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Sex-specific outcomes in cancer
therapy: the central role of
hormones
Parisa Bakhshi1, Jim Q. Ho2 and Steven Zanganeh1*
1Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States,
2Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
Sex hormones play a pivotal role in modulating various physiological processes,
with emerging evidence underscoring their influence on cancer progression and
treatment outcomes. This review delves into the intricate relationship between
sex hormones and cancer, elucidating the underlying biological mechanisms
and their clinical implications. We explore the multifaceted roles of estrogen,
androgens, and progesterone, highlighting their respective influence on
specific cancers such as breast, ovarian, endometrial, and prostate. Special
attention is given to estrogen receptor-positive (ER+) and estrogen receptor-
negative (ER−) tumors, androgen receptor signaling, and the dual role of
progesterone in both promoting and inhibiting cancer progression. Clinical
observations reveal varied treatment responses contingent upon hormonal
levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-
androgens demonstrating notable success. However, disparities in treatment
outcomes between males and females in hormone-sensitive cancers
necessitate further exploration. Therapeutically, the utilization of hormone
replacement therapy (HRT) during cancer treatments presents both potential
risks and benefits. The promise of personalized therapies, tailored to an
individual’s hormonal profile, offers a novel approach to optimizing
therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs
and interventions targeting hormonal pathways heralds a future of more
effective and precise treatments for hormone-sensitive cancers. This review
underscores the pressing need for a deeper understanding of sex hormones in
cancer therapy and the ensuing implications for future therapeutic innovations.
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1 Introduction

Sex hormones, such as androgens and estrogens, are pivotal in dictating the

physiological and morphological differences between males and females (1). These

hormones extend their influence beyond reproduction, significantly modulating a myriad

of pathological processes, including cancer (2). Over time, the conventional

understanding of steroid hormones as transcription factors that predominantly regulate

reproductive organs has changed (3). Sex steroid receptors, including estrogen (ER),

progesterone (PR), and androgen (AR) receptors, were initially perceived as transcription

factors governing physiological and pathological responses in reproductive organs (4).

Upon hormone binding, these receptors were thought to translocate to the nucleus,

recognizing hormone-responsive elements (HREs) and regulating gene transcription (5).

However, recent studies have revealed different roles for steroid receptors that includes
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both non-genomic and genomic pathways (6). Beyond their classical

transcriptional functions, steroid receptors can rapidly activate

transduction pathways, such as PI3K/AKT or MAPKs, influencing

various physiological and pathological processes in diverse

anatomical sites (7). This paradigm shift in understanding

suggests that steroid receptors play a broader role in regulating

key genes, impacting organ development, function, and, notably,

contributing to the development and progression of cancers (8,

9). While classical hormone-related cancers like breast, prostate,

and ovary have been extensively studied, a growing body of

research investigates the influence of sex steroid receptors in

various cancers (10). Researchers are exploring the complex

relationships between steroid hormones and their receptors and

the prevalence of cancer in both men and women (6).
FIGURE 1

A visual representation comparing the prevalence of select cancer types in m
on each cancer are also indicated.
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Looking further into the extensive literature surrounding sex

hormones and cancer, reveals that these biological factors have

profound influence beyond their well-established roles in sexual

development (2, 11, 12). Sex hormones emerging as key players

in the complex landscape of cancer. As illustrated in Figure 1,

the incidence of specific cancers varies between males and

females. Such disparities are often attributed to the influence of

sex hormones (13). The nuanced interplay between sex

hormones and cellular pathways in different tissues can either

augment or suppress cancer’s onset, progression, and response to

therapies (14). Consequently, this interaction often manifests as

marked differences in cancer outcomes across sexes.

Androgens, predominantly testosterone, produced mainly by

the testes and in smaller quantities by the adrenal glands, drive
ales and females. The associated key hormones with potential influence
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the development of male reproductive tissues and the

manifestation of secondary sexual characteristics (15). Notably,

prostate cancer exhibits a profound association with androgen

levels, rendering androgen deprivation therapy a therapeutic

mainstay for affected individuals (16). Elevated androgen levels

also harbor implications for liver cancer (17, 18) and have hinted

at roles in bladder, kidney, lung, and breast malignancies (19, 20).

