
shown to be regulated by a functional AmpR and exhibit
an inducible expression similar to the DHA enzymes but
unlike the other CMY types (Miriagou et al., 2004). Although,
naturally occurring variants have been described within other

families of plasmid-mediated AmpC, the effects of mutations
on enzyme activity were either not substantial or not studied
much.

Carbapenemases Including Metallo
β-Lactamases
Since, ESBL and AmpC producing E. coli strains are being
frequently reported worldwide, carbapenems possibly represent
the last alternative for effective treatment of life threatening
infections (Thomson, 2010; Nordmann et al., 2011a; Poirel et al.,
2016). One of the most common mechanisms of carbapenem
resistance is mediated by the production of carbapenemases
which represent β-lactamases of the most diverse hydrolytic
potential (Queenan and Bush, 2007).

Detailed biochemical and epidemiological characteristics of
each of the carbapenemase classes viz. A, B, and D have been
described in depth in the reviews by Queenan and Bush (2007)
and Nordmann et al. (2011a). Herein, it is important to note that
the most widespread and clinically significant representatives of
each class namely Klebsiella pneumoniae carbapenemases (KPC,
class A); metallo-β-lactamases (MBLs, class B); and oxacillin-
hydrolyzing metallo-β-lactamases (OXA, class D) have frequently
been reported in different E. coli strains (Urban et al., 2008;
Kumarasamy et al., 2010; Beyrouthy et al., 2013). Despite this,
it is also noteworthy that in most instances the production of
KPC and OXA carbapenemases as well as MBLs of the IMP
and VIM type has been associated with strains of K. pneumoniae
and Acinitobacter baumannii (Afzal-Shah et al., 2001; Nordmann
et al., 2009, 2011a; Pournaras et al., 2010; Bartolini et al.,
2014).

Strains of E. coli, nevertheless have been notorious for
the production of a metallo-β-lactamase known as the New
Delhi metallo-β-lactamase (NDM-1) (Kumarasamy et al., 2010;
Nordmann et al., 2011b). High prevalence of the E. coli carrying
NDM-1 has been observed in the Indian subcontinent where
the organism per se represents one of the most common
causes of diarrheal and other community-acquired diseases. The
resultant high possibility of environmental contamination and
spread of the blaNDM−1 gene has been supported by the trans-
continental spread of NDM-1 producing strains from India
and Pakistan to the UK (Kumarasamy et al., 2010), Australia
(Poirel et al., 2010), and US (Peirano et al., 2011). Frequent
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co-existence of the blaNDM−1 gene on plasmids carrying other
resistance genetic elements (Moellering, 2010; Nordmann et al.,
2011b) is also suggested to contribute to the selection and
worldwide dissemination of multi-drug resistance phenotype,
making E. coli strains carrying blaNDM−1 a global public health
concern.

Other Notable β-Lactamases
The category primarily includes inhibitor-resistant and complex
mutant β-lactamase variants of the TEM and SHV types. The
strains of E. coli have been most commonly associated with these
variants (Robin et al., 2011), which have been seen to evolve by
both in vitro and in vivo antibiotic selective pressures (Barlow and
Hall, 2002; Jacquier et al., 2013). While several mechanisms of
resistance to β-lactam-β-lactamase inhibitor combinations have
been suggested in E. coli, production of inhibitor-resistant TEMs
(IRTs) or OXA-1 enzymes has been reported to predominate as
the mechanism conferring resistance to amoxicillin-clavulanic
acid – a widely used antibiotic for the treatment of E. coli
infections. Such amoxicillin-clavulanic acid resistant strains of
E. coli have been observed to be more clonal, but with lesser
content of virulence genes than the susceptible strains (Oteo
et al., 2014). Similar, albeit not yet completely characterized
mechanisms have been suggested to provide resistance to another
commonly used antibiotic-inhibitor combination viz. ampicillin-
sulbactam (Cantón et al., 2008).

