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This review article serves to highlight radiological services as a major cost driver for
the healthcare sector, and the potential improvements in productivity and cost
savings that can be generated by incorporating artificial intelligence (AI) into the
radiology workflow, referencing Singapore healthcare as an example. More
specifically, we will discuss the opportunities for AI in lowering healthcare costs
and supporting transformational shifts in our care model in the following
domains: predictive analytics for optimising throughput and appropriate referrals,
computer vision for image enhancement (to increase scanner efficiency and
decrease radiation exposure) and pattern recognition (to aid human interpretation
and worklist prioritisation), natural language processing and large language
models for optimising reports and text data-mining. In the context of preventive
health, we will discuss how AI can support population level screening for major
disease burdens through opportunistic screening and democratise expertise to
increase access to radiological services in primary and community care.
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1. Background

The ageing population, chronic disease burden, and rising healthcare costs are major

challenges facing healthcare systems worldwide. According to the World Health

Organization (WHO), by 2050, the world’s population aged 60 years and older is

projected to reach 2 billion, up from 900 million in 2015 (1). As people age, they are

more likely to develop chronic diseases such as diabetes, heart disease, and cancer, which

require long-term management and often lead to disability, reducing quality of life and

increasing healthcare costs. According to latest estimates by the Organization for

Economic Cooperation and Development (OECD), healthcare spending per capita is

projected to increase by an average of 2.7% annually across OECD countries between

2015 and 2060 and healthcare expenditure is set to outpace GDP growth to 2030 (2).

The situation in Singapore is similar, where healthcare spending is expected to form bulk

of the increase in government social expenditure by 2030 (3). Government healthcare

expenditure has grown exponentially in recent decades, seeing a 300% increase from the

year 2010 to 2020 (Figure 1). This disproportionate increase saw healthcare expenditure

taking up 18% of total government expenditure in 2020, up from just 8% in 2010 (4). In

short, healthcare spending in Singapore is rising at an unsustainable rate, fostering a

tremendous impetus for Healthier SG.
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fmedt.2023.1281500&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fmedt.2023.1281500
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1281500/full
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1281500/full
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1281500/full
https://www.frontiersin.org/journals/medical-technology
https://doi.org/10.3389/fmedt.2023.1281500
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


FIGURE 1

Increase in total operating expenditure (purple line) is due to a disproportionate increase in expenditure related to health (orange line) (4).
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2. Healthier SG in Singapore: adopting
the paradigm of population health

In line with a global shift towards Population Health, Singapore

recently launched Healthier SG with focus on five key features:

mobilizing family doctors to provide preventive care for

residents, creating health plans that encompass lifestyle changes,

regular health check-ups, and necessary vaccinations, engaging

community partners to assist residents in leading healthier

lifestyles, initiating a nationwide enrolment campaign for

residents to commit to seeing one family doctor and following a

health plan, and establishing essential support systems like IT,

manpower development plans, and financing policies to ensure

the success of Healthier SG (5). Overall, the greater emphasis on

preventative health aims to not only better manage chronic

disease burden but also reduce costs by keeping residents out of

hospitals and away from high-cost medical events.

The launch of Healthier SG is in line with the Quadruple Aim

of healthcare. The Quadruple Aim is a framework that was

developed to guide healthcare organizations and providers in (i)

improving population health, (ii) enhancing patient experience

and outcomes (iii) reducing cost of care and (iv) addressing

provider burnout (6).

Artificial intelligence (AI) has the potential to contribute to

each of the four components; for example:

i. Improving population health: AI is essential in analysing the big

data that comes with population health, identifying trends

thereby allowing healthcare providers to make informed

decisions about public health interventions.

ii. Improving patient experience: AI can be used to personalise

and streamline the patient experience, for example via AI-

powered chatbots, virtual assistants to provide immediate
Frontiers in Medical Technology 02
Q &A, and tracking individual health status and notifying the

patient for living behaviour change and clinical follow-up etc.

iii. Reduced healthcare costs: AI can help to identify waste and

inefficiencies in healthcare delivery, allowing for targeted

cost-saving interventions. At the same time, through early

warning and early discovery of health issues of each

individual, the proactive intervention could dramatically

reduce the overall treatment cost.

iv. Improving healthcare provider well-being: AI can automate

repetitive tasks in assisting anatomic structure delineation

(e.g., delineating coronary arteries on CT coronary

angiography), lesion finding and measurement (e.g.,

following up tumour progression through serial

measurements), reducing workload and freeing up more time

for meaningful patient interactions. Other examples include

improving the throughput for pathology reporting, radiology

reporting, and expediting triage for treatment.

