
ORIGINAL RESEARCH
published: 05 April 2022

doi: 10.3389/fmedt.2022.856412

Frontiers in Medical Technology | www.frontiersin.org 1 April 2022 | Volume 4 | Article 856412

Edited by:

Saideh Ferdowsi,

University of Essex, United Kingdom

Reviewed by:

Tatiana Kameneva,

Swinburne University of Technology,

Australia

Victoria Vysotska,

Lviv Polytechnic, Ukraine

*Correspondence:

Swapna Sasi

p20190054@goa.bits-pilani.ac.in

Specialty section:

This article was submitted to

Medtech Data Analytics,

a section of the journal

Frontiers in Medical Technology

Received: 17 January 2022

Accepted: 08 March 2022

Published: 05 April 2022

Citation:

Sasi S and Sen Bhattacharya B (2022)

In silico Effects of Synaptic

Connections in the Visual

Thalamocortical Pathway.

Front. Med. Technol. 4:856412.

doi: 10.3389/fmedt.2022.856412

In silico Effects of Synaptic
Connections in the Visual
Thalamocortical Pathway
Swapna Sasi* and Basabdatta Sen Bhattacharya

Computer Science and Information Systems, Birla Institute of Technology and Science (BITS) Pilani, Sancoale, India

We have studied brain connectivity using a biologically inspired in silicomodel of the visual

pathway consisting of the lateral geniculate nucleus (LGN) of the thalamus, and layers 4

and 6 of the primary visual cortex. The connectivity parameters in the model are informed

by the existing anatomical parameters from mammals and rodents. In the base state,

the LGN and layer 6 populations in the model oscillate with dominant alpha frequency,

while the layer 4 oscillates in the theta band. By changing intra-cortical hyperparameters,

specifically inhibition from layer 6 to layer 4, we demonstrate a transition to alpha mode

for all the populations. Furthermore, by increasing the feedforward connectivities in

the thalamo-cortico-thalamic loop, we could transition into the beta band for all the

populations. On looking closely, we observed that the origin of this beta band is in

the layer 6 (infragranular layers); lesioning the thalamic feedback from layer 6 removed

the beta from the LGN and the layer 4. This agrees with existing physiological studies

where it is shown that beta rhythm is generated in the infragranular layers. Lastly, we

present a case study to demonstrate a neurological condition in the model. By changing

connectivities in the network, we could simulate the condition of significant (P < 0.001)

decrease in beta band power and a simultaneous increase in the theta band power,

similar to that observed in Schizophrenia patients. Overall, we have shown that the

connectivity changes in a simple visual thalamocortical in silicomodel can simulate state

changes in the brain corresponding to both health and disease conditions.

Keywords: thalamocortical model, in silico model, visual pathway, neural mass model, brain rhythm, frequency

band transition, schizophrenia

1. INTRODUCTION

Brain signals such as Electroencephalogram (EEG), Steady State Visually Evoked Potentials
(SSVEP) and Local Field Potentials (LFP) are commonly used in research to understand and
identify their correlation with the functional and behavioral states of the brain. Frequency domain
analysis is an established, and by far the most popular way of analyzing these brain signals. Broadly,
brain signal frequencies are clustered into five bands viz. Delta [δ: 0.5–4 Hz], Theta [θ : 4–8 Hz],
Alpha [α: 8–12 Hz], Beta [β : 12–30 Hz] and Gamma [γ : >30 Hz] (1); in many studies, each band
is further subdivided into sub-bands (2). Psychophysical studies associate these frequency band
oscillations, often termed as “rhythms,” with different brain states in healthy adults. The δ frequency
band is usually linked to deep sleep (3); θ oscillations in the neocortex are reported in memory
and learning processes as well as in synaptic plasticity (4); α oscillations are most prominent
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during awake and resting state with eyes closed (1); β oscillations
are associated with a high arousal state of the brain for example
during sensorimotor activity (5); γ oscillations are associated
with attention, consciousness, memory and perception (3). At the
same time, alterations in brain rhythms are reliable neuromarkers
in several neurological conditions. For example, a reduction in
the β band power is a consistent observation in Schizophrenia
patients (6); α rhythm slowing is a definitive marker in
Alzheimer’s (7) and chronic pain patients (8). The differences
in the neuronal microcircuits influenced by their underlying
synaptic connectivities and attributes are thought to underpin
brain rhythmic changes (3); for example decrease in the white
matter volume as well as in the overall GABA-ergic inhibition is
reported from post-mortem studies of Schizophrenia patients (9).
Although much is now known about the correlations between
various brain oscillatory states and inter-region connections in
the brain, it is hard to understand and identify exact pathway
aberrations in disease condition, thereby making it difficult
to provide effective treatment. In this regard, in silico models
are used by many research labs to study and suggest effective
treatment for brain disorders (10, 11). We have been using in
silicomodels as ameans to understand better the neural dynamics
that underpin various brain oscillatory states. Here, we have used
an enhanced version of an existing in silico model to understand
the effects of synaptic connectivity changes on the oscillatory
dynamics within the θ , α, and β frequency bands.