Besides the IRTs, an S130G inhibitor-resistant mutation
associated with the SHV enzyme in the E. coli clinical
isolate was reported by Prinarakis et al. (1997) as early as.
Since then, however, the E. coli strains carrying inhibitor-
resistant SHV have not been very frequent in the clinics.
In 2000, M. G. Page described another mutation at Y105
to confer resistance to clavulanic acid. However, no clinical
strain harboring this mutation has been reported so far. The
main reason behind the absence of Y105 mutation in clinical
strains has been suggested as the significance of position 105
in both substrate and inhibitor interaction (Li et al., 2012).
Thus, inhibitors targeting residue 105 may be protected because
inhibitor-resistant mutation also tends to decrease the overall
efficiency of enzyme catalysis. This position has therefore, been
suggested to be an important target for the design of newer
inhibitors of broad-spectrum β-lactamases. Other positions in
the SHV enzymes viz. N276, K234, and R244 have also been
shown to confer reduced susceptibility to β-lactam-clavulanic
acid combinations (Thomson et al., 2007; Manageiro et al.,
2010; Winkler et al., 2015). The position R244, however, has
interestingly been shown to have differential effects on the
different β-lactamase inhibitors – clavulanic acid and sulbactam
(Thomson et al., 2007).

It is noteworthy that the CTX-M type ESBL variants showing
reduced susceptibilities to β-lactam-β-lactamase inhibitor
combinations have not yet been observed. This could most
likely be attributed to the limited exposure of mutant strains
to such combinations or rather the recommended use of
carbapenems as the treatment of choice (Pitout, 2010; Ortega
et al., 2012); or limitations in detection procedures leading to
confusions with other mechanisms such as the expression of

IRTs or complex mutant TEMs (CMTs) (Ripoll et al., 2014).
Nevertheless, an increase in the use of antibiotic-inhibitor
combinations in the clinical settings is quite well-expected to
result in the emergence and dissemination of strains carrying
the inhibitor-resistant CTX-Ms. Infact, experiments using
a collection of hypermutagenic E. coli strain GB20 carrying
different blaCTX−M genes have shown that such possibilities
may be higher for the variants belonging to the CTX-M-1
group (Ripoll et al., 2011). Not to forget that the latter is already
associated with the most widespread variants of the CMX-M
ESBLs.

DETECTION OF β-LACTAMASES

Phenotypic Detection
(a) Conventional Laboratory Methodologies
The standardized methodologies for phenotypic antibiotic
susceptibility testing and breakpoints for interpretation of
results are available primarily from Clinical and Laboratories
Standards Institute (CLSI) and European Committee on
Antimicrobial Susceptibility Testing (EUCAST). Although,
both suggest a similar basic protocol for preliminary testing,
variations are often observed in the suggested breakpoints
(Clinical and Laboratory Standards Institute [CLSI], 2014a,b,c
Document M02-A11, M07-A9, M100-24; European Committee
on Antimicrobial Susceptibility Testing [EUCAST], 2014
Version 4.0).

For detection of ESBL-producing E. coli, both CLSI and
EUCAST recommend the use of cefotaxime as well as ceftazidime
as indicator cephalosporins, and employ E. coli ATCC 25922 as
the wild type quality control strain. Besides this, the ESBL Etest
available from bioMérieux (Marcy l’Etoile, France) or Cambridge
Diagnostics Services Ltd (Cambridge, UK) is often used in many
clinical microbiology laboratories.

Unlike ESBLs, no standardized guidelines are available from
CLSI for the detection of AmpC producing E. coli. Nevertheless,
in routine microbiology, a high MIC of cefoxitin (>8 mg/L)
is considered to be an indicator of AmpC phenotype. Further
confirmation by one or more methods is usually required
and employs AmpC inhibitors like boronic acid derivatives or
cloxacillin in a test format similar to the CLSI ESBL phenotypic
confirmatory test (Brenwald et al., 2005; Tan et al., 2008;
Tenover et al., 2009). Overall, the disk-based methods have been
shown to be more sensitive and specific than the agar dilution
methods and cefoxitin–cloxacillin combination disk method has
been shown to provide the most accurate results (Tan et al.,
2008).

