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The development of a highly efficacious and durable vaccine for malaria remains a top
priority for global health researchers. Despite the huge rise in recognition of malaria as
a global health problem and the concurrent rise in funding over the past 10–15 years,
malaria continues to remain a widespread burden. The evidence of increasing resistance
to anti-malarial drugs and insecticides is a growing concern. Hence, an efficacious
and durable preventative vaccine for malaria is urgently needed. Vaccines are one of
the most cost-effective tools and have successfully been used in the prevention and
control of many diseases, however, the development of a vaccine for the Plasmodium
parasite has proved difficult. Given the early success of whole sporozoite mosquito-bite
delivered vaccination strategies, we know that a vaccine for malaria is an achievable
goal, with sub-unit vaccines holding great promise as they are simple and cheap to
both manufacture and deploy. However a major difficulty in development of sub-unit
vaccines lies within choosing the appropriate antigenic target from the 5000 or so genes
expressed by the parasite. Given the liver-stage of malaria represents a bottle-neck in
the parasite’s life cycle, there is widespread agreement that a multi-component sub-unit
malaria vaccine should preferably contain a liver-stage target. In this article we review
progress in identifying and screening Plasmodium falciparum liver-stage targets for use
in a malaria vaccine.
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Introduction

Malaria is a disease caused by the parasite Plasmodium, of which five species are known to infect
humans, and is transmitted by the bite of female Anopheles mosquitoes. In 2013, approximately
584 000 people died from malaria (WHO, 2014), the majority due to Plasmodium falciparum.
There has been substantial success in reducing mortality rates by approximately 50% over the past
15 years (WHO, 2014), but there is still a considerable burden of disease and some worrying trends
in resistance to anti-malarial drugs. There are increasing reports of resistance to artemisinin in
several countries of South East Asia (Ashley et al., 2014), and in addition reports of insecticide
resistance to pyrethroids, the only insecticide class licensed for use in impregnated bed-nets,
have started to emerge (Ranson et al., 2011). Together, these issues highlight the importance, and
potential reliance the global community may have, on developing a highly efficacious and durable
vaccine for malaria.

An effective whole parasite vaccination approach for malaria was developed in the early
1970s (Clyde et al., 1973; Rieckmann et al., 1974), building on previous work in animal models
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(Russell andMohan, 1942; Nussenzweig et al., 1967). The parasite
has a complex life cycle; within the human host, sporozoites
injected by mosquitoes first travel to the liver. Here they develop
for approximately 7 days, before entering into the bloodstream.
The blood-stage is responsible for all symptoms associated with
malaria, and gives rise to the sexual forms known as gametocytes.
Researchers were able to demonstrate sterile protection – the
complete absence of blood-stage parasites – after administration
of irradiated sporozoites by mosquito bites. These irradiated
sporozoites are able to invade the liver but development is
arrested, providing a repertoire of antigens for the immune
system to recognize without the host experiencing a blood-stage
infection. Whilst this vaccination strategy was highly efficacious,
it had numerous logistical issues, including the need to receive
over 1000 bites from mosquitoes. Now, the biotechnology
company Sanaria can cryopreserve sporozoites and vaccinate by
needle-and-syringe, resulting in high levels of protection against
subsequent challenge if 4–5 intravenous doses are administered
(Seder et al., 2013), however, the durability of protection from this
formulation has not yet been published. In addition, a number of
manufacturing and logistical issues still remain, such as cost of
manufacture, the route of administration, the need for storage
in liquid nitrogen vapor phase and the requirement for large
numbers of doses. An alternate, likely more practical, approach
is sub-unit vaccination.