Recently, we have demonstrated the phenomenon of phase
entrainment with periodic flicker visual input in an in silico
model (12). The model consisted of three neural structures that
lie in the brain visual pathway, viz. the lateral geniculate nucleus
(LGN) of the thalamus that receive direct input from the retinal
spiking neurons; Layer 4 (L4) of the primary visual cortex that are
direct recipient of the visual information from the LGN; Layer
6 (L6) of the primary visual cortex that receive feed-forward
input projections from the L4, and provide feedback to the LGN.
This layout of the model is an abstraction of the thalamocortical
loop in the brain that is essential for generating brain signals for
example sleep rhythms (13). The intra- and inter-layer synaptic
connectivity parameters for L4 and L6 in the model were based
on the anatomical data from the cat primary visual cortex (14).
However, the L6 also receives feed-forward projections from the
LGN (15), which was not included in the model. In this work, we
have presented an enhanced version of the previous model. First,
we have included the feed-forward pathway from the LGN to
the L6. Second, we have considered all synapses formed between
any two populations in L4 and L6 irrespective of the layer where
they were formed. For example, the excitatory projection neurons
that have their perikarya in L4 also have dendritic projections
in layer 5 (L5); similarly, the excitatory projection neurons that
have their perikarya in L6 also project their axons to L5 and
make pre-synaptic contact with L4 dendrites. This is unlike in
our above-mentioned previous work (12), where we considered
only those synapses which were made within the L4 and L6. Our
modified approach is more biologically realistic and has resulted
in an alteration of our base synaptic parameter values compared
to that in the previous work. Third, we have addressed missing
values in the anatomical data, the details of which are mentioned
in section 2.

Our objective in this work is to study the synaptic
connectivity changes that underlie alterations of the model
signal power in the frequency spectrum for healthy, as well
as neurological conditions. We have demonstrated the effect
of “lesioning” (disconnecting) synaptic connections in specific
pathways of the in silico model that shift the dominant
oscillatory frequencies of the neuron populations. We have
identified specific pathways in the intact visual thalamocortical
loop that cause transitions from the base oscillatory frequency
of the neural populations to a state with maximum power
within the θ , α, and β bands. The identified synaptic
pathways that underlie these state transitions agree with existing
anatomical and physiological studies; we have discussed the
details in section 4. To test the in silico model for simulating
neurological conditions, we have demonstrated the decrease in
β band power reported in Schizophrenia patients compared
to controls (6, 9, 16). The critical factors to simulate the
condition of Schizophrenia in silico are: an overall decrease in
the excitatory and inhibitory membrane conductance; reduction
in the feedforward excitatory projection signals from the LGN
to L4. In summary, our results demonstrate the usability of
a simple in silico model of the brain thalamocortical loop,
informed by anatomical and physiological synaptic layout and
connectivities, to understand the neural pathways that underpin
brain oscillatory changes, as well as to validate and inform
psychophysical studies.

The layout of this article is as follows: In section 2, we
detail the biological basis of the model and the anatomical
sources that inform the parameterization of the model synaptic
pathways. The simulation methods are also specified. The
simulation results and observations are mentioned in section 3.
In section 4, we make a detailed discussion of our observations
in context to findings from anatomical, physiological and
psychophysical research. Concluding remarks are mentioned in
section 5.

2. MATERIALS AND METHODS

The thalamocortical model is shown in Figure 1. In section 2.1,
we present the biological basis of the model synaptic layout
and the data sources for the synaptic connectivity parameters
used in the model. In sections 2.3 and 2.4, we present
the parameterization and simulation methods, respectively, of
the model.

2.1. Background
The mammalian neocortex is known to have six stratified layers
with distinct cell types (17). The direction of the layers is from the
inside of the skull (Layer 1) toward the deeper brain. In addition,
the neocortex is also known to have a columnar structure, where
each adjacent column consists of the six cell layers. The primary
information carrying excitatory cell populations of the neocortex
are the Pyramid cells. In contrast, there are a myriad of inhibitory
cell types that are mainly identified by their physical shapes, and
are broadly classified as Basket and non-Basket cells. The layered
and columnar architecture, along with the different cell types
are largely similar in the different parts of the neocortex even
if they cater to different brain functions; the main difference is
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FIGURE 1 | The biologically inspired population neural network consists of three modules viz. Layer 4 (L4), Layer 6 (L6) of the primary visual cortex, and the visual

thalamus [Lateral Geniculate Nucleus (LGN)]. The LGN neural populations receive inputs from the retina (Ret). The Relay cells (TCR) of LGN project on to the L4 and

L6 populations. Connection between L4 and L6 are bidirectional. The L6 populations project back to the LGN, thus forming a closed loop. Both cortical layers are

provided with noisy inputs simulating excitatory (Asy) and inhibitory (Sy) projections from other parts of the cortex. The outputs of this in silico model are the time series

responses of excitatory populations from each of the three modules viz. TCR cells of the LGN, Py4 cells of L4, and Py6 cells of L6. The excitatory and inhibitory

synaptic connections are shown as AMPA-based and GABAA-based, respectively. (inset) Show-casing samples of random noise inputs for 200 ms.

TABLE 1 | The parameters used in (1) – (5) that define the model framework.