Thus, like other Enterobacteraceae, it is easy to detect the
E. coli strains which produce AmpC β-lactamases. However,
differentiation of the chromosomal AmpC hyperproduction from
the plasmid-mediated enzymes is not possible solely on the
basis of phenotypic tests. Moreover, detection of inducible DHA-
like AmpC β-lactamases requires the use of an additional test
known as the ‘disk approximation assay’ wherein, an inducer
and reporter antibiotic substrate are used and results are
considered positive if the inhibition zone reduces by ≥2 mm
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on the induced side of the reporter disk (Dunne and Hardin,
2005).

Similar to the detection of AmpC β-lactamases, the guidelines
for initial screening of carbapenemase-producing E. coli may
be applied to other members of Enterobacteriaceae as well.
Preliminary detection of carpapenemase production involves
MIC breakpoints for imipenem, ertapenem and meropenem
(Clinical and Laboratory Standards Institute [CLSI], 2014c,
Document M100-24; European Committee on Antimicrobial
Susceptibility Testing [EUCAST], 2014 Version 4.0). For
confirmation of carbapenemase production, CLSI recommends
the Modified Hodge test (MHT) (M100-S20). However, despite
being a useful method for initial detection of carbapenemase
production (especially, the KPC type), MHT has gained limited
popularity because of the long time consumption, ca. 24–48 h;
low specificity, in case of high ESBL and/or AmpC activity; and
low sensitivity, mainly for the NDM-1 producers (Miriagou et al.,
2010; Lutgring and Limbago, 2016).

For better detection of the diverse carbapenemase classes
including, metallo-β-lactamases, different inhibitor-based
methods have been suggested which often employ the algorithm
proposed by Giske et al. (2011). These methods also allow
differentiation of carbapenem resistance caused by the
production of carbapenemases per se from that caused by a
high AmpC activity, usually by incorporating cloxacillin in the
plating medium (Giske et al., 2011; Nordmann et al., 2012a).
However, lack of suitable inhibitors limits the application
of inhibitor-based methods in the detection of OXA-48-like
enzymes where, a high MIC of temocillin (>32 mg/L) or
resistance to piperacillin-tazobactam with no AmpC production
has been shown to provide good results (Glupczynski et al.,
2012). Besides these, detection of NDM-1 producing E. coli can
be performed by using Etest MBL strips (AB bioMérieux, Solna,
Sweden) consisting of a gradient of imipenem concentrations
on one side and imipenem with ethylenediaminetetraacetic acid
(EDTA) on the other; or combined disk test using imipenem
disks with and without EDTA (Franklin et al., 2006).

(b) Automated and Rapid Detection
The commercial methods available for rapid detection of ESBL
producers include – VITEK 2 ESBL test (bioMérieux, Marcy
l’Etoile, France), Phoenix ESBL test (Becton Dickinson, Sparks,
MD, USA), and Microscan WalkAway-96 System (Dade Behring,
West Sacramento, CA, USA). Besides these, MALDI-TOF MS or
the recently described chromogenic and β LACTA tests have been
suggested for rapid detection of E. coli strains producing ESBLs
(Compain et al., 2015; Dortet et al., 2015).

Despite an overall similar performance of these automated
systems, the results should be examined critically due to the
possibility of upto 5% error based on antibiotic-organism
combination and instrument handling. In case of ESBL-
producing E. coli strains, a comparative analysis of the automated
methods, double-disk synergy test, and combination disk
methods has shown combination disk method as the best choice
followed by ESBL Etest (Wiegand et al., 2007). However, it
is important to consider that the accuracy of combination
disk method is subject to inaccuracy when the strain under

consideration co-produces AmpC β-lactamases (Drieux et al.,
2008; Munier et al., 2010). Therefore, it is recommended that
confirmation of ESBL production should be done by one or
more additional tests. Some of these are suggested by the
EUCAST guidelines for detection of resistance mechanisms and
specific resistances of clinical and/or epidemiological importance
(December 2012), and include the use of cefepime as an indicator
cephalosporin in either of the test formats or the use of cloxacillin
to inhibit AmpC β-lactamase activity (Drieux et al., 2008;
Nourrisson et al., 2015).