The limitless possibilities of AI are beyond the scope of this

article. The following paragraphs will focus on radiology as a

major cost driver for the healthcare sector, and the potential

improvements in productivity and cost savings that can be

generated by incorporating AI into the radiology workflow.
3. Radiology as a major cost driver

Globally, radiology services are a major drive of increasing

healthcare costs. The amount that countries spend on

radiological services varies widely depending on several factors

such as the size of the country, population, healthcare priorities,

and the level of development of the healthcare system. Although

the exact expenditure by countries on radiological services is not
frontiersin.org
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readily available online, the increased cost can be extrapolated from

the commensurate increase in use of radiological services.

A 2018 report by OECD noted a significant increase in use of

radiological services over the past few decades. Between 2000 and

2016, the number of computed tomography (CT) scans and

magnetic resonance imaging (MRI) scans performed in OECD

countries increased by more than 60% and 80%, respectively (7).

The same report highlights that the use of radiological services

has increased faster than the overall growth in healthcare

spending, underlining the importance of making these services

more cost-effective as they become more prevalent.

To meet the rising need for advanced imaging technology,

skilled personnel or tools in the diagnostic field are essential and

recruitment and retaining talent adds to the increased cost. The

scarcity of skilled workers can be attributed to a stagnating

number of trained radiologists and radiological technicians,

against a backdrop of rising demand for radiology services. To

satisfy the demand for increasing cross-sectional imaging, Royal

College of Radiologists (RCR) in the UK has set a target of a

minimum of eight full-time equivalent (FTE) radiologists per

100,000 population. The 2022 number stands at 5.7 FTE per

100,000 population (8). In other high-income countries, the

proportion of radiologists per 100,000 population varies between

4.7 (minimum) and almost 12.0 (maximum) in Sweden. The US

reported 8.7 radiologists per 100,000 population in 2014 (9).

Singapore has a relatively lower workforce per capita and are

still playing catch-up in our service provision to meet the needs

of the population. In Singapore, the ratio of radiologists per

100,000 population was 5.2 (with a total of 286 radiologists) in

2014. This figure rose to 6.4 (with a total of 357 radiologists) in

2017 and further to 7.2 (with a total of 409 radiologists) in 2020,

as reported in (10). Similarly, the ratio of radiological technicians

per 100,000 population increased from 23.8 (with a total of 1,300

technicians) in 2014 to 28.1 (with a total of 1,579 technicians) in

2017 (11). While these growth rates seem promising, it is crucial

to make sustained efforts to maintain a steady influx of next-

generation radiologists and radiological technicians to meet

future demands.

In addition to bolstering the workforce, adoption of AI into

radiology workflows can also lead to improvements in

productivity, at the same time delivering significant cost savings.

Increased productivity via AI can be achieved in many ways and

while it is challenging to quantify the cost savings for each

particular use case, some surrogate markers (interpretation time,

scan time, waiting time etc.) provide related information. For

example, deep learning models developed in Singapore improved

productivity in conventional radiography interpretation (22%

reduction in turn-around time) during real-world clinical

deployment (12) and even had an impact on reporting times of

more advanced modalities such as MRI scans (13). An

automated triaging solution in UK reduced average reporting

delay from 11.2 to 2.7 days for critical imaging findings (14). A

recent US-based study estimates 25% cost savings from early

diagnosis of cancers (15), an achievable goal with AI assistance

and/or augmentation. We are at cusp of mainstreaming AI into

clinical practice. Early work has shown marginal improvements.
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With more widespread adoption, we can expect a more

significant improvement in productivity.