(I) Neurotransmission parameters

Parameters Value Synapse type (9)

α9 ((mM)−1.(s)−1) 100 AMPA,GABAA

β9 (s−1) 50 AMPA

50 AMPA

40 GABAA

g9
max (µS/cm2) 1000 GABAA

300 AMPA(Ret to TCR)

100 AMPA(Ret to IN) (TCR to TRN)

E9
rev (mV ) 0 AMPA

–85 GABAA(inter-population)

–75 GABAA(recurrent)

(II) Cell Membrane parameters

Parameters Ret TCR IN TRN Py4, Py6 B4, B6 SS4 Asy Sy

glk (µS/cm2 ) X 10 10 10 10 10 10 X X

E lk (mV ) X −55 −72.5 −72.5 −55 −72.5 −55 X X

Vrest (mV ) −65 −65 −75 −85 −65 −85 −65 −65 −75

‘X’ indicates that these values are not used or required in the model.
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TABLE 2 | The table shows the absolute number of synapses formed by each presynaptic and postsynaptic cell types in each of the cortical layers.

Pre→ Post↓ Py2/3 SS4(L4) SS4(L2/3) Py4 Py5(L2/3) Py5(L5/6) Py6(L4) Py6(L5/6) X/Y Asy B2/3 B4(B6) B5 Sy db2/3

B4(B6) 188.3 355.2 121.7 135.8 36.4 1.6 980.2 0.8 52.2 793.1 16.8 349.1 0 173.1 26.1

Py4 815.2 583.6 243.3 282.5 127.7 4.5 1602.4 5.3 84.9 1957.3 57 472.8 2.6 388.4 75.7

Py6(L4) 709.8 294.4 131.1 213.3 154.1 170.8 711 452.4 54.7 2518.6 20.6 136.9 26.6 744.5 24.1

Py6(L5/6) 449.4 80.9 83 123.7 58.9 274.5 160.6 740 37.1 3406.8 22.5 23.4 21.4 917.5 21.3

SS4(L2/3) 277.6 562.2 190.4 212.3 55 2.5 1551.2 1.3 82.6 1255.8 22.1 462 0 273.8 40

SS4(L4) 157.4 687.8 212.5 236.7 44.8 3.1 1895.3 1.6 101.2 1540.1 10.9 529.7 0 333.4 37.1

It is based on the modified version of Peter’s rule where (14) assume that synaptic densities on dendrites are independent of the cell types. Inter- and intra-layer afferents to the L4 and L6

populations are extracted from (14) [see Tables 1-5 in (14)]. Py, B, SS and db indicate the Pyramid, Basket, Spiny Stellate and double bouquet (non basket variety) neuron populations,

respectively, where the numeric suffix represents the cortical layer index; Asy and Sy are the Asymmetric (excitatory) and Symmetric (inhibitory) afferents, respectively, from other regions

of the cortex; X/Y represent the afferents from the LGN. Readers may note that non-basket cells are not included in this work as the available data do not show any efferent connections

of this variety in L4 and L6; thus, our results remain unaffected by this abstraction.

TABLE 3 | The synaptic connectivity parameters derived from Binzegger et al. (14) and set as the base state of the model.

Pre→ Post↓ TCR TRN IN Py4 SS4 Py6 B4 B6 Asy Sy Ret

TCR - 23.175* 7.725* - - 62* - - - - 7.1*

TRN 35* 20* - - - 50* - - - - -

IN - - 23.6* - - 29* - - - - 47.4*

Py4 1.2 - - 4 11.6 22.5 6.6 6.6 27.3 5.5 -

SS4 1.6 - - 3.9 14.1 29.4 8.5 8.5 23.8 5.2 -

B4 1.5 - - 3.8 13.4 27.5 9.8 9.8 22.2 4.9 -

B6 1.5 - - 3.8 13.4 27.5 9.8 9.8 22.2 4.9 -

Py6 0.8 - - 4.3 4.6 16 1.3 13 45.8 12.9 -

The parameters set to ‘*’ are as in our previous models (2, 12). All other parameters are derived from Table 2, and are a part of model enhancement; the parameter marked in bold is a

model hyperparameter and set by trial and error to set the membrane potential of Py6 to ≈-60 mV (see section 2.3 for details). The ‘-’ indicate an absence of anatomical connection.

in the synaptic connectivities that specific parts of the neocortex
forms with the subcortical structures as well as with other parts
of the neocortex.