Conversely, estrogens, chiefly estradiol, produced in the

ovaries, with contributions from the adrenal glands and adipose

tissues, are essential for female reproductive organ growth,

menstrual cycle regulation, and secondary sexual characteristic

manifestation (21). In oncology, heightened estrogen levels are

unequivocally linked to breast tumor proliferation (22).

Additionally, the coordinated action of estrogens and their

specific receptors plays a critical role in the pathogenesis of

ovarian and endometrial cancers, highlighting their multifaceted

influence on female-centric malignancies (23–25).

However, the scope of these hormones transcends sex-specific

cancers. Intriguingly, estrogen-related pathways have been

identified as potential targets for improving immunotherapy

responses in melanoma, a skin cancer unconfined to sex-specific

occurrence (26). Moreover, novel insights suggest that estrogen

signaling, particularly in myeloid cells, fosters immune

suppression in melanoma, and targeting ERα could further

enhance immunotherapeutic outcomes (23). Concurrently,

interventions combining radiation therapy and Fulvestrant, an

estrogen receptor antagonist, have shown to bolster

immunotherapy responses in ER + breast cancer (27). Such

revelations accentuate the expanding horizon of hormonal

influences in cancer therapy (28).

The literature also highlights the importance of the immune

microenvironment and its interactions with estrogens and their

receptors in shaping therapeutic outcomes in breast cancer

(25, 29). Hormone receptor antagonism has been shown to

amplify the expression of immunotherapeutic targets on breast

tumors, suggesting a potential synergistic approach for treatment

(30). Furthermore, emerging evidence underscores the role of β-

estradiol in non-small cell lung cancer’s tumorigenesis, prognosis,

and therapeutic responses (31, 32). Sex differences in

immunotherapy responses are evident, necessitating exploratory

endeavors for novel therapeutic combinations (33, 34). The

synthesis, secretion, and equilibrium of these hormones can be

swayed by a constellation of factors including age, metabolic

status, and environmental exposures (35, 36). As we navigate the

intricate nexus of sex hormones and their omnipresence in the

oncological landscape, it becomes palpably clear that a

comprehensive understanding of these dynamics is not just

requisite but instrumental in paving the way for tailored, sex-

specific therapeutic paradigms, heralding a new epoch in cancer

care (37–39). Recognizing the profound influence of sex

hormones on immune modulation, researchers are harnessing

immunotherapy’s potential to tailor treatments based on

hormonal profiles. Such strategies have shown promise,

particularly when targeting hormone-responsive cancers,

underscoring the significance of understanding hormone-immune

system interplay (40–47).
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2 Biological mechanisms

2.1 Estrogen and its influence on cancer
progression

Estrogen, often used as a collective term for several related

hormones, plays crucial roles in numerous physiological

functions, particularly within the reproductive and cardiovascular

systems (48). Beyond these functions, estrogen’s interactions at

cellular levels have implications in oncology (49). Estrogen exerts

its effects primarily through its binding with specific intracellular

receptors, specifically estrogen receptor alpha (ERα) and estrogen

receptor beta (ERβ) (50). Such interactions initiate a cascade of

gene transcription events that in turn regulate protein synthesis

and dictate cellular actions vital for tissue morphogenesis, cellular

proliferation, differentiation, and apoptosis; processes intrinsically

linked with oncogenesis (2, 25).

Estrogen acts via both non-genomic and genomic signaling

mechanisms (51). The actions can be mediated either by

processes that do not involve direct binding to DNA (non-

genomic effects) or by direct binding of estrogen receptor

complexes to particular regions in gene promoters (genomic

effects). Direct genomic signaling is considered the classical

mechanism of estrogen signaling, and non-genomic signaling is

considered the non-classic mechanism (52).