The recent launch of Healthier SG will effect a transformational

change in healthcare delivery in Singapore. Investing in primary

prevention of diseases presents opportunities for radiological

services to contribute more effectively to the health system.

Although diagnostic radiology plays a vital role in healthcare, the

current care model is typically centred around tertiary facilities

and focuses on high-end cross-sectional imaging at late disease

stages. As part of the healthcare system, radiology must shift its

focus towards enhancing general population health and

promoting early diagnosis and intervention. Adopting a value-

based care approach is crucial to avoid escalating healthcare

costs, over-testing, potential adverse patient outcomes, and

overburdening limited healthcare resources (16). Healthcare of

the future will be more proactive rather than reactive; radiology

is not spared from this inevitable paradigm shift, and this can all

be enabled by AI. The next few paragraphs will touch on the

opportunities for AI in lowering healthcare costs and supporting

transformational shifts in our care model.

In the next section, we discuss in greater detail how and what

AI can do in the modern radiology workflow, we will also examine

the key issues revolving the design and utility of AI models for

them to have any significant impact.
4. How AI can help: opportunities for
AI in the radiology workflow and
lowering healthcare costs

In this section, we examine the opportunities AI present in

radiological services regarding healthcare cost reduction and

supporting transformational shifts in the healthcare model. In a

typical radiology workflow, the clinician orders an imaging

examination for the patient, scheduling occurs, and patient

arrives on the examination day, possibly having done some pre-

imaging preparation (e.g., fasting, stopping anti-coagulants for

procedures etc.). Further patient preparation takes place (e.g., IV

cannulation, checklist for metallic implants etc.) before image

acquisition. The images are then processed before materializing

on a worklist for radiologists to interpret and report.

With that the aforementioned in mind, the ensuing discussion

will be following the radiologic imaging and diagnostic workflow:

(i) Prior to image acquisition (ii) Image acquisition, processing

and triage (iii) Image interpretation and reporting. Finally, we

will touch on the (iv) Role of radiology in population health.
4.1. Prior to image acquisiton

To improve productivity, lower healthcare costs and increase

efficiency, technological solutions must be deployed beyond the

imaging suite. In Singapore, Changi General Hospital

demonstrated a 17.2% improvement from baseline no-show rates

via telephone reminders triggered by AI identification of high-

risk patients (17). Defaulted radiology appointments can have
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significant downstream effects, delaying corresponding clinical

appointments and thus treatment. Later-stage diseases are harder

and costlier to address.

Apart from reducing no-show rates, inappropriate use of imaging

services should also be curbed. The Agency for Care Effectiveness,

Ministry of Health (MOH) in Singapore launched the

Appropriateness Criteria for Use of Imaging Technology (ACUITy)

project in 2018. Radiologists oversaw this project, but they also

enlisted the assistance of multidisciplinary panels from other

Chapters and Colleges of the Academy of Medicine, Singapore

(AMS). Today, three ACE Clinical Guidances (ACGs) spanning

several imaging modalities and numerous clinical scenarios have

been published, developed, and endorsed. The published ACUITy

recommendations state when to order a chest radiograph (2021),

when not to order a CT/MRI scan for a headache (2022), and

when to order an MRI scan for low back pain (2020) (18).

How then, do we assimilate these guidelines into AI models to

avoid over-utilisation? In Singapore, as a behavioural cue for

ordering clinicians to adhere to best practice standards, MOH

and Singhealth in Singapore worked together to hardwire the

“MRI for low back pain” ACG as a radiology order form into the

electronic medical records (EMR) system. Similarly, to facilitate

deployment in US and parts of Europe, appropriate use criteria

have been commercially integrated as clinical decision support

tools into EMR and order system. An example of this is the

American College of Radiologist (ACR) Select® (19).