The most commonly available commercial methods for
rapid detection of AmpC β-lactamases include the AmpC Etest
(bioMérieux, Marcy l’Etoile, France) and the D69C AmpC
Detection Disc Set (Mast Group Ltd, UK). The D69C AmpC
Detection Disc Set has been shown as a promising candidate
for the detection of both, plasmid-borne as well as chromosomal
AmpC, irrespective of their constitutive, inducible or derepressed
nature (Halstead et al., 2012). More recently, Hart et al. (2015)
have shown the detection of CMY-2 type AmpC β-lactamases
among others in E. coli strains using MALDI-TOF MS analysis
following in solution trypsin digestion of periplasmic proteins
and nano-LC based separation.

Rapid methods to detect carbapenemases includes the Carba
NP test (Nordmann et al., 2012b) or MALDI-TOF analysis
of carbapenem hydrolysis (Hrabák et al., 2012; Lasserre et al.,
2015). Furthermore, screening for carbapenemase producing
E. coli strains among carriers can be performed by directly using
stools or rectal swabs, or by following an overnight enrichment
step in broth medium containing one of the carbapenems (i.e.,
imipenem – 0.5–1 mg/L or ertapenem – 0.5 mg/L) (Adler et al.,
2011). In either case, different selective media may be employed
with varying sensitivity and specificity. The most popular ones
includes ChromID ESBL (bioMérieux, La Balme-les-Grottes,
France) and CHROMagar KPC (CHROMagar Company, Paris,
France). ChromID ESBL has been shown to provide high
sensitivity but, it is often limiting in specificity especially, because
of ESBL producers. CHROMagar KPC, on the other hand, has
been shown to be more specific for carbapenemase producers
but, exhibits lower sensitivity (Carrër et al., 2010). More recently,
another medium viz. chromID CARBA (bioMérieux) has been
shown to be an accurate method for detection of Enterobacterial
strains which produce carbapenemases of KPC or NDM-1 types
(Vrioni et al., 2012).

Detection of β-Lactamase Encoding
Genes
(a) PCR and Sequencing
Despite the availability of various phenotypic methods, molecular
biology techniques (especially, PCR and sequencing) serve as the
gold standard for detection, identification and differentiation of
different β-lactamases (Bradford, 2001). Molecular methods have
also been successfully applied for the detection and analysis of
resistance which is often associated with low level of β-lactamase
expression (e.g., that caused by the OXA-48 carbapenemases),
and for the identification of the exact mechanism of resistance
(e.g., differentiation of carbapenem resistance caused by a high
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ESBL/AmpC activity coupled with porin mutation from that
caused by the production of carbapenemases per se) (Gazin
et al., 2012). Further improvements in the speed, sensitivity,
and specificity have been achieved by the establishment of
multiplex and real time PCR assays (Pérez-Pérez and Hanson,
2002; Birkett et al., 2007; Brolund et al., 2010; Poirel et al.,
2011; Deccache et al., 2015). For instance, a multiplex PCR has
been successfully applied for the detection of different families of
plasmid-mediated AmpC β-lactamases, and their differentiation
from the chromosomally encoded enzyme (Pérez-Pérez and
Hanson, 2002). Similarly, a real-time multiplex PCR has recently
been proposed and evaluated for the detection of genes encoding
different carbapenemases among Gram-negative bacteria (van
der Zee et al., 2014).

Sequencing of the PCR amplicons helps not only in the
identification of genes but, also in the detection of newer genetic
variants within a particular β-lactamase class which often differ
only by a single nucleotide. The technique is therefore important
for recognition of nucleotide positions significantly associated
with enzyme activity, determination of the epidemiology of
resistance genetic elements, and tracing the emergence and
dissemination of newer variants. Thus, it has been observed
that blaCTX−M−15 and blaCMY−2, respectively, constitute globally
the most disseminated genes for ESBL and plasmid-mediated
AmpC produced by the E. coli strains (Nicolas-Chanoine et al.,
2008; Oteo et al., 2010; Cantón et al., 2012; Helmy and Wasfi,
2014).