To-date, the most successful sub-unit vaccine is RTS,S
Greenwood (2015), a particulate vaccine directed at the
circumsporozoite protein (CSP). CSP is the major coat protein
on the sporozoite surface (Yoshida et al., 1980; Nussenzweig and
Nussenzweig, 1985) and is implicated in protection mediated by
irradiated sporozoites (Gwadz et al., 1979; Nardin et al., 1982).
The Phase III trial of RTS,S/AS01 conducted at eleven sites
within seven African countries demonstrated 28% efficacy for
5–17 month-old children and 18% efficacy for 6–12 week-old
infants with three doses, over the entire course of the study (∼3–
4 years of follow-up; Greenwood, 2015). Our group has also had
some success with a virally vectored sub-unit vaccine directed at
the pre-erythrocytic antigen thrombospondin-related adhesion
protein (TRAP) fused to a multi-epitope (ME) string (Gilbert
et al., 1997; McConkey et al., 2003).When delivered in the vectors
chimpanzee adenovirus 63 (ChAd63) andmodified vaccinia virus
Ankara (MVA), ME-TRAP provided 21% sterile protection in
malaria-naïve adults, associated with CD8+ T cells inducing
IFN-γ (Ewer et al., 2013). In the first field trial of this approach,
significant efficacy (67%) in preventing PCR-detectable parasites
was observed in Kenyan adults (Ogwang et al., 2015). Sub-
unit vaccines with antigenic targets from the blood-stage of
infection are also in clinical development (Drew and Beeson,
2015).

Given neither TRAP nor CSP alone (nor any blood-stage
candidate) can match the protection induced by irradiated
sporozoites, it is likely that a broad immune response to multiple
target antigens will contribute to improved sub-unit vaccine
efficacy. Only a minority of potential candidate antigens have
been assessed as vaccine candidates, and CSP and TRAP may
not be the best targets (Doolan et al., 2003; Kumar et al., 2006;
Trieu et al., 2011). Furthermore, including multiple antigenic

targets in one vaccine might overcome limitations in genetically
restricted responses to certain epitopes (Doolan et al., 1996). The
difficulty is choosing which antigenic targets from the 5000 or
so genes expressed by the parasite (Gardner et al., 2002) should
be incorporated. There is widespread agreement that a liver-stage
target would be a desirable addition to a multi-component sub-
unit malaria vaccine targeting another life-cycle stage, given that
it represents a bottle-neck in the parasite’s life-cycle and could
also be transmission blocking, by preventing development to the
blood-stage and hence the formation of gametocytes.

In this article we therefore reviewwhat has been learnt so far in
terms of identification and screening of novel liver-stage vaccine
targets.

Identifying Liver-Stage Targets

The discovery of the Plasmodium genome (Gardner et al., 2002)
and proteome (Florens et al., 2002) has yielded a huge number
of potential liver-stage targets, but has not necessarily provided
information as to which should or could be included in a vaccine.
In this section we will discuss a number of methods that could be
used to prioritize antigens.

Transcriptomic Profiling
Transcriptomic profiling of the P. falciparum liver-stage would
uncover genes that are actively being expressed. This has,
however, not been a simple task to undertake, even in murine
models, given the high proportion of uninfected hepatocytes
(Lau et al., 2001). Nevertheless, using techniques such as laser
capture microdissection, axenically cultured exo-erythrocytic
forms and fluorescent parasites, the P. yoelii transcriptome has
been described, with around 1000 proteins likely expressed at
the liver-stage (Wang et al., 2004; Sacci et al., 2005; Tarun et al.,
2008). The P. yoelii liver-stage lasts for only 2 days, compared to
7 days for P. falciparum, and hence there are likely important
differences in the transcriptomic profiles of these species. For
example, the P. falciparum liver-stage specific protein liver-stage
antigen 1 (LSA1) does not have a murine ortholog but is critical
for late-liver-stage development (Mikolajczak et al., 2011).

Only one published study to our knowledge has attempted to
define the P. falciparum liver-stage specific transcriptome. Siau
et al. (2008) found 532 genes up-regulated following co-culture
of P. falciparum sporozoites and primary human hepatocytes
in vitro when compared to genes expressed in sporozoites
alone. We recently demonstrated sterile protection following
vaccination with one candidate identified in this study, liver-
stage associated protein 2 (LSAP2; Longley et al., 2015b). This
transcriptomic study was designed to identify genes important in
the invasive period of the liver-stage, and hence they co-cultured
the sporozoites and hepatocytes for only 1 h. Further research is
now needed to determine the complete transcriptome, including
late liver-stage development.

Epitope Identification
To be immunogenic and targeted by T cells, the proteins need
to be processed and epitopes presented on the hepatocyte cell
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surface in association with the major histocompatibility complex
(MHC). Identifying which epitopes are presented at the liver-
stage is hence also a rational method of choosing functionally
important antigens. One method of epitope identification is
prediction software (Trolle et al., 2015), used to predict the MHC
binding capacity. This method has been applied to P. falciparum
(Doolan et al., 2003) and reviewed in detail (Doolan, 2011) so
will not be discussed further here, except to note that these
predictions were made using the sporozoite proteome and that
once the liver-stage specific P. falciparum proteome is known,
they should be revisited. The risk with epitope prediction
software is the rate of false positive identification (Zhong et al.,
2003).