In another Singaporean example, Kedang Kerbau Women’s

and Children’s Hospital (KKWCH) developed and implemented

a deep learning model that enables automatic triaging of

unstructured free-text paediatric MRI brain orders, in accordance

with American College of Radiology (ACR) appropriate use

criteria (20). This allows quicker and more appropriate

disposition of patients to either ultrafast/abbreviated protocols or

routine MRI brain, with the latter reserved for requests with

higher probability of having brain abnormalities. Integrating

evidence-based guidelines with machine learning can help to

streamline the triaging process, allowing for more cost-effective

use of limited, valuable resources (20).
4.2. Image acquisiton, processing and triage

AI shows tremendous promise in the field of MR imaging

processing. SwiftMRTM is the flagship product of AIRS Medical, a

healthcare AI startup based in Korea. By reconstructing high-quality

images from a shorter, low-quality scan, SwiftMRTM promises to half

the MRI scan time (21). The technology also seamlessly integrates

into existing imaging infrastructure without the need for additional

hardware, thus potentially reducing overhead costs while improving

productivity within a short span of time. Without compromising on

image quality, the shorter scan times can help healthcare institutions

tackle their MRI backlog, potentially bringing forward diagnoses and

thus treatment. In another example, with the help of AI and

generative networks, investigators successfully outperformed state-of-

the-art compressed sensing MRI reconstruction methods in both

speed and image quality (22). The cost-effectiveness of such
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revenue while at the same time reduce costs. SwiftMRTM expects its

technology to increase the expected annual revenue of each MR

scanner by USD$900,000 (23).

In the field of CT, shortening scan times may not have a similar

outsized impact. Instead, AI can add value in reducing ionizing

radiation via acquisition of sparse view images compared to

conventional CT images while maintaining image quality (24,

25). Other major benefits AI solutions can bring include assisting

with pre- and post-processing for CT image optimisation with

the goal of reducing contrast media exposure, reducing need for

repeat scans and improving picture quality (26). If these tasks

can be automated or at least semi-automated, radiographer

productivity can be improved.

Fluoroscopy remains an indispensable tool in diagnostic radiology,

interventional radiology and endoscopic surgery. Bang et al. showed

that an AI equipped fluoroscopy system for endoscopic surgery

successfully reduced radiation exposure to patients as well as scatter

effect to endoscopy personnel (27). In interventional radiology, 3D

digital subtraction angiography images can be obtained from ultra-

sparse 2D projections thus reducing radiation dose without

compromising on fluoroscopic image quality (28).

In conventional radiography, the focus of AI solutions shifts to

interpretation and worklist prioritisation. During the COVID-19

pandemic, a collaboration between Tan Tock Seng Hospital,

Institute for Infocomm Research (I2R, A*Star) and Institute of

High Performance Computing (IHPC, A*Star),, developed

RadiLogic, a deep learning model that interprets chest

radiographs quickly, prioritising abnormal radiographs for early

review by the radiologist (12). The team successfully deployed

the solution in a real-world clinical setting and effected a 22%

reduction in turnaround times (12). Such AI tools not only

improve productivity of the radiologists but also streamline the

clinical workflow by prioritising sick patients that require quicker

disposition, especially in the setting of an infectious disease.

Pattern recognition without human bias and human error is a

key advantage of AI technologies. This can manifest as models

identifying the design of a failed total hip replacement implant

pre-operatively, thus saving time and reducing overall healthcare

costs (29) or as models providing real-time automatic prediction

of treatment response to transcatheter arterial chemoembolization

for hepatocellular carcinoma (30).
4.3. Image interpretation and reporting

In a recent article, we reviewed the AI technologies for prostate

MRI interpretation as well as automated organ and lesion depiction

for the purpose of co-registering across modalities to enhance and

personalise diagnostic and treatment methods based on clinical risk

of malignancy (31). AI successfully reduces the workload of

radiologists and urologists via (i) automatic delineation of

suspected cancer regions, (ii) planning of biopsy by aligning MRI

and ultrasound images, and (iii) guiding real time ablation.

Similar applications using convolutional neural networks to

detect brain metastases using T1 MRI have been reported (32).
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AI optimisation of radiology reports comes in the form of

natural language processing (NLP) algorithms. Efforts to convert

unstructured free-form text into structured reports have been

promising (33) and is seen as a leap of improvement from voice

recognition software.

