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The metabolites and enzymes synthesized
by microorganisms have been widely used
as food (Mitsuhashi, 2014; Wendisch,
2014), pharmaceuticals (Elander, 2003;
Endo, 2010), biofuels (Geddes et al.,
2011), pesticides (Waldron et al., 2001;
Yoon et al., 2004), and detergents
(Shaligram and Singhal, 2010), as well
as in the manufacturing process of these
industrial products (Kirk et al., 2002;
Merino and Cherry, 2007). They play
important roles in our daily lives. The
production methods used for useful
metabolites and enzymes have improved
since the time their importance was first
established.

If the genes involved in the synthe-
sis of a metabolite or enzyme of inter-
est are unknown, the production yield is
enhanced by introducing random muta-
tions into the chromosomes of the syn-
thesizing microbe by ultraviolet (UV)
irradiation or treatment with mutagens
(Adrio and Demain, 2006). In addition,
culture conditions have been adapted
to further enhance production (Demain,
2000; Mukherjee et al., 2006). On the
other hand, if the genes involved are
known, their expression is also enhanced
by metabolic engineering strategies such
as gene disruption and overexpression
using genetic modification techniques
(Stephanopoulos et al., 1998; Adrio and
Demain, 2010). When genetic modifi-
cation of the producing microorganism
is not possible because of difficulties in
transformation, heterologous expression
of the product of interest in other micro-
bial species in which genetic modifica-
tion can be more easily achieved has
also been utilized for mass production

(Stephanopoulos et al., 1998; Keasling,
2012).

Primary metabolites essential for the
normal growth of organisms are conserved
between closely related microbial species,
and their metabolic pathways including
genetic components are almost fully elu-
cidated. Therefore, metabolic engineer-
ing has been the chosen strategy used
for increasing the microbial production
of primary metabolites (Stafford and
Stephanopoulos, 2001; Kern et al., 2007).
About microbial enzymes, the coding
genes are highly likely to be identified
if both N-terminal amino acid sequences
and molecular weights are not only iden-
tified by using highly purified samples but
the genomic data of the producer microor-
ganisms are also available. Searching a
gene from the genomic data, on the basis
of the N-terminal amino acid sequence
and molecular weight, will help us iden-
tify an enzyme-coding gene. Once the gene
has been identified, inducing overexpres-
sion of this gene in the original producer
or another microbial host is one of the
strategies adopted to increase the produc-
tion of the enzyme (Demain and Vaishnav,
2009).

Four strategies are considered to be
effective in enhancing the production
of primary metabolites. The first strat-
egy is enhancing the expression of genes
involved in metabolite synthesis. This
strategy should be the most commonly
used and reliable approach, but it does
not always contribute to elevated produc-
tion. In fact, we enhanced the expres-
sion of four enzyme genes, individually,
that were involved in palmitic acid [C16-
fatty acid] synthesis, aiming to increase

the production of free fatty acids (pri-
mary metabolites) in Aspergillus oryzae
(Figure 1A-①). Overexpression of the fatty
acid synthase (FAS) genes yielded a max-
imal increase in fatty acid production
that was 2.8-fold more than that in the
wild-type strain, whereas overexpression
of the acetyl-CoA carboxylase (ACC) gene
did not increase fatty acid production
(Tamano et al., 2013). Overexpression of
the two genes encoding ATP-citrate lyase
(ACL) and palmitoyl-ACP thioesterase
(TES) showed a moderate increase in fatty
acid production (Tamano et al., 2013).
Thus, each metabolic pathway is believed
to consist of many sequential enzyme reac-
tions, one of which has the lowest reac-
tion rate and functions to regulate the
rate of the whole pathway like a bottle-
neck. If an overexpressed gene encodes an
enzyme that does not correspond to the
bottleneck, there would be no resultant
effect on production. In many cases, the
bottleneck reactions are unknown; there-
fore, it is necessary to overexpress each
gene involved in the synthesis of metabo-
lites and determine which gene encodes
for enzymes functioning at the bottle-
neck point of the pathway. Alternatively,
one may simultaneously overexpress all
genes involved in the synthesis in one cell;
however, this is a difficult task to accom-
plish because it is time-consuming and
labor-intensive to construct the mutant
cell through DNA recombination tech-
nology. The second strategy by which
primary metabolite production can be
increased is the knockout of a reaction that
degrades or converts the target metabo-
lites. In Escherichia coli, a large amount
of fatty acids was successfully produced
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FIGURE 1 | Strategy to increase production of primary (A) and secondary (B) metabolites.