(b) High-Throughput Analyses
For high-throughput screening, different DNA microarrays
and enzyme-linked immunosorbent assays (ELISA) have
been developed. However, DNA microarrays have overtaken
considerably as the method of choice and various advancements
have been achieved over the recent years. The leading commercial
DNA microarrays comprise the Check-Points assays (Check-
Points Health, Wageningen, The Netherlands) and the Identibac
AMR-ve assays (Alere GmbH, Cologne, Germany). While both
possess a similar turnaround time and classify the CTX-M type
ESBLs further into their respective groups, the latter exhibits
lower specificity and does not differentiate between the genes
encoding narrow-spectrum β-lactamases and ESBLs (Gazin et al.,
2012).

Given the diversity of β-lactamase encoding genes in E. coli,
the latest of the Check-Points assays called the ‘Check-MDR
CT103 array’ appears as a promising platform for rapid
screening as it has been shown to exhibit 100% sensitivity and
specificity of detection for the major gene-families encoding
ESBLs (blaTEM, blaSHV, and blaCTX−M), plasmid-mediated
AmpCs (blaCMY/MOX, blaDHA, blaFOX, blaACC, and blaACT/MIR),
and carbapenemases (blaKPC, blaNDM, blaVIM, and blaIMP).
Additionally, the sensitivity and specificity for blaOXA-48 were 95
and 100%, respectively, (Cuzon et al., 2012).

Although, PCR and microarray based methodologies have
been successfully applied in the detection and analysis of target
genes encoding antibiotic resistance, these may not be sufficient
to enable the discovery of rare or novel mechanisms of resistance.
Whole genome sequencing has been increasingly advocated as a

highly sensitive and specific approach in this regard. It has been
shown to be especially useful for organisms having a complex
pattern of antibiotic resistance; a classic example of which
may be represented by E. coli. Several bioinformatics tools and
databases (like ResFinder, ARG-ANNOT along with ClustalW,
BLASTn, and/or BLASTx) have been developed to analyze
the data obtained by whole genome sequencing and extract
the antibiotic resistance genotypes including chromosomal
mutations associated with resistance (Stoesser et al., 2013;
Zankari et al., 2013). With appropriate cost reduction and
methodological refinements whole genome sequencing seems
sure to take over as a method of choice for resistance prediction
in the near future.

RESISTANCE, GENOTYPES, AND
GLOBAL DISSEMINATION

Several recent studies have described that the nature of
antibiotic resistance in E. coli is often associated with the
strains’ genotype. The most predominant of the multi-
drug resistant (MDR) genotypes has been observed as the
sequence type 131 (ST131) which belongs to phylogroup
B2 and harbors extra-intestinal pathogenic strains mostly
associated with urinary tract and bloodstream infections
(Johnson et al., 2010; Courpon-Claudinon et al., 2011; Peirano
et al., 2011; Rogers et al., 2011). The strains belonging to
ST131 have been reported to carry several virulence genes
which encode the aerobactin receptor (iutA), catecholate
sidephore receptor (iroN), invasion of brain endothelium (ibeA),
pathogenicity island marker (malX), secreted autotransporter
toxin (sat), uropathogenic-specific protein (usp), and fimH
adhesin of type 1 fimbriae (Rogers et al., 2011; Blanco et al.,
2013).

The most characteristic feature of the E. coli ST131 isolates vis-
à-vis β-lactamase mediated antibiotic resistance has been their
association with the pandemic spread of resistance mediated
by the CTX-M-15 type ESBL (Coque et al., 2008; Nicolas-
Chanoine et al., 2008). This spread has been driven primarily
by the strains belonging to a well defined clade within the
subclone H30 which has been designated as H30-Rx owing
to its broader resistance profile (Price et al., 2013; Peirano
et al., 2014b). The major vehicles for pandemic spread of CTX-
M-15 ESBL by E. coli strains belonging to ST131 have been
recognized as plasmids especially, of the incompatibility groups
IncF (e.g., pEK516, pEK499, pGUE-NDM, pC15-1a, pJJ1886-5,
pEC_B24, pEC_L46, pEC_L8, pJIE186-2). Besides IncF, other
plasmid incompatibility groups like IncK, IncX, and IncI have
also been observed frequently in both ST131 and non-ST131
E. coli strains carrying CTX-M-15 ESBLs (Carattoli, 2013; Phan
et al., 2015).