Our interest in this work is the primary visual cortex, that is

also referred to as V1, or striate cortex in primates, and area 17

in cats. The visual signals from the eye are projected on to the

LGN of the thalamus, which relays the information on to the

V1 for further processing. For a long time, the main function
of the LGN was thought to be to relay retinal information to
V1. Subsequent research has shown that the LGN also receives
influential feedback from the V1 (18), thus making the LGN a
critical component for generation of brain rhythms. The main
recipient of the LGN outputs are the L4 and L6 of V1; the
feedback to the LGN is primarily from the L6 (15). This is the
fundamental structure of our model layout as shown in Figure 1,
consisting of three distinct modules viz. LGN of the thalamus,
and L4 and L6 of the V1. The excitatory populations in L4
and L6 are the Pyramidal cells Py4 and Py6, respectively; the
inhibitory cells in the respective layers are the basket cells B4
and B6 (for brevity, we did not consider the Non-Basket cells,
see section 2.3 for an explanation). L4 also has an excitatory
interneuron population viz. spiny stellate cells (SS4). The LGN
is represented by the excitatory thalamocortical relay cells (TCR)
and the inhibitory interneurons (IN). Due to the role of the
inhibitory thalamic reticular nucleus (TRN) as a “gateway” in
the connectivity between thalamus and cortex, it is generally
modeled as a part of the thalamus. The mathematical equations

that define the model structure and dynamics are discussed in
section 2.2.

The outputs of the model that are studied for oscillatory
behavior as observed in EEG and LFP are those from Py4,
Py6, and TCR. However, readers may note that we are in no
way implying a direct equivalence of our model output with
EEG or LFP recordings. Rather, our assumptions are based
on studies that show that the current source density of LFP
recordings from V1 following visual stimuli have origins in
L4 (19), which are further driven by thalamocortical afferents.
Thus, our model outputs are representative of physiological
recordings from cortical layers that underlie the occipital lobe,
responding to visual inputs that are relayed by the LGN.

2.2. Model Equations
The mathematical equations that define our in silico model
structure and dynamics are given below:

[T]u =
Tmax

1+ e−
(Vu(t)−θu)

σ

(1)

dr9uv(t)

dt
= α9 [T]u (1− r9uv(t))− β9 r9uv(t) (2)

I9uv(t) = C9
uv g

9
max r

9
uv(t) (Vv(t)− E9

rev) (3)

κ
dVv(t)

dt
= −

∑

uv

(I9uv(t))+ Ilkv (t) (4)

Ilkv (t) = glkv (Vv(t)− Elkv ) (5)
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FIGURE 2 | Bar plots showing power within frequency bands for all neural population in the (A) LGN, (B) L4, and (C) L6, when the synaptic connectivity parameters

are set to their base values shown in Table 3.

where u ∈ {TCR, TRN, IN, Py4, SS4, Py6, B4, B6, Asy, Sy, Ret},
v ∈ {TCR, TRN, IN, Py4, SS4, Py6, B4, B6} are the pre-synaptic
and post-synaptic neuronal populations, respectively; 9 ∈

{AMPA, GABAA} represents the neurotransmitter-receptors on
v and can be of excitatory (AMPA) or inhibitory (GABAA)
nature; [T]u is the neurotransmitter concentration in the synaptic
cleft and is expressed as a sigmoid function dependant on
the pre-synaptic membrane potential Vu and the maximum
neuronal concentration Tmax ≈ 1mM (20); θu represents the
threshold voltage where [T]u = 0.5 Tmax and σ is the slope
of the sigmoid; r9uv is the proportion of open ion-channels
due to the pre-synaptic neurotransmitters binding on the post-

synaptic neurotransmitter-receptors on the ensemble membrane
of v; α9 and β9 are forward and reverse rates of chemical
reaction, respectively; g9

max is the maximum conductance of
the ensemble post-synaptic membrane due to opening of ion
channels, resulting in the post-synaptic current I9uv(t); C

9
uv is the

connectivity strength of any synapse from u to v; Vv(t) is the
ensemble post-synaptic membrane voltage, E9

rev is the reverse
potential corresponding to the neurotransmitter-receptor 9 ; κ is
the membrane capacitance (pF); Ilkv is the ensemble leak current;
glkv and Elkv are the maximum leak conductance and leak reversal
potential, respectively, of v. All the model parameters used in
above equations are given in Table 1.
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2.3. Methods of Parameterizing Synaptic
Connectivity
For parameterizing the V1 modules in our model, we follow
the comprehensive anatomical study of the cat’s primary visual
cortex by Binzegger et al. (14). They provide the connectivity
map by reconstructing complete axons, boutons and dendrites
of 39 single neurons from intra-cellular in vivo recordings of
the cells. Our interest is in the L4 and L6 and their afferent
connections. Toward this, we have extracted all the relevant data
from Tables 1–5 in Binzegger et al. (14) intoTable 2, which shows
the absolute number of synapses formed by each presynaptic and
postsynaptic cell types in each of the cortical layers. It is based
on the modified version of Peter’s rule (21) where (14) assume
that synaptic densities on dendrites are independent of the cell
types. In addition, ours is a population model that assume a
mesoscopic neural population as a point neuron, and the afferent
synaptic connectivity parameters of a post-synaptic population
are expressed as percentages. For example from Table 2, we
calculate the synaptic connectivities as follows:

• Let X and Y be any pre- and post-synaptic population,
respectively, in Table 2.

• Let N be the sum of the synapses that all pre-synaptic
populations of Y form with the cell body and dendrites of Y
in all the layers. This can be obtained by adding all elements of
the row vector corresponding to Y in Table 2.

• LetM be the sum of all the synapses that X make on to the cell
body and dendrites of Y in all the layers. This is the value at
the intersection of a row vector Y and a column vector X in
Table 2.