by a combination of overexpression of
genes involved in synthesis and knockout
of genes involved in degradation (Steen
et al., 2010) (Figure 1A-①,②). The third
strategy is to increase the production of
the coenzymes required for the synthe-
sis of the target primary metabolites. If
sufficient amounts of coenzymes such as
ATP, NADH, and NADPH are not syn-
thesized by the producing microorgan-
ism, the production yield of the target
metabolite as an end product would not

increase significantly. Therefore, genetic
modification should be used to increase
the production of the coenzymes. In
fact, the production yield of fatty acids
was elevated by increasing the intracellu-
lar NADPH molecules available for use
in fatty acid synthesis by overexpres-
sion of the malic enzyme (ME) gene in
Mucor circinelloides (Zhang et al., 2007)
(Figure 1A-③). The fourth strategy of
increasing primary metabolite production
is discharging the final metabolites out

of the cells. Intracellular accumulation of
the final metabolite would stress the pro-
ducing microorganism, and could pos-
sibly have a growth-inhibiting effect on
them. In that case, if final metabolites
could be discharged from the microor-
ganism as a result of genetic modifi-
cation and improved culture conditions,
target metabolites would continue to be
generated because the cell is free from
the burden of metabolites accumulating
within it. For example, ricinoleic acid,
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a hydroxylated fatty acid that can be
used as an alternative raw material for
various petrochemical industrial prod-
ucts, was secreted as a result of over-
expression of phospholipase A gene in
Schizosaccharomyces pombe (Yazawa et al.,
2013). Ricinoleic acid was produced con-
tinuously during the culture period and
it accumulated in the culture supernatant
at a concentration that was ∼ 10-fold
higher than that observed in the absence
of overexpression of phospholipase A gene
(Yazawa et al., 2013, 2014) (Figure 1A-④).

An increase in enzyme production
is often achieved by overexpressing the
genes encoding the enzymes with the help
of promoters of constitutively expressed
genes or inducible genes in the pres-
ence of specific inducer molecules (e.g.,
IPTG). Enzyme-producing microorgan-
isms are considered to be best for the
overexpression strategy because they are
equipped with production systems com-
posed of chaperones, foldases (e.g., pro-
tein disulfide isomerase), and transporters
in addition to the enzyme-coding gene.
If overexpression is difficult in the orig-
inal strain, heterologous overexpression
is used as an alternative. Several Gram-
negative (e.g., E. coli) and Gram-positive
bacteria (e.g., Bacillus subtilis, Lactobacillus
lactis), yeasts (e.g., Saccharomyces cere-
visiae, Pichia pastoris, Hansenula polymor-
pha, Yarrowia lipolytica), and filamentous
fungi (e.g., A. oryzae, Aspergillus niger,
Trichoderma reesei) are commonly used
for heterologous overexpression (Liu et al.,
2013). However, if heterologous overex-
pression adversely affects the microorgan-
isms, the enzymes would not be produced
or their inclusion bodies would form (only
in case of E. coli).