In genomic signaling, estrogen binds to nuclear receptors (ERα

and ERβ), inducing conformational changes that lead to

dimerization and translocation to the nucleus. There, the

receptors bind to estrogen response elements (EREs) on DNA,

regulating gene expression directly (53). However, not all

estrogen-regulated genes have EREs, and approximately 35% of

estrogen-responsive genes lack them. When it comes to indirect

genomic signaling, estrogen receptors interact with transcription

factors like the activator protein (AP)-1, nuclear factor-κB (NF-

κB) and stimulating protein-1 (Sp-1), stimulating gene expression

without direct DNA binding. This mechanism involves

protein-protein interactions and influences target genes such

as LDL receptor, progesterone receptor, and endothelial nitric

oxide synthase (54).

Non-genomic signaling, on the other hand, operates outside

the nucleus and involves rapid responses (51). The GPER1

receptor and variants of ERα and ERβ are associated with this

pathway. Estrogen activates signal-transduction cascades,

including PLC/PKCs, Ras/Raf/MAPK, PI3K/Akt, and cAMP/PKA

pathways. These cascades result in the phosphorylation of

transcription factors, affecting gene expression indirectly. The

membrane receptors ERα and ERβ may interact with scaffold

proteins and membrane receptors, activating signaling cascades

and influencing transcriptional regulation (50, 55).

The crosstalk between genomic and non-genomic pathways

involves complex interactions between nuclear receptors,

membrane receptors, and various transcription factors. Two

proposed mechanisms include the dimerization of nuclear

estrogen receptor complexes with phosphorylated transcription

factors and the activation of protein kinase cascades at the plasma

membrane, leading to enhanced transcriptional activity (56).
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Furthermore, estrogen receptors can be activated independently of

ligands, triggered by phosphorylation events involving protein

kinases, inflammatory cytokines, cell adhesion molecules, and

growth factors. In summary, estrogen signaling is a multifaceted

process involving both genomic and non-genomic pathways, with

intricate crosstalk mechanisms contributing to the regulation of

gene expression in various cellular contexts (50).

Breast cancer serves as a prime example of estrogen’s

significant influence on oncogenesis. Estrogen-responsive breast

cancer cells utilize the hormone’s interaction with ERα to

promote cell cycle progression and inhibit apoptosis (57).

Furthermore, estrogen boosts the expression of certain growth

factors, including insulin-like growth factor (IGF) and vascular

endothelial growth factor (VEGF), enhancing tumor growth and

angiogenesis (58, 59). About 75% of breast cancer tumors express

ERα (60). Treatments for patients with these ERα-positive

tumors typically include selective ER modulators (e.g.,

Tamoxifen) (61), selective ER degraders (e.g., Fulvestrant) (62),

or aromatase inhibitors (63). Even though these treatments can

effectively restrict ER-positive breast cancer cell growth,

prolonged ERα inhibition may stimulate immunosuppressive

activities in these cells, triggering several immune checkpoint

processes (64, 65). Hormonal therapies, especially those targeting

ER+, are used in treating tumors that predominantly rely on

estrogenic signaling. On the contrary, ER- tumors, lacking these

receptors, tend to be more aggressive and require tailored

therapeutic strategies (66–68).

Elevated estrogen levels correlate with an increased risk of

ovarian cancer. The oncogenic properties of estradiol, a form of

estrogen, are particularly concerning when considering the

adverse effects of estrogen-only treatments during menopause

(69). Several studies have also indicated that estrogen may

promote the proliferation and migration of ovarian cancer cells

(70). The deeper mechanistic relationship between elevated

estrogen levels and increased ovarian cancer risk is still under

investigation (53, 54). Estrogen’s influence is also evident in

endometrial cancer. Prolonged exposure to estrogen without the

balancing effect of progesterone can heighten the risk of this type

of cancer (71, 72). In the context of prostate cancer, prevailing

treatments can sometimes result in castration-resistant forms of

the disease. Targeting specific ER subtypes (α or β) offers a

promising avenue for mitigating the growth and spread of

prostate cancer cells. Notably, ERβ has been identified as a

potential tumor suppressor, suggesting its activation could be

leveraged in therapeutic strategies against prostate cancer (73).
2.2 Androgens and cancer growth

Androgens, primarily testosterone and its derivatives, play

foundational roles in male physiology, governing secondary

sexual features, reproductive capacities, and bone health (74).