• Then, the synaptic connectivity parameter C from X to Y is
expressed as follows:

CX→Y =
M

N
(6)

The synaptic connectivity parameters thus calculated are shown
in Table 3 and are considered as the base state parameters of
the model. However, there are gaps in the collected data due
to obvious constraints in neurophysiological and anatomical
studies; we note that the B6 connections are not documented
in Binzegger et al. (14). We have filled these missing values by
assuming the same values as corresponding pathways in B4, and
then converting to percentage form by using layer specific values
in Equation (6). However, the Py6 meanmembrane potential was
in an “up state” at -20 mV compared to ≈ −60 mV range for
other populations. To induce a relative hyperpolarisation in Py6,
we increased the B6 to Py6 synaptic connectivity by ten times of
its initially set value. This reduced the mean membrane potential
of Py6 to −60 mV, and was within the subthreshold oscillation
regime as demonstrated in other populations. The intra-LGN
connections are as in our previous work (2, 12); the TCR and
IN afferent data are obtained from the cat dorsal LGN (22); the
TRN afferent data are based on the rat dorsal LGN (23). The
feedback from L6 to LGN are derived from Van Horn et al.
(22), Jones (23) and are as in Sen Bhattacharya et al. (2). The
feed-forward connectivity of LGN to L4 and L6 populations are
derived from Binzegger et al. (14). While there are non-basket

afferents that project to the L4 and L6 populations as indicated
in Table 2, we could not find any efferent connections of these
populations in our data source (14). Thus, modeling the non-
Basket cells for L4 and L6 would require filling in the missing
data, which would increase the number of free parameters in the
model. We have ignored the non-Basket cells in this work, and
leave this as a future prospect.

The model presented in this work builds on top of an existing
model that was used as a tool to validate phase entrainment in
SSVEP signals. We have introduced several model components
that make this version more biologically plausible. First, we have
introduced the TCR to L6 projections that form an integral part
of the LGN projections on V1 in the brain (15). Second, all
synapses between L4 and L6 that form outside of these two layers
are used to compute the synaptic connectivity parameter values.
This is unlike in the previous model where synapses formed
only within L4 and L6 are considered. Third, the Asymmetric
(Asy) and Symmetric (Sy) noise inputs to the L4 and L6 are
derived from the data in Binzegger et al. (14), unlike in the
previous model, where the Asy and Sy sources are combined for
all populations.

2.4. Methods of Simulation
The in silico model is simulated on Matlab (TMMathworks Inc.).
Total simulation duration is 120 s with a simulation timestep of 1
ms. The differential equations governing the model dynamics are
solved in MATLAB using custom-written 4th/5th order Runge-
Kutta-Fehlberg method (RKF45).

The noise inputs to the network populations, viz. retinal
(Ret) input to the LGN, asymmetrical (Asy - excitatory) and
symmetrical (Sy - inhibitory) inputs from other cortical areas
to L4 and L6, are simulated using the randn inbuilt function in
Matlab that generates a uniform distribution. This white noise is
then normalized to a mean of -65 mV for Ret and Asy, and -75
mv for Sy, with standard deviation of 2 mV.

For consistency of results, the output voltage timeseries of
each neuron population is averaged over 20 trials, where each
trial is simulated with different white noise input. For frequency
domain computation, the output timeseries is clipped to after
and before 1 s of the start and end times, respectively, to avoid
any transient effects. This clipped signal is then filtered using
Butterworth bandpass filter with cut-off frequencies at 1 and 50
Hz. To calculate the power spectral density, Welch periodogram
is used with a sampling frequency of 1,000 Hz and a frequency
resolution of 0.25 Hz.

For calculating statistical significance of the difference
observed in the output of control and Schizophrenia conditions
of the model, ttest function of Matlab is used. ttest(x, y)
returns the P-value using the paired-sample t-test at a 5%
significance level. So if P < 0.05, then the result is considered
statistically significant.

Frequency bands are computed with the following lower
and upper bounds: theta (θ): 3.75–7.5 Hz, alpha-low (α-L):
7.75–11 Hz, alpha-high (α-H): 11.25–13.5 Hz, beta-low (β-L):
13.75–20.5 Hz, beta-high (β-H): 20.75–30.5 Hz. The bar plots
are used for visualizing the results, where the power at all
the frequency components that lie within the upper and lower
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bounds defined above for each frequency band are summed.
Thus, each bar represents the area under the power curve for a
specific frequency band.

The periodic inputs to the Ret populations to simulate SSVEP-
like brain signals in the network are custom-written in Matlab
to generate a pulse signal with on-time of 1 ms, generated at
frequencies 1–30 Hz and amplitudes ranging from 5–10 mV,
which is then superimposed on the above-mentioned white
noise input.

Lesioning is a common technique in experimental literature
to test the effect of one neural population on the other (24).
In this study, we simulate lesioning by removing the synaptic
connectivity between any two populations of interest.

3. RESULTS

3.1. The Base State Behavior
The model behavior with the base state parameters in Table 3

is shown in Figure 2. All populations of the LGN and L6
have dominant frequency within the α band, and all the
populations in L4 have θ band dominant frequency. The
membrane potentials reflect the noise inputs to the model
(not shown here). We consider this as the base (reference)
state of the network, which correspond to “controls” in
experimental studies consisting of normal healthy adults.
The effects of changing specific synaptic connectivities in
the network are presented with reference to this control
state.