A direct method of epitope identification is the elution of
peptides from P. falciparum infected hepatocytes. Generally,
MHC-peptide complexes are isolated, the peptides eluted and
separated by mass spectrometry, and subsequently sequenced
(Hunt et al., 1992). This methodology has been used to identify
epitopes for influenza (Testa et al., 2012), hepatitis C (Wolk
et al., 2012), ovarian cancer (Ramakrishna et al., 2003), and
tuberculosis (Flyer et al., 2002), but to our knowledge has not yet
been used for P. falciparum due to the constraints on access to
and infectability of hepatocytes.

Another method of epitope identification is a proprietary
approach developed by Genocea Biosciences, Inc., known
as ATLASTM. They created a ‘high throughput, proteomic
technology that facilitates unbiased and comprehensive
identification of both CD4+ and CD8+ T cell antigens’ (Long
et al., 2014). The rationale is to use whole proteins, rather
than peptides, to stimulate immune cells from large numbers
of individuals from two groups, those naturally protected
from the pathogen and those susceptible. By developing a
high-throughput technology able to screen large numbers
of individuals they reduce the effect of HLA-restrictions.
Furthermore, utilizing whole proteins, which are then processed
by each volunteer’s own APCs, the resultant epitopes should be
unbiased. This methodology is currently being explored for the
identification of P. falciparum T cell targets.

Source of Hepatocytes
The major limitations for both transcriptomic profiling and
epitope identification are the source of infected hepatocytes
and an absence of a perfect model of P. falciparum liver-
stage infection. Whilst both hepatoma cell lines and primary
human hepatocytes can be infected with P. falciparum in vitro,
the infectivity rates are very low (∼0.1%; Mazier et al., 1985;
Sattabongkot et al., 2006; March et al., 2013). In addition,
P. falciparum sporozoites cannot naturally infect small rodents.
Murine Plasmodium species are commonly used to study the
liver-stage of infection in mice and in vitro, yet it is not clear
how well these models reflect P. falciparum infections in humans.
Whilst non-human primates can be infected with adapted human
malaria parasites, they are not widely available and cost and
ethical considerations of studies on higher order species are
limiting factors.

An alternative model is the use of humanized mice; a number
of laboratories now routinely infect various models of humanized

mice with P. falciparum parasites (Morosan et al., 2006; Sacci
et al., 2006; Vaughan et al., 2012b), after repopulation of 80–
90% of the liver with human hepatocytes. The advantages
over an in vitro model are that larger liver-stage parasites
develop, up to 80 μm compared to 15–40 μm in culture
(Mazier et al., 1985; Sattabongkot et al., 2006; Vaughan et al.,
2012b). The larger size is more similar to results from studies
of human infections (Shortt et al., 1951; Jeffery et al., 1952).
Furthermore, liver-stage artifacts or abortive forms of parasites
are often detected in cultures, yet this has not been observed in
humanized mice. Whilst there are a number of disadvantages
to this model (especially cost), it may be the most practical
for obtaining large numbers of infected hepatocytes for antigen
identification.

Human Whole Sporozoite Immmunization for
Antigen Identification
Once potential antigens or epitopes have been prioritized, cells
from irradiated sporozoite immunization studies can be utilized
to confirm that down-selected target antigens are immunogenic
in vaccinated volunteers and to try and identify protective
antigens. This is possible as protection in irradiated sporozoite
vaccination models is dependent on T cells targeting the liver-
stage (Schofield et al., 1987; Weiss et al., 1988; Hoffman et al.,
1989; Seguin et al., 1994; Weiss and Jiang, 2012). Doolan et al.
(2003) adopted this method to attempt to validate their antigens
identified using epitope prediction software.

Alternatively, immunity can now be induced in humans with
cryopreserved sporozoites (Sanaria R©PfSPZ-CVac) or mosquito
bite delivered sporozoites under drug cover (Roestenberg et al.,
2011; Bijker et al., 2013). A major difficulty with this general
approach is that of statistical power. With whole sporozoite
strategies only tens of subjects are generally immunized and
challenged and it is difficult to quantify degrees of protection
precisely in each individual. Because there are hundreds of
possible liver-stage antigens to be assayed, and most people
respond weakly to most antigens, it is likely to be difficult to
pinpoint the best individual protective antigen(s) standing out
above the level of efficacy provided by the cumulative effects of
large numbers of other antigens.