Testosterone, produced by Leydig cells in response to luteinizing

hormone, activates androgen receptor (AR) signaling in Sertoli

cells (SCs). The AR signaling pathway can be categorized into

classical and non-classical pathways (75).
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In the classical pathway, androgen binding to cytoplasmic AR

leads to nuclear translocation, dimerization, and binding to

androgen response elements (AREs) to regulate gene

transcription. This process is relatively slow, requiring 30–45 min

for transcriptional changes (75).

The non-classical pathway involves membrane-bound AR,

rapid activation within 1 min, and subsequent activation of

kinases such as Src, ERK, and Akt. These pathways play roles in

regulating gene expression, spermatogenesis, and cellular

processes (76). Three distinct non-classical signaling pathways

associated with testosterone action have been identified in the

testis. The first and main pathway involves the binding of

testosterone to membrane-bound AR, interacts with the SH3

domain of the SRC proto-oncogene (Src), and triggers a cascade

involving EGFR, Ras kinase, MAPK cascades (Ras-Raf-MEK-

ERK), and downstream transcription factors like cAMP-response

element-binding protein (CREB) (77). Another non-classical

pathway involves the PI3K/Akt pathway, activated by the PI3K

subunit p85α. An additional non-classical pathway specific to

immature Sertoli cells induces depolarization within the K+ ATP

channels, mediated by G protein-induced activation of

phospholipase C, resulting in a quick influx of Ca2+ and

subsequent activation of signaling molecules (75, 78, 79).

Beyond these primary functions, androgens have a pronounced

footprint in oncology, especially in prostate and breast cancers, and

are further implicated in other malignancies (80, 81). The prostate

gland is intricately sensitive to androgens, with cellular interactions

predominantly mediated through the AR. When androgens bind to

the AR, it triggers the activation of the receptor, facilitating its

transportation into the cell nucleus (82). Consequently, this

process plays a crucial role in modulating gene transcription,

which is vital for cellular growth and survival. This

physiologically essential pathway can, however, shift to

pathological roles, especially in early stages of prostate cancer

that exhibit androgen-driven growth. Such observations underlie

the therapeutic approach of androgen deprivation therapy (ADT)

for prostate cancer (83).

Beyond the prostate, the story of androgens grows more

complex. Dihydrotestosterone (DHT), a powerful derivative of

testosterone, has been shown to stimulate certain types of

breast cancer cells, suggesting an androgenic influence in

breast tumor biology (80, 81). Post-menopausal increases in

systemic androgen levels have also been linked to heightened

risks of endometrial cancer, possibly via indirect pathways

that bolster estrogen synthesis (84, 85). The AR has been

meticulously studied in cancers that display hormone

sensitivity, like the prostate and breast cancers mentioned.

Cancers that are AR-positive may depend on androgens for

growth and progression. Research hints at the significance of

AR signaling even in some hormone-independent cancers.

For instance, male prevalence in liver and stomach cancers

exceeds that of females, suggesting potential hormonal

influence (86). This observation extends to other malignancies

like bladder, kidney, pancreas, liver, endometrial, specific

lymphomas, and salivary gland cancers, in which AR

signaling might display varied effects (19, 87).
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With advancing research uncovering the diverse roles of AR,

there’s potential for developing treatments that target either AR

directly or its downstream signaling pathways. This perspective

offers promising avenues for cancer therapy (88). Additionally,

recent clinical insights suggest that ADT might enhance the

effectiveness of some immunotherapies, including immune

checkpoint inhibitors (89).
2.3 Progesterone and cancer interactions

A cornerstone for female reproductive processes, progesterone

also occupies a pivotal position in cancer biology. Progesterone acts

through both genomic (classical) and nongenomic (non-classical)

signaling pathways, affecting different tissues and potentially

having an impact on the development of cancer (90).