3.2. Lesioning the LGN
First, we checked the source of α peak in the TCR and
Py6 outputs. We lesioned the LGN from the V1 layers by
removing all feed-forward and feedback connections from and
to the LGN, respectively. The inter-layer connections between
L4 and L6 are kept intact, as are all intra-layer connections.
The schematic of this network is shown in Figure 3A(i). The
outputs of the excitatory projection neurons in the V1 layers
viz. Py4 and Py6 are shown in Figures 3A(ii),(iii); the TCR
output is shown in Figure 3C. When compared with their
respective base state oscillations shown in Figure 2, we note that
the dominant frequencies of the V1 populations continue to
be the same, implying no dependency of L4 and L6 on LGN.
However, the TCR output peak frequency move left on the
frequency spectrum from α-H to α-L, indicating the effect of
lesioning the feedback from Py6 population. Thus, when the
intra-LGN connectivity parameters are set to their base values,
the independent oscillation of the TCR has peak power in the α-L
band, with a peak frequency observed at around 10 Hz.

Next, we wanted to identify the source of θ peak frequency
in L4. The LGN remain lesioned as above. In addition, we
have lesioned the inter-layer connectivity between L4 and L6.
Figure 3B(i) shows the schematic diagram of this lesioned
network, and Figures 3B(ii),(iii) show the frequency domain
behavior in this state. We note that the maximum power
of Py4 output is now within the α band, where the peak
frequency is within the α-H band. The dominant frequency
of oscillation in Py6 is now within the α-H band. We

make several observations from these results: first, the Py4
independently oscillates within the α band and the slowing
of its frequency response in the intact state of the network
is caused by the afferent projections from the L6 populations;
second, the inter-layer dynamics between L4 and L6 effects a
“slowing” (left shift) of the frequency spectrum in the intact
network state; third, and most importantly, both LGN and
V1 layers can act as sources of α rhythm generation. These
observations are discussed in context to physiological findings in
section 4.

3.3. Simulating Frequency Band Transition
Frequency band transitions in the brain signals of a healthy adult
are indicators of the different brain states. Here, we identify
the synaptic connectivities that can simulate frequency band
transitions in the intact network state, thus simulating control
states, as in experimental studies, corresponding to specific
oscillatory frequencies.

3.3.1. Transitioning to the Theta Band

Our objective here is to understand the changes in synaptic
connectivity that effected a dominant power within the θ band
for the excitatory projection neurons. Our results show that
this happens when there is an overall increase in the excitation
of the Py6 population. Specifically, the feed-forward excitatory
projection from Py4 to Py6, as well as the recurrent excitatory
connection of the Py6 population, were increased by a factor
of three. Note that Py4 is already in its base state dominant
frequency of θ band. The schematic of the synaptic connectivity
changes are shown in Figure 4A(i). The frequency response in
Figures 4A(ii)–(iv) show the dominant frequency within the θ

band for all excitatory projection neuron populations.

3.3.2. Transitioning to the Alpha Band

As discussed in section 3.2, the θ band dominance in Py4 is
shown to be caused by the L6 afferents; lesioning the afferents
moved the Py4 dominant oscillations into the α band. Taking cue
from this observation, we decreased the inhibitory projections
from L6 to the Py4 and B4 populations of L4 by ≈ 25% as
shown in the schematic in Figure 4B(i). The frequency domain
response of the populations are seen to be α dominant in the
Figures 4B(ii)–(iv). Overall a decrease in the inhibitory feedback
from L6 to L4 effects a peak within the α band for Py4. The Py6
and TCR population dynamics were already dominant within the
α frequency band in the network base state.

3.3.3. Transitioning to the Beta Band

The connectivity scheme for transitioning into the β band
from the respective base states of all neuron populations is
shown in Figure 4C(i) and can be summarized as follows: (a)
The feedforward excitatory connectivities TCR→(Py4,S4), and
Py4→Py6 are increased; (b) the excitatory recurrent connection
of Py4 is increased; (c) the inhibitory feedback from L6 to
L4 is decreased; (d) the excitatory feedback from L6 to the
inhibitory populations of LGN are decreased. The exact changes
in the connectivity parameters is mentioned in Figure 4C(i).
The frequency domain response in Figures 4C(ii)–(iv) show β
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FIGURE 3 | Schematic diagrams showing lesioning of network populations for identifying the (A) (i) α and (B) (i) θ band sources. The red links indicate lesioned

synaptic pathways;the bidirectional links indicate closed loop connection between two populations; the number 0 beside each link highlight the connectivity parameter

value to simulate a lesion in the synaptic pathway. Bar plots showing dominant power in the frequency spectrum for (A,B) (ii) Py4, (A, B) (iii) Py6, (C) TCR populations.

dominance in the TCR, Py4 and Py6 populations. The changes
(a)–(c) imply an overall increase in the excitation of the L4
populations; the change in (d) implies a reduced inhibition in the
TCR population. Overall, we observe an increased excitation in
the LGN and the L4 playing central role in the β band transition
from the base state of the network.