Unfortunately, this is also a limitation for the
ATLASTM technology, as it relies on access to cells from
humans whom are protected by whole pathogen exposure: for
other pathogens they have used cells from exposed individuals
(Long et al., 2014), whereas for malaria naturally exposed or
challenged individuals generally have weak T cell responses
(Offeddu et al., 2012; Sheehy et al., 2013). Hence, immunization
models, such as described below, may be more useful.

Screening Targets

Once candidate antigens have been identified, a functional
assay to assess pre-clinical efficacy needs to be employed. The
challenges are twofold: P. falciparum does not infect small
animals, and there is no standardized in vitro assay to measure
T cell killing of liver-stage parasites.
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Mouse Models
In the past, candidate antigens have been screened in mice using
P. berghei or P. yoelii orthologs of the P. falciparum antigen
of interest. It is still unclear how well these results translate to
human trials, and importantly, not all P. falciparum antigens have
murine orthologs. Alternate options are the use of transgenic
parasites and humanized mice.

Transgenic parasites are a powerful tool that can enable
functional screening of P. falciparum (or P. vivax) vaccine
efficacy in mice (Persson et al., 2002; Mlambo et al., 2008;
Cao et al., 2009; Espinosa et al., 2013; Porter et al., 2013;
Bauza et al., 2014; Deal et al., 2014; Mizutani et al., 2014;
Schwenk et al., 2014). Two methods are commonly used: (1)
replacement of the endogenous P. berghei (or P. yoelii) gene
with the P. falciparum ortholog under control of the relevant
P. berghei promoter, or (2) addition of the P. falciparum copy
of the gene inserted at a different and dispensable point in
the genome (required when no murine ortholog exists). For
example, the 230p locus in both P. berghei and P. yoelii is
considered “silent”, and replacement of this gene has no adverse
effect on expression of other genes and no impact on parasite
viability or behavior (Janse et al., 2006; van Dijk et al., 2010; Lin
et al., 2011). We have recently used this method of screening
to identify PfLSA1 and PfLSAP2 as potential candidates for a
liver-stage malaria vaccine (Longley et al., 2015b): we were able
to screen ten antigens for homologous efficacy in mice, and
both PfLSA1 and PfLSAP2 outperformed CSP and TRAP in this
model. We were also able to utilize the transgenic parasites to
demonstrate that efficacy was primarily dependent on CD8+ T
cells.

The main limitation of the addition rather than replacement
technique is that the P. falciparum transgene is under control of a
non-native promoter, potentially leading to differential patterns
of gene expression. In addition, for both the replacement and
addition strategies experiments are still undertaken in mice and
the limited MHC system favors immunodominant responses,
although this can be mitigated if outbred mice are studied. It is
important to note that this is an artificial model system, and only
once clinical trials of candidates selected in this manner have been
undertaken successfully will we know its true value.

An alternative option is the use of humanized mice
permissible to P. falciparum infection. As these mice are
immunodeficient (Morosan et al., 2006; Sacci et al., 2006;
Vaughan et al., 2012b) they would not be suitable for
vaccination, but T cells from classical inbred mice could be
adoptively transferred. To our knowledge this option has not
yet been explored, but warrants some attention and preliminary
experimentation to determine the feasibility.

In Vitro Assays
In vitro assays could also be used for screening liver-stage
vaccine candidates. P. falciparum-infected primary human
hepatocytes and hepatoma cell lines have been used to measure
antibody inhibition of invasion and growth (Mazier et al., 1986;
Hollingdale et al., 1987, 1990; Mellouk et al., 1990; Fidock
et al., 1997; Brahimi et al., 2001; House et al., 2009; Zou et al.,
2013; Finney et al., 2014). To-date, only murine Plasmodium

infected hepatocytes have been used to measure T cell-mediated
protection (Hoffman et al., 1989; Weiss et al., 1990; Renia et al.,
1991, 1993; Trimnell et al., 2009). T-cell assays require MHC
effector-target cell matching, complicating the assay, and perhaps
explaining in part why it has received little attention for many
years. We have since revisited this assay, incorporating a number
of technological advances such as fluorescent parasites to simplify
the assay design and interpretation (Longley et al., 2015a). We
utilized P. berghei TRAP as a model antigen and demonstrated
TRAP-specific CD8+ T cell enriched splenocytes were able to
inhibit P. berghei infected hepatoma cells in an effector-to-target
ratio dependent manner.