The ST131 strains have also been significantly associated
with other CTX-M types as well as resistance to carbapenems,
and other antibiotic classes like fluoroquinolones, trimethoprim-
sulfamethoxazole, and aminolglycosides (Oteo et al., 2009;
Peirano et al., 2011, 2014b; Rogers et al., 2011; Morris et al., 2012).
However, their association with plasmid-mediated AmpC has

Frontiers in Microbiology | www.frontiersin.org 6 March 2016 | Volume 7 | Article 417

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00417 March 26, 2016 Time: 12:51 # 7

Bajaj et al. E. coli β-Lactamases

been less-well established. On the contrary, the spread of AmpC-
mediated antibiotic resistance (especially, the most widespread
CMY-2 type) has been shown to be driven primarily by the strains
belonging to phylogroup D, and has been mostly associated with
ST38 and ST448 (Sidjabat et al., 2009; Naseer et al., 2010; Oteo
et al., 2010; Matsumura et al., 2013). Nevertheless, acquisition
and spread of plasmid-mediated ampC genes by ST131, even
to a lesser extent poses a serious public health concern for
near future because the clone enjoys a global distribution
and has successfully driven the dissemination of blaCTX−M−15
worldwide.

Apart from the AmpC β-lactamases, contribution of E. coli
strains from phylogroup D in the spread of genes encoding CTX-
M type ESBLs has also been noteworthy (Coque et al., 2008;
van der Bij et al., 2011; Hansen et al., 2014). In this regard,
ST405 has been observed as the most predominant genotype
which stands second only to the ST131 clones from phylogroup
B2 (Coque et al., 2008). This sequence type has primarily
been associated with the large scale dissemination of CTX-
M-15 and CTX-M-9 group of ESBLs (Naseer and Sundsfjord,
2011). Other sequence types reported in association with CTX-
M mediated antibiotic resistance include ST59, ST393, ST1395,
and ST354 (CTX-M-14), ST38 (CTX-M-9), and ST648 (CTX-
M-15) (Mora et al., 2011; van der Bij et al., 2011). More
recently, the globally distributed multidrug resistant genotypes
(especially, ST69 and ST393/O15:K52:H1) which have chiefly
been known for resistance to antibiotic classes like trimethoprim-
sulfamethoxazole have also been shown to be associated with
resistance caused by the CTX-M type ESBLs (Johnson et al.,
2009; Ewers et al., 2012; Izdebski et al., 2013; Hansen et al.,
2014).

Thus, a major proportion of E. coli strains expressing ESBLs
and plasmid-mediated AmpCs have been reported from the
phylogroups (i.e., B2 and D) which have also been associated
with higher virulence. Occasionally, however, similar resistance
is also being reported from the sequence types belonging to
phylogroups A and B1 (Oteo et al., 2009, 2010; Valverde et al.,
2009). For instance, in a recent study, the predominant CTX-
M-15-producing E. coli in the fecal carriage of travelers and
immigrants were reported to belong to phylogroup A (ST10)
(Valverde et al., 2015). Besides this, ST410 and ST224 from
phylogroup A and B1, respectively, have also been associated
with E. coli strains producing CTX-M-15 ESBL (López-Cerero
et al., 2011; Mshana et al., 2011; Silva et al., 2016). Corvec et al.
(2007) have also shown the existence of a significantly high
association of hyperproduction of the chromosomally encoded
AmpC with E. coli strains belonging to phylogroup A. However,
despite these reports, the contribution of phylogroups A or B1
in the global epidemiology of β-lactamase mediated antibiotic
resistance remains to be established more clearly because none
of the sequence types reported so far have been shown to
play a role in the worldwide dissemination of either ESBLs or
AmpCs.

Last but not the least, relatively lesser information is
available regarding genotypic or sequence type associations of
carbapenemase-mediated resistance in E. coli. Some of the
studies, as described above, have indicated the role of ST131

in the clonal spread of carbapenemases (Peirano et al., 2011,
2014a; Morris et al., 2012). Meanwhile, others have highlighted
the importance and probably a greater role played by ST101
(phylogroup B1) and ST405 (phylogroup D) especially, in
conjunction with the NDM-1 type enzymes (Mushtaq et al., 2011;
Pfeifer et al., 2011).