Upon testing our network for frequency band transitions as

seen in healthy brain signals, we wanted to test the efficacy of
the model output as a neuromarker of frequency band transitions

in Schizophrenia. Toward this, we aimed to understand specific

connectivity pathways that generated known frequency band
transitions observed in Schizophrenia patients. We present our
findings in the following section 3.4.

3.4. A Case Study of the Frequency Band
Alterations in Schizophrenia Patients
To simulate the condition of Schizophrenia, we set the β

oscillatory state (from section 3.3) as the control state. We
observe that a critical factor in simulating the condition
of Schizophrenia is the overall decrease of the membrane
conductance in the network. All AMPA neurotransmitter
receptor related synaptic conductances in L4 and L6 (but not
LGN) are reduced by 7% from their base values; all GABAA

neurotransmitter receptor related conductances are reduced by
10% from their base values. Next, the synaptic connectivity
changes are made as shown in Figure 5A. Compared to
Figure 4C(i), there is a decrease in the feedforward connectivity
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FIGURE 4 | Schematic diagrams showing changes in synaptic connectivity parameters that effect a model state transition into the (A) (i) θ , (B) (i) α and (C) (i) β

bands. The thick black links indicate increased synaptic connectivity, and thin black links indicate decreased synaptic connectivity from their base values; the percent

decrease is mentioned beside each link, where x is the base connectivity parameter for that link. The dominant power within the (A) θ , (B) α and (C) β bands for (i)

TCR, (ii) Py4 and (iii) Py6 populations shown as bar plots of the integrated power within each frequency band.

from the TCR to the Py4 and SS4 populations by ≈ 5 and
3%, respectively.

First, we tested the model with noise input to the LGN.
In Figures 5B(i),(ii), we can see a significant increase in the
power within the θ band (P < 0.001) and a simultaneous
siginificant decrease of the β band power (P < 0.001). This is
in agreement with similar observations made in the experimental
study on Schizophrenia patients by Adams et al. (6), although
both controls and patients were in the awake resting state with
α peak oscillations. In the model presented here, if the control
condition is set to represent the awake resting state with α peak
oscillations, we observe a decrease in power within the β band,
but not the simultaneous increase in power within the θ band.
We have not presented these observations here, as we plan to
continue along these lines in ongoing work (see section 4 for
a discussion).

Next, we wanted to validate the β band changes reported in
the SSVEP of Schizophrenia patients by Giri et al. (16), where
they have shown reduced SSVEPs for 17, 23, and 30 Hz of
flicker stimulation relative to controls. Here, we have presented
our observations corresponding to a periodic input of 17 Hz
with additive noise to the LGN. This simulates condition of

SSVEP in our in silico model. In Figure 5C(i), we observe a
significant decrease (P < 0.001) in β band power similar to
that reported by Giri et al. (16). The line plots in Figure 5C(ii)

shows the SSVEP first harmonic peak at the input frequency
of 17 Hz, demonstrating entrainment and the condition of
SSVEP simulated in this in silico model as reported in our
previous work (12). The power of the first harmonic is lesser
for Schizophrenia patients. In addition, we also see a significant
increase (P < 0.001) in the theta band power as reported in
other studies (see above), but not by Giri et al. (16). We have
also tested for other β input frequency values (20 & 23 Hz), not
shown here for brevity. Our results are consistent across all tested
input frequencies.

4. DISCUSSION

The importance of understanding the synaptic connectivity
correlates of brain oscillatory changes cannot be more
emphasized than in neurological disorders (25, 26). As
brain rhythms are impacted during neurological conditions,
they become an important neuromarker for the first line
of clinical investigation (27). For example, slowing of the
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FIGURE 5 | Results showcasing Py4 output changes on simulation of Schizophrenia (ScZ) condition in the model with respect to a control (Ctl) condition.

(A) Schematic diagrams showing changes in synaptic connectivity parameters that simulate the condition of ScZ in the model when the Ctl state is in the beta peak

oscillatory state. The thick black links indicate increased synaptic connectivity, and thin black links indicate decreased synaptic connectivity from their base values; the

percent decrease is mentioned beside each link, where x is the base connectivity parameter for that link. (B) (i) Bar and (ii) line plots showing a significant (P < 0.001)

increase in power within the θ band, and a significant (P < 0.001) decrease in power within the β band for the simulated ScZ condition compared to Ctl. (C) (i) Bar

plots and (ii) line plots corresponding to SSVEP in simulated ScZ condition when the LGN is fed with a 17 Hz periodic flicker stimulus. The zoomed inset shows a

significant (P < 0.001) increase in power within the theta band and a significant (P < 0.001) decrease in beta power. The line plot further confirms the decrease in

power of the first harmonic for ScZ condition.