However, the assessment of inhibition of P. falciparum
infected human hepatocytes or hepatoma cell lines by human
T cells is still an elusive goal. The difficulties are fourfold: (1)
the rate of infectivity of P. falciparum sporozoites into human
hepatocytes or hepatoma cells is inherently lower than that of
murine Plasmodium species (Mazier et al., 1985; Sattabongkot
et al., 2006); (2) P. falciparum sporozoites are more difficult
to produce in the laboratory than murine species; (3) the
lack of a P. falciparum parasite line with strong expression
of a fluorescent or other visual marker throughout the entire
lifecycle; and (4) the limited choice of human hepatoma
cell lines with different HLA types (Karnasuta et al., 1995;
Sattabongkot et al., 2006). Yet these barriers are constantly being
reduced with improvements to liver-stage culture techniques
(March et al., 2013; Zou et al., 2013; Ng et al., 2014) and
the availability of cryopreserved P. falciparum parasites that
could also reduce variability between assays (Sheehy et al.,
2013). In addition, new P. falciparum parasites expressing
fluorescent or luminescent markers are becoming available
(Talman et al., 2010; Vaughan et al., 2012a), and flow cytometry
detection of P. falciparum infected human hepatocytes and
hepatoma cells has recently been demonstrated (Dumoulin et al.,
2015). Finally the availability of cryopreserved primary human
hepatocytes enriches the HLA-repertoire of target cells available
(Li, 2014).

The remaining hurdle is the source of vaccine-induced human
T cells. One option is through vaccination of human volunteers
in clinical trials, however, this is not amenable to screening a
large number of candidate antigens/vaccines. An alternate option
is stimulation of naïve T cells in vitro (Gaucher et al., 2008),
or alternatively (re-)stimulation of malaria-exposed T cells (for
instance, sourced from whole sporozoite immunization studies,
as described above).

The main advantage of using an in vitro system over
in vivo murine models is the limited MHC repertoire of
mice. Vaccination in mice often induces a response to only
one immunodominant epitope; in humans, there are multiple
epitopes that are often different between vaccinated individuals.
However, as mentioned above, this can be overcome using
outbred mice, although this still does not reflect the HLA-
types of a human population. In turn, the in vitro model is
still an artificial system, and likely does not recapitulate all
immunological processes (such as signaling pathways) that would
occur in vivo. Ultimately, screening liver-stage targets in both
models (in vivo and in vitro) would be preferential.
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Immune Correlates of Protection
Ideally, these methods would not only provide a useful model
for screening liver-stage vaccine candidates, but also be used to
define correlates of protection. If any of the functional assays of
immunity described above (in vivo or in vitro) could accurately
predict which vaccines provided protection in CHMI trials, the
assay could then be used as a surrogate for protection. This could
potentially alleviate the need for very large and expensive CHMI
trials at the initial stages of vaccine assessment and would be
extremely beneficial for the development of second-generation
malaria vaccines.

Summary and Conclusion

In summary, in the current absence of a deployable and highly
efficacious malaria vaccine, significant advances are enabling the
identification of new P. falciparum liver-stage vaccine targets.
Various antigen identification platforms are helping to reduce
the number of potential candidates, and simultaneously, methods
to screen such candidates are greatly improving. It will be of
great interest to see whether any recently identified candidates,

such as PfLSAP2, translate into protective efficacy in CHMI
trials of non-immune adults. We believe these new identification
and screening platforms will greatly enhance the development
of second-generation malaria vaccines. In addition, it is also
acknowledged that control and elimination of P. vivax, the most
widespread of the Plasmodium sp. causing human disease, would
be accelerated by the development of a P. vivax vaccine. Whilst
this species has not been considered in this review, it is important
to note that recent developments of novel tools to study P. vivax
liver-stage biology, such as infection and generation of P. vivax
dormant liver-stage forms both in humanized mice (Mikolajczak
et al., 2015) and in vitro (Dembele et al., 2014), will be of
great use in identifying P. vivax liver-stage targets in the
future.
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