In case of secondary metabolites, which
do not play a role in the normal growth
cycle of microbes and are produced by
secondary metabolic pathways function-
ing independently from the primary
metabolic pathway, the genetic compo-
nents are mostly unidentified to date. Even
if their molecular structures can be identi-
fied by NMR and mass spectrometry using
purified samples, it is usually difficult to
identify the genes involved in their syn-
thesis from these molecular structures.
This could be attributed to the fact that
there is no general rule that associates the
structure of a secondary metabolite with

the DNA sequence involved in the syn-
thesis. Exceptionally, in both polyketide
synthases (PKS) and non-ribosomal pep-
tide synthetases (NRPS), the relationship
between the amino acid sequence of the
functional domain and the structure of
the produced secondary metabolite has
been elucidated (Finking and Marahiel,
2004; Jenke-Kodama et al., 2005; Donadio
et al., 2007). However, many pharmaceu-
tical agents and pesticides of microbial
origin are secondary metabolites (Misiek
and Hoffmeister, 2007). Therefore, the
genes involved in their syntheses are
largely unknown, and to enhance their
production, conventional strategies such
as random mutagenesis are still used
predominantly despite the inefficiency
in screening mutants showing enhanced
production from randomly mutagenized
clones.

Between 2005 and 2007, second-
generation genome sequencers were
launched by three manufacturers, as
follows: the SOLiD system by Life
Technologies; the Solexa system by
Illumina (the system is replaced with
the subsequent ones named HiSeq and
MiSeq); the Genome Sequencer FLX sys-
tem by Roche. These systems enabled more
rapid and less labor-intensive sequencing
of microbial genomes, compared to the
conventional system. Thus, genomic DNA
of many microbial species and strains
were sequenced and registered in pub-
lic databases. However, simply knowing
DNA sequences does not allow identifi-
cation of the genes involved in secondary
metabolite synthesis because of the above-
discussed reasons. Thus, it is necessary
to somehow predict the genes involved
in synthesis from the data that already
exist. Three strategies can be potentially
used to predict the synthesizing genes.
The first is genome-wide comparison
of the genetic components between the
producing and non-producing strains
of the same microbial species. The gene
cluster involved in cyclopiazonic acid
biosynthesis by the fungus A. oryzae was
identified using this strategy (Tokuoka
et al., 2008). A tool for the prediction
of secondary metabolite gene cluster
was developed using the comparative
genomics approach (Takeda et al., 2014).
The second is referring to the genetic func-
tional characteristics of PKS and NRPS

predicted by web applications that search
for sequence homology (e.g., BLAST).
The PKS/NRPS gene involved in the syn-
thesis of the aspoquinolones A–D by the
fungus Aspergillus nidulans was identi-
fied using this strategy (Scherlach and
Hertweck, 2006). Using this strategy, four
tools such as “SMURF,” “anti-SMASH,”
and “CLUSEAN” were developed for
the prediction of gene clusters involved
in secondary metabolite biosynthesis in
filamentous fungi (Weber et al., 2009;
Khaldi et al., 2010; Medema et al., 2011;
Andersen et al., 2013; Blin et al., 2013).
The third strategy is genome-wide pro-
filing using “Omics” information such
as that obtained from the transcriptome,
proteome, and metabolome. Comparing
“Omics” data of the same strain while
it is in the producing condition vs. the
non-producing condition is considered to
be highly effective in identifying the tar-
get gene. The gene cluster responsible for
kojic acid biosynthesis in the genome of
A. oryzae was discovered using this method
(Terabayashi et al., 2010). Based on the
strategy, a program named “MIDDAS-M”
was constructed for the prediction of gene
clusters involved in secondary metabolite
production (Umemura et al., 2013). Using
the strategy, a secondary metabolite gene
cluster that had neither PKS nor NRPS
genes was found in the Aspergillus flavus
genome, which led to the identification of
the gene cluster involved in the biosynthe-
sis of the secondary metabolite ustiloxin
(Umemura et al., 2014). Reverse genetics
experiments such as gene knockout and
successive complementation are necessary
to confirm that the predicted genes func-
tion in synthesizing the product of interest.
If the genes involved in synthesizing sec-
ondary metabolites can be identified by
these trials, genetic modification could be
used to increase metabolite production.