Classical progesterone receptors (PRs), including PR-A and

PR-B isoforms, operate as nuclear receptors, initiating

transcriptional changes upon ligand binding. These receptors

undergo conformational changes, dimerize, translocate to the

nucleus, and bind to progesterone response elements (PREs) to

regulate target gene transcription (91). Various PR isoforms, such

as PR-A, PR-B, PR-C, PR-M, PR-S, and PR-T, exhibit tissue-

selective signaling with distinct roles in organs like the mammary

gland and uterus. In classical signaling, progesterone plays a

crucial role in mammary gland proliferation, impacting pathways

like RANKL, CCND1 (Cyclin D1), and WNT-1. PR-B signaling

is predominant in normal mammary gland function, while PR-A

is crucial for uterine and ovarian functions. Prolonged exposure

to progesterone, as observed during the luteal phase, may lead to

dysregulated pathways and contribute to breast cancer (92, 93).

The non-classical progesterone signaling, highlighting rapid

progestin-activated pathways that involve membrane-associated

actions on EGFR, c-Src, and MAPK (94). Membrane

progesterone receptors (mPRs), a class of proteins that resemble

G protein-coupled receptors (GPCRs) in structure, mediate non-

classical signaling. The five mPRs (mPRα, mPRβ, mPRɣ, mPRϵ,

and mPRδ) activate MAPKs, ERK1/2, and intracellular Ca2+

influx. Additionally, membrane-associated progesterone receptors,
TABLE 1 Summary of sex hormone signaling pathways.

Hormone Signaling
pathways

Genomic
pathway

Non-
genomic
pathway

Intracellula
molecules

Estrogen Estrogen
receptor (ER)

ERα/ERβ, gene
transcription

Rapid activation
of signaling

PI3K/Akt, MA
ERK, SRC

Testosterone Androgen
receptor (AR)

AR, gene
transcription

Rapid activation
of signaling

PI3K/Akt, MA
ERK, JAK/ST

Progesterone Progesterone
receptor (PR)

PR, gene
transcription

Rapid activation
of signaling

PI3K/Akt, MA
ERK, NF-κB,

The presented table provides summary of sex hormone signaling pathways in cancer th

including main effects, target tissues, involved intracellular molecules, and the distinc

progesterone. It also delineates the specific signaling pathways activated by these hormo
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PGRMC1 and PGRMC2, contribute to non-classical signaling,

influencing cholesterol synthesis, cytochrome P450 (CYP)

enzymes, and intracellular heme transport (93, 95).

Progesterone roles in oncology are multifaceted, often marked

by a duality wherein it can either support or counteract cancer

progression, contingent upon its complex signaling interplay

(96). In the realm of breast cancer, progesterone occasionally

stimulates cellular growth, particularly when its receptors engage

with certain growth factors (97). However, in a contrasting light,

there are scenarios in which progesterone acts against breast

cancer by predominantly steering breast cell differentiation (39).

Interactions with other hormonal pathways, especially estrogen,

further complicate progesterone’s role. Often, it acts to temper

estrogen-driven cell proliferation in tissues, especially in the

endometrium. Any disturbances in this intricate balance, be it

due to a deficit of progesterone or an excess of estrogen, can

amplify risks associated with endometrial cancer (98).

A pivotal aspect of progesterone’s interaction with cancer

involves its interplay with other signaling pathways. Notably, its

communication with growth factors like insulin-like growth

factor (IGF) can modify cellular hormonal responses, a

comprehension of which can inform targeted therapeutic

approaches (38). When discussing colon cancer, combined

actions of estradiol and progesterone appear to be instrumental.

Their collective activity is posited to inhibit tumor proliferation

and induce apoptosis, perhaps through the activation of ERβ

(99). Research into progesterone’s effects on prostate cancer

(100), breast cancer (97), and ovarian cancer (101) paints a

complex picture with findings that are, at times, contradictory or

multifarious in interpretation.