As healthcare moves towards evidence-based algorithms for

disease management, it becomes crucial for referring physicians to

have quick and efficient access to actionable radiological reports

(34). The use of structured reporting templates makes it easier for

readers to comprehend the information and helps radiologists in

including all relevant details without any omissions, while

presenting the information in a consistent and organized manner.

The Asian Oceanian Society of Radiology is currently

undertaking a survey at the regional level to assess the knowledge,

attitudes, and practices of radiologists and referring clinicians. This

is the first step towards promoting widespread adoption of

structured radiology reports. In the same vein, Radiological Society

of North America (RSNA) has amassed more than four hundred

report examples of best practices for diagnostic reporting (35).

The advent of ChatGPT has brought the world’s attention to

large language models. With a written or dictated report

accompanying almost every radiographic study, language

processing models are inevitable in the field of radiology. Apart

from the aforementioned, NLP models and structured reporting

provide the opportunity for extensive data mining for creating AI

and predictive algorithms (36). Furthermore, these language

models can provide a framework for efficient audit via auto-

annotation and report classification (37).
5. Precision care in population health

Screening is a cornerstone of Population Health, as preventive

and participatory health takes centre-stage (5). The myriad use

cases AI has in oncologic screening and imaging are well-

documented (38), it is the opportunistic screening of major

chronic diseases that bears further discussion.

Opportunistic screening refers to the detection of abnormal

findings unrelated to the primary indication for imaging studies

(e.g., detecting an adrenal nodule in a CT scan done for

appendicitis). In the case of population, preventive and

participatory health, this incidental imaging data can be used for

purpose of wellness, prevention, risk profiling or presymptomatic

detection of relevant disease. For example, in the field of

osteoporosis and fragility fractures, both CT and MR-based AI

algorithms have been shown to be useful in deriving bone

mineral density (39, 40), helping to identify patients who are at

risk and in turn reduce the burden that frailty has on the

healthcare system. Automated CT-based algorithms analysing

vertebral trabecular HU match current clinical reference standard

FRAX for predicting risk of future osteoporotic fractures (41).

Furthermore, FRAX is cumbersome and requires manual entry of

a dozen data points.

In the field of metabolic syndrome and cardiovascular disease,

qualitative and quantitative analysis of body composition and

adipose tissue depots using MR and CT have shown promise
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(42–45). Automated quantitative tissue biomarkers derived from CT

scans can outperform established clinical parameters (Framingham

risk score and BMI) for pre-symptomatic risk stratification for future

serious adverse events and for predicting metabolic syndrome

(42, 46). These tools can potentially allow for early detection of

patients at risk, triggering early treatment protocols and thus reduce

the overall chronic disease burden. These are especially important in

any modern society grappling with an ageing population.
6. Democratization of radiology
expertise through AI

AI can enable democratization of healthcare expertise to the

population, thereby enhancing personalized care (47–49).

However, we opine that the niche domain of radiology should

reside primarily within the provider space. Instead, radiologist

skill sets and insights derived from imaging examinations can

be incorporated into AI algorithms and democratized to other

healthcare practitioners. This is perhaps best illustrated in a

hypothetical example (50): a patient with history of heart

failure and on fluid restriction consults with a primary care

clinic for breathlessness. He undergoes a chest radiograph and

quickly gets up-triaged because the polyclinic’s built-in AI

algorithm (trained, monitored and audited by radiologists)

diagnoses pulmonary congestion, pleural effusions and

cardiomegaly. The attending physician rightfully refers him to

the emergency department expeditiously where he gets the

intravenous diuresis he requires. All this can happen just as a

radiologist’s report is churned out.

From the example above, we see that we would not only

address shortages in radiologist manpower, but also empower

non-radiologists to utilize radiology findings for clinical decision-

making at the point of care. In the context of Population Health,

the value proposition is strongest for physicians at the front-line,

notably primary and community care providers. Here is where

timely assessment and right-siting of care will see expedited

treatment for patients requiring care in tertiary facilities, and

continuation of care for lower acuity patients within the

community setting, thereby lowering overall cost of care provision.
Conclusion

In summary, AI can significantly transform the practice of

Radiology, by improving productivity of the radiology workforce,

while creating new opportunities to better support precision care

in the global shift towards Population Health.
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