Since secondary metabolites are final
products and do not seem to be prone to
conversion or degradation by the produc-
ing microorganisms, they should be stable
after synthesis. Furthermore, since they are
usually secreted out of cells, the produc-
ing microorganism would be free from
the stress of their accumulation. For these
reasons, it seemed highly feasible to over-
produce secondary metabolites by genetic
modification. For example, it is known
that in A. oryzae, the secondary metabolite
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penicillin is synthesized in small amounts
and secreted. When three enzyme-coding
genes included in the sequential biosyn-
thesis pathway were overexpressed in the
fungus, penicillin production increased
over 100-fold compared to the wild-type
strain (Marui et al., 2010) (Figure 1B-①).
It is also known that the genes impli-
cated in the synthesis of some secondary
metabolites compose gene clusters on
chromosomes (Keller and Hohn, 1997;
Brakhage and Schroeckh, 2011). In such
clusters, one gene often encodes a tran-
scription factor to regulate expression
of the whole cluster (Brakhage, 2013).
Therefore, overexpression of the transcrip-
tion factor gene leads to overexpression
of all the genes in the cluster, resulting
in a massively increased production yield
(Figure 1B-②). Well-established examples
of such transcription factors include kojR
in the kojic acid biosynthesis gene clus-
ter of A. oryzae (Marui et al., 2011), the
CtnR-like transcriptional activator gene in
the asperfuranone biosynthesis gene clus-
ter of A. nidulans (Chiang et al., 2009), and
apdR in the aspyridone A/B biosynthe-
sis gene cluster of A. nidulans (Bergmann
et al., 2007). Furthermore, the laeA gene
was found to encode a global regulator
of secondary metabolite genes, and its
overexpression increased the production
of penicillin and lovastatin in A. nidulans
(Bok and Keller, 2004). Overexpression
of laeA in A. oryzae also triggered the
expression of two clusters of heterolo-
gous biosynthetic genes (the monacolin K
(MK) gene cluster of Monascus pilosus and
the terrequinone A (TQ) gene cluster of
A. nidulans), resulting in the production of
the corresponding metabolite, MK or TQ
(Sakai et al., 2012) (Figure 1B-③).

To predict which genes are involved in
the synthesis of metabolites and enzymes
as well as to estimate which genes are
bottlenecks in their synthesis, biologists
sometimes need to analyze the enor-
mous dataset generated by both genome
sequencing and subsequent various exper-
iments in the “Omics,” i.e., transcriptome,
metabolome, proteome, etc. However,
many biologists do not seem to be well
versed in bioinformatics and the associ-
ated tasks involving programming. Thus,
it will be useful for them to master the
usage of various software provided in
packages or on websites, which interfaces

them with bioinformatics. It will also be
meaningful to collaborate with other sci-
entists or specialists of genomic informa-
tion analysis, statistical analysis, and enor-
mous data processing.

The technology used to predict strate-
gies appropriate for enhancing the pro-
duction of primary metabolites has been
established in the “Omics” research fields
(Copeland et al., 2012; Tomar and De,
2013; Toya and Shimizu, 2013). For exam-
ple, the COBRA toolbox is equipped with
some programs like the flux balance anal-
ysis (FBA) (Varma and Palsson, 1994)
involved in the technology. Any researcher
can utilize the programs by accessing the
COBRA toolbox via the MATLAB software
package (Zomorrodi et al., 2012). Using
these programs, the probability of creat-
ing mutant strains with increased ability
for production would increase. Therefore,
together with using the conventional “trial
and error” strategy, it is considered best
that researchers in the field also challenge
the use of the microbial metabolism sim-
ulation technology, which will enable an
increase in the yield of target primary
metabolites in a more efficient manner.
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