As depicted in Table 1, a summary of the sex hormone

signaling pathways, focusing on estrogen, androgen, and

progesterone was provided.
3 Clinical outcomes and observations

Cancer treatment outcomes can vary greatly. Although

numerous elements play a role, recent research has highlighted
r Target
tissues

Main effects References

PK/ Uterus,
mammary
glands, bones

Regulation of menstrual cycle, bone
health, breast development,
cardiovascular protection

(50, 52, 54)

PK/
AT, SRC

Testes, muscle,
bone

Spermatogenesis, muscle
development, bone health, libido,
secondary sexual characteristics

(75)

PK/
SRC

Uterus,
mammary
glands, brain

Regulation of menstrual cycle,
pregnancy support, breast
development, neurotransmission

(93, 95)

erapy. This table presents an overview of the key aspects of sex hormone signaling,

t genomic and non-genomic pathways associated with estrogen, androgen, and

nes, underlining their crucial roles in cancer development and treatment outcomes.
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the crucial role of sex hormone levels in determining treatment

efficacy (37). This intersection of hormones and therapeutic

responses has rapidly emerged as a key area of focus. Table 2

offers a detailed summary of various sex hormones and their

links with particular cancers.
3.1 Sex hormone levels and treatment
efficacy

Hormonal status can be a major determinant in how patients

respond to cancer treatment. This is observed in hormone-

sensitive cancers like breast and prostate, but also others, such as

melanoma (121) and colon cancer (122, 123). Breast cancer’s

deep-rooted connection to hormones serves as a clear illustration.

Therapies that target estrogen pathways, such as Tamoxifen or

aromatase inhibitors, are beneficial for patients with ER+ tumors.

However, their efficacy diminishes in those with lower estrogen

levels (124). Additionally, combination strategies like radiation

therapy and Fulvestrant have shown improved immunotherapy

responses in ER+ breast cancer (27). In prostate cancer, the

success of androgen deprivation therapy (ADT) is built on the

understanding that these tumors often rely on androgens (125).
TABLE 2 Overview of sex hormones and their associations with various canc

Sex
Hormones

Associated
cancers

Role in
normal

physiology

Mechanism of
action

Rec
st

Estrogens (E2) Breast Regulate female
reproductive
system

Stimulates ER+ breast
cancer cell
proliferation

ER+ ∼
cases

Endometrial Regulate female
reproductive
system

Prolonged exposure
can lead to
hyperplasia

ER+C
in typ

Androgens (T) Prostate Regulate male
reproductive
system, muscle
mass, bone density

Fuels growth via
androgen-receptor
signaling

AR +
cases

Progesterone Ovarian Prepares uterus for
pregnancy

Suppresses ovarian
epithelial cell
proliferation

PR + V

Breast Prepares uterus for
pregnancy

In combination with
estrogen, affects breast
tissue development

PR +∼
cases

Prolactin Breast Regulates milk
production

Excessive levels
increase breast cell
proliferation

PRLR

Luteinizing
hormone (LH)

Testicular Stimulates
testosterone
production

In some cancers, can
stimulate cancer cell
growth

LHR +

Follicle-
stimulating
hormone (FSH)

Ovarian Regulates egg
maturation

Involved in early
stages of follicle
development;
potential role in
tumorigenesis

FSHR

The presented table provides a comprehensive overview of select sex hormones and

cancers with which it’s most commonly associated, its primary role in standard phy

mechanism by which the hormone may influence cancer development or progressi

preventative measures, and the common age range of onset for each associated

receptors can differ widely among individual cases, cancer subtypes, or across popula
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However, outcomes with ADT can vary significantly depending

on baseline testosterone levels. Additionally, long-term ADT

usage has been linked with an increased risk of colorectal cancer

(16, 126). As personalized medicine becomes a standard,

understanding how sex hormones influence treatment efficacy is

paramount (127). Additionally, advancements in biomedical

imaging, nanotechnology, COVID-19 research, and

immunotherapy hold potential to enhance the efficacy of sex-

specific cancer therapies. These fields, while not yet fully

integrated into sex-specific treatment paradigms, offer promising

avenues for exploring and understanding the impact of

hormones on cancer. While their direct contribution to sex-

specific therapy is still emerging, there is no doubt that these

interdisciplinary domains will significantly influence future

developments in this area (42–46, 128–164).
3.2 Sex hormone-targeting therapies

Sex hormones are undeniably influential in targeted cancer

treatments. Over the years, strategies that modulate these

hormones or their receptors have shown promise across various

cancers. Tamoxifen, for instance, has become a cornerstone for
ers.

eptor
atus

Treatment
implication

Potential
prevention
measures

Common
age of
onset
(years)