β-LACTAMASES AND THE COMMENSAL
E. coli

For better management of emergence and dispersal of resistance,
complete analysis of the abundance, diversity, and dissemination
of resistance genes in bacteria including commensals is
required. One of the most significant efforts in this regard
has been made by the Alliance for the Prudent Use of
Antibiotics (APUA). Through its Reservoirs of Antibiotic
Resistance (ROAR) project, APUA aims to encourage research
for determining antibiotic resistance in commensals. It also
works to provide a comprehensive database for further analyses
like prediction of the rates of resistance development in
pathogens by evaluating the frequency of resistance genes in
commensals.

Through several such individual and collaborative efforts,
it has been acknowledged that the association of commensal
E. coli with genes imparting antibiotic resistance constitutes a
serious public health concern especially, with respect to resistance
dissemination through community settings (Valverde et al.,
2008; Machado et al., 2013). Despite being a minor proportion
of microbiota colonizing the gastrointestinal tract of healthy
individuals, the role of commensal E. coli as a reservoir of genes
encoding β-lactamases has been acknowledged across the globe
(Table 2). Among these, a large number of studies have reported
a high prevalence of CTX-M type ESBLs in the strains isolated
from healthy adults and children (Nys et al., 2004; Pallecchi et al.,
2007; Woerther et al., 2013; Nakayama et al., 2015). A number
of studies have also demonstrated a likewise prevalence in food
and companion animals (Ben Sallem et al., 2012; Tian et al., 2012;
Zheng et al., 2012).

Some of these studies have also indicated that animals might
be responsible for the transfer of ESBL-producing bacteria and/or
ESBL-encoding genes to humans, either through contact or
via food chain (Jensen et al., 2006; Ewers et al., 2012). The
indiscriminate use of antibiotics in the food and farming industry
has therefore, been considered as one of the most significant
risk factors responsible for high prevalence of ESBL producing
E. coli among healthy subjects (Bailar and Travers, 2002;
Larson, 2007). Antibiotic abuse related to consumption without
prescription, and exposures related to family/community/foreign
travel have been observed as other notable factors (Rodríguez-
Baño et al., 2008; Tängdén et al., 2010; Luvsansharav et al.,
2011).

Besides ESBLs, these factors have also contributed to
the increased occurrence of AmpC β-lactamases in strains
isolated from healthy humans and animals (Kaneko et al.,
2006; Hammerum et al., 2011; Ben Sallem et al., 2012;
Ewers et al., 2012). Occurrence of carbapenemase-producing
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TABLE 2 | World-wide occurrence of β-lactamase genes in commensal
E. coli.

Countries reported
from

β-lactamase genes
identified

Reference

Kenya, Mexico, Peru,
Philippines, Curacao,
Venezuela, Ghana,
Zimbabwe

ND Nys et al., 2004

Latin America blaSHV,CTX−M Pallecchi et al., 2007

Japan blaCMY Kaneko et al., 2006

USA blaTEM, CTX−M Sommer et al., 2009

Sweden blaTEM, SHV, CTX−M Tängdén et al., 2010

Australia blaTEM Bailey et al., 2010

China blaTEM, SHV, CTX−M,

CMY,KPC

Tian et al., 2012

China blaCTX−M Zheng et al., 2012

Tunis blaTEM, CTX−M, CMY Ben Sallem et al., 2012

Thailand blaCTX−M Luvsansharav et al.,
2012

Switzerland blaTEM, CTX−M Geser et al., 2012

Portugal blaTEM, CTX−M Machado et al., 2013

Netherlands blaTEM, SHV, CTX−M,

CMY

Hordijk et al., 2013

India blaTEM, SHV, CTX−M,

CMY

Kothari et al., 2013

India blaCTX−M Dureja et al., 2014

Germany blaTEM, SHV, CTX−M Valenza et al., 2014

China blaTEM, OXA Li et al., 2014

Nigeria blaCTX−M Fortinia et al., 2015

USA blaCTX−M,CMY Davis et al., 2015

Vietnam blaCTX−M Bui et al., 2015

ND: Not Determined.