References

70% of Tamoxifen,
aromatase
inhibitors

Regular screening,
reduce HRT

50–70 (102, 103)

ommon
e

Progestins,
Hysterectomy

Reduce prolonged
unopposed E2

55–65 (104, 105)

Most Anti-androgens,
GnRH agonists

PSA testing,
Reducing T
therapy

65–75 (106–108)

aries Progestin
therapy

Regular pelvic
exams, birth
control

50–60 (71, 109, 110)

65% of Combination
hormone
therapy

Breast exams,
reduce prolonged
HRT

50–70 (97, 110, 111)

+ Varies Dopamine
agonists

Regular breast
exams, reduce
antipsychotic
drugs

40–60 (112–115)

Varies LH-releasing
hormone
therapy

Monthly testicular
exams

30–35 (116, 117)

+ Varies Surgical
removal,
hormone
therapies

Annual
gynecological
exams

40–50 (118–120)

their associations with specific cancer types. For each hormone, the table lists the

siological processes, its prevalence across genders (male vs. female), the general

on, potential therapeutic interventions targeting the hormonal pathway, potential

cancer. the term “Varies” within columns denotes that the presence of these

tions.
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ER+ breast cancer due to its ability to antagonize estrogen

receptors (165), significantly reducing recurrence rates.

Aromatase inhibitors, such as letrozole and anastrozole, by

decreasing estrogen production, hinder tumor growth (166). In

prostate cancer, anti-androgens like bicalutamide and

enzalutamide have revolutionized treatment by interrupting vital

growth signals (39, 167). Despite their efficacy, these therapies

are not without challenges. Tamoxifen might elevate the risk of

endometrial cancer in post-menopausal women, while aromatase

inhibitors can lead to bone loss (31, 168). While anti-androgens

are transformative, they come with cardiovascular risks and

might eventually lead to resistance (25, 169). Ongoing studies,

such as the development of selective estrogen receptor degraders

(SERDs) that interact with ER-positive immune cells, show

promise in enhancing the response to immune checkpoint

inhibitors in breast cancer (24).
3.3 Disparities in treatment outcomes
between males and females

Sex hormones intricately link to the differences observed in

treatment outcomes between males and females (170). Although

breast cancer is mainly found in women, its rare occurrence in

men brings unique challenges (38). Similarly, prostate cancer’s

androgen signaling complexities provide insights that can be

compared with certain breast cancers in females. Furthermore,

research in lung cancer has unveiled potential gender differences

in treatment responses. Some studies suggest women may have

more favorable outcomes with specific targeted therapies than

men (171, 172). Additionally, hormone-targeting agents can

induce gender-specific side effects; for instance, women on

aromatase inhibitors might deal with symptoms of estrogen

deficiency, whereas men on anti-androgen treatments might

develop gynecomastia (173). Conclusively understanding the

interplay among gender, sex hormones, and cancer treatments is

vital for optimizing patient care.
4 Therapeutic implications

4.1 Hormone replacement therapy (HRT)
and cancer outcomes

The therapeutic landscape for hormone-sensitive cancers is

vast and continually evolving. HRT, which is used in the

management of menopausal symptoms in women and conditions

such as hypogonadism in men, remains a contentious subject in

oncology (174). Although HRT has been seen to offer protective

effects against conditions like osteoporosis and improve quality

of life, its relationship with cancer is complex (175). Some

studies, like the Women’s Health Initiative, have shown an

increased risk of breast cancer with combined estrogen-progestin

therapy, while estrogen-only therapy might have a protective

effect. Additionally, other studies have highlighted an increased

ovarian cancer risk with prolonged HRT (165, 176), whereas
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evidence suggests a protective effect against colorectal cancer

(37). The effects of estrogen and its receptors on the immune tumor

microenvironment in breast cancer (25) further complicate this

dynamic. For breast cancer survivors, the use of HRT has been a

concern, especially in potentially reactivating dormant cancer cells

or progressing undetected micrometastases. When discussing

testosterone replacement therapy (TRT) in men, concerns analogous

to HRT in women arise, particularly regarding prostate cancer risk,

which is further complicated with evidence suggesting that long-

term androgen deprivation therapy for prostate cancer might

increase colorectal cancer risk (16). In summary, the correlation

between HRT and cancer remains intricate, highlighting the

necessity for individualized treatment plans.
4.2 Personalized therapies based on
hormonal levels

The trend in oncological treatments is shifting from a one-size-

fits-all approach to personalized strategies, recognizing the

importance of individual variations. For instance, the role of

hormones in influencing anticancer immune surveillance elements

underscores the importance of tailoring therapies based on

hormonal profiles (38). Treatments for breast cancer, like the

combination of radiation therapy and Fulvestrant, which has shown

enhanced immunotherapy response in ER+ breast cancers (27), are

reliant on the patient’s hormonal environment. Similar strategies are

evident in other cancers. For instance, estrogen signaling plays a role

in myeloid cells promoting immune suppression in melanoma,

suggesting that targeting these pathways might improve

immunotherapy response (23). As we move forward, treatments

might integrate hormonal profiling with genetic and molecular

markers, paving the way for more personalized and effective

therapies. Advanced biomedical imaging techniques have shed light

on the nuanced interactions between sex hormones and tumor

microenvironments, providing invaluable insights into differential

therapy responses in male and female patients and paving the way

for individualized treatment regimens (45, 141, 153, 154).
4.3 Future treatments targeting hormonal
pathways

The recognition of the interplay between hormones and cancer

progression has provided an avenue for new therapeutic

breakthroughs. There is increasing evidence suggesting potential new

treatments, such as the ERβ agonist LY500307 that suppresses lung

cancer metastasis by activating antitumor neutrophils (58), or the

utilization of newly designed SERDs that interact with ER-positive

immune cells to improve the response to immune checkpoint

inhibitors in breast cancer (24). The growing interest extends to

targeting enzymes involved in hormone synthesis and metabolism. As

biotechnological advancements like antibody-drug conjugates emerge,

these allow for a more targeted delivery to hormone-sensitive tumors.

The potential of gene therapy in modulating specific hormonal

pathways also presents promising avenues for treatment, especially
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when considering how sex steroid hormones might interact with DNA

repair components affecting genotoxic therapy response (165).

Additionally, insights into sex differences in immunotherapy

responses (33) highlight the potential of novel combinations that

might be more tailored to the individual’s hormonal landscape. As

our comprehension of the hormonal pathways in cancer deepens, it

opens the door to more innovative treatments, promising better

outcomes for patients. In the realm of personalized medicine,

biomaterials stand out by creating hormone-responsive matrices and

scaffolds for tissue engineering, enabling a more in-depth study of

hormone-tumor interactions and contributing to the development of

innovative therapeutic interventions tailored to specific hormonal

environments (132, 150, 157).
5 Conclusion

Sex hormones, as important regulators of numerous

physiological processes, wield profound influence on the

landscape of cancer therapy outcomes. This review underscores

the nuanced relationship between these hormones and various

cancers, revealing the intricate web of interactions that determine

therapeutic efficacy. From the direct implications of estrogen,

androgens, and progesterone on tumors such as those of the

breast, prostate, ovaries, and endometrium to the broader effects

on cancer treatment outcomes, the role of sex hormones is

indisputably significant. Clinically, it is paramount to consider

hormonal levels as influential determinants in therapeutic

decision-making. Their influence on treatment responsiveness,

especially in hormone-sensitive cancers, emphasizes the need for

a tailored approach in therapeutic strategies. Moreover, the

disparities witnessed in treatment outcomes between males and

females further accentuate the criticality of this consideration.

Yet, while strides have been made in recognizing and acting

upon these insights, much remains to be explored. Personalized

therapies based on an individual’s hormonal profile and future

treatments targeting hormonal pathways are avenues that hold
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immense promise. We strongly advocate for intensified research

efforts in this domain, aiming to refine therapeutic approaches

and develop strategies that cater to the individual intricacies of

each patient. By delving deeper into the realm of sex hormones

and their connections with cancer, the medical community

stands poised to usher in an era of enhanced therapeutic

precision and efficacy.
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