E. coli in the community, however, has been reported in
only a few studies. Furthermore, their acquisition by healthy
humans has been associated chiefly with travel to the countries
endemic in this regard (Tian et al., 2012; Ruppé et al.,
2014).

Overall, more studies are required to assess the contribution
of commensal E. coli strains in the epidemiology of genes
encoding β-lactamases, and to understand the mechanisms by
which these resistance genes are silently fed to the pathogenic
strains.

OTHER IMPORTANT CONSIDERATIONS

Owing to the basic biology of the organism, the menace of
‘β-lactamase mediated antibiotic resistance in E. coli’ represents
a concern which needs special attention. The genome of
E. coli is known for its plasticity and thus, the ability to
evolve constantly. Such genome plasticity enables the strains
to survive under different environmental conditions and
selective pressures (Dragosits et al., 2013; Laehnemann et al.,
2014). Evolution under such conditions may be mediated
by mutations, horizontal gene transfer and/or transposable
elements. Thus, resistance to a particular antibiotic may be

acquired through sequential mutations in the chromosomal
DNA or by mobile genomic elements. In the latter case, the
exchange of genetic material among bacteria leads to further
transmission of resistance (Levy and Marshall, 2004; Barlow,
2009).

In E. coli, β-lactamase mediated resistance is dominated
mainly by the acquisition and dissemination of genomic
elements through horizontal gene transfer viz. conjugation,
transformation and transduction (Doi et al., 2012; Huddleston,
2014). In this regard, it is noteworthy that pathogenic as
well as commensal strains of E. coli occupy niches which
provide ambient conditions for such gene transfer. In the
host environments, the population of E. coli is infact more
abundant than most other members of Enterobacteriaceae
and thus, represents a predominant vehicle for transmission
of resistance (O’Brien, 2002; Huddleston, 2014). Even in
the natural environments such as urban wastewaters, E. coli
strains are surrounded by conditions favorable for exchange
of resistance-associated genomic elements, and evolution of
newer resistance mechanisms especially in response to sub-
inhibitory concentrations of antibiotics (Rizzo et al., 2013;
Wellington et al., 2013). Furthermore, and as discussed in earlier
sections, the compounding contribution of the clonal spread
of β-lactamase mediated antibiotic resistance has been most
noticeable in the species E. coli. The factors contributing to
such clonal dissemination, however, need to be investigated in
detail.

In view of the diverse and highly efficient means of
resistance accumulation and dissemination in E. coli, suitable
strategies for tackling drug resistance in this organism are
highly warranted. The first step which may be advocated in this
direction is the prudent use of currently available antibiotics
which in turn requires rapid diagnostics to study susceptibilities
in an organism-specific manner. Further, novel antibiotics
which attack new target sites or block/circumvent existing
resistance mechanisms need to be developed. To accomplish this,
knowledge of the detailed mechanisms underlying resistance to
particular class of antibiotic in the target organism represents an
utmost necessity. The complex nature of mechanisms underlying
β-lactamase mediated resistance in E. coli thus, represents a
classic example which highlights the need for more such cohesive
platforms providing information for other antibiotic-bacteria
combinations.

CONCLUDING REMARKS

The potential of E. coli to cause varied infections coupled
with having several antibiotic resistance mechanisms is a real
challenge to disease management strategies. Of particular
concern is the resistance mediated by the newer β-lactamases
since, third-generation cephalosporins and other higher
generation β-lactam antibiotics have long served as the major
mainstay for successful treatment of infections caused by
E. coli. This review is an attempt to collate key information
pertaining to β-lactamases of significance to E. coli. It also
highlights the areas of work which needs to be explored
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in future especially, development of rapid diagnostics and
understanding association of genotypes with specific resistance
types. Studies should also be undertaken to investigate the
role of commensal E. coli in the global epidemiology of
β-lactamase mediated resistance. The authors suggest that such
reviews specifically targeting clinically important pathogens
or groups of pathogens would not only serve the clinicians
engaged in the management of infections caused by resistant
organisms but also provide valuable resource to those interested
in designing organism-specific strategies for surveillance
and control of resistance in the larger interest of public
health.
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