frequency spectra recorded in EEG is a definitive neuromarker
of Alzheimer’s disease, a condition inflicted by aggressive loss in
brain synaptic connectivity (2, 7); dysfunctional beta oscillations
due to anomalies in the networks of GABA interneurons and
in cortico-cortical connections are associated with cognitive
deficits in Schizophrenia (9, 28, 29). Therefore, it becomes
critical to understand the exact synaptic pathway correlates of
such neuromarkers, and possible therapeutic solutions. One
clinically successful instance of therapeutic solution for the
EEG neuromarker (unwanted 10 Hz oscillation) of Parkinson’s
disease is Deep Brain Stimulation (DBS) (30). However, clinical
investigation of possible therapeutic treatments is hard to
conduct in neurological patients; this is especially problematic
in instances of cognitive impairment, where patients may feel
distress, which in turn may aggravate their condition. Animal
models of neurological conditions have provided a lot of clues,
but human and primate brains react differently than animals,
and findings may be misleading. There are other organoid
solutions being suggested recently (31). One approach that is

relatively cheaper and have low demands on resources are in
silico models that are brain inspired. Thus, these models can be
used to represent neural circuitry governing brain rhythms and
deepen our understanding of healthy as well as sick brain states.
They also come as an important aid in exploring new, as well
as enhancing existing, therapeutic treatments for neurological
conditions (10, 11).

We have been using in silico models of the thalamocortical
loop, informed by anatomical and physiological studies of the
brain visual pathway, to simulate brain rhythms within the alpha
and theta band frequencies. Such frequency domain analysis
of brain signals such as EEG, SSVEP and LFP are by far the
most popular means to visualize and correlate specific frequency
sub-bands [viz. delta (δ), theta (θ), alpha (α), beta (β), and
gamma (γ )] to brain states in both health and neurological
conditions. In a recent work, we have validated a model with
psychophysical studies that demonstrated phase entrainment of
brain signal during SSVEP. In this work, we have presented
an enhanced version of this model by adding more biologically
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plausible synaptic layout and connectivity parameters. Our in
silico model consists of three modules viz. the lateral geniculate
nucleus (LGN), that is the visual thalamus receiving direct
input from the retina; Layers 4 and 6 of the primary visual
cortex (V1), both of which receive feedforward input from
the LGN; the L6 provide feedback to the LGN. The model
synaptic layout is as in Sherman (15). The synaptic parameters
for intra- and inter-layer connectivity in L4 and L6 are computed
from Binzegger et al. (14). The intra-layer connectivity in LGN
and feedback from V1 layers are as in our previous works (2). For
missing data in our sources, informed assumptions aremade. The
voltage time series outputs of the model neuronal populations
are converted to the frequency domain to identify the dominant
frequency of oscillation. The outputs of the excitatory projection
neurons of each module, viz. the Thalamocortical Relay (TCR)
cells of the LGN, and Pyramid cells of L4 (Py4) and L6 (Py6)
are observed for demonstrating brain state transitions. Where we
have validated our results with clinical data, the output of the L4
is considered. This is in agreement with the observations made
in Maier et al. (19), where the current source density (CSD) of
LFP recordings from V1 following a visual stimulus had origins
in L4 and was attributed to the thalamocortical afferents.

One approach for investigating clinical conditions with in
silico model is to set a “control” state that will simulate the
specific brain state (which the model is intended to investigate)
in healthy adults. This control state acts as a reference point from
where model parameters and attributes that produce aberrations
corresponding to the disease states can be identified. We have
adopted a similar approach in this work. At first, we recorded
the base state oscillations of the model that emerged when the
synaptic connectivity parameters in the model were set to the
base values mentioned in Table 3. Next, starting from the base
state of the model, we simulated transitioning into the α, β ,
and θ states, and identified the underpinning synaptic parameter
pathways. Note that for each state, we aimed at all the excitatory
projecting populations, viz. the TCR of LGN, Py4 of L4 and Py6
of L6 to have a peak power within the respective bands. This is
because, to the best of our knowledge, there is no coherent data
in literature that suggest the possible oscillatory combinatorics
in LGN and V1 and their associated brain states. Furthermore,
literature suggest that same areas of brain may employ multiple
mechanisms to generate multiple frequency bands based on the
brain state and function (32). We too have observed an exploding
parameter and oscillatory state combinatorics in the model. We
have chosen to demonstrate the synaptic connectivities that can
produce the same peak oscillatory frequency in the TCR, Py4 and
Py6 populations simultaneously.

In the base state of themodel, the peak frequency of oscillation
for TCR and Py6 is in the α band, and for Py4 is in the
θ band. For long, the thalamus has been attributed as the
primary pacemaker of α oscillations (33, 34). However, LFP
recordings from the V1 of macaque monkeys and dogs suggest
α oscillation origins in the deep cortical layers like Layer 5
(L5) (35, 36) and L6 (37). Another LFP based study of the
occipital lobe of macaquemonkeys suggest the superficial cortical
layers 2/3 (38) as the origin of α rhythms. Bollimunta et al. (37)
and Mila et al. (38) also discuss the possibility of separable

thalamic and cortical α pacemakers which become differentially
active and coupled under different behavioral conditions.
Interestingly, twomesoscopic computational models where the α

oscillations can be generated with or without the thalamic drive
is reviewed in Sigala et al. (39). To understand the origin of the
α rhythm in our base state network, we lesioned the thalamus
from the V1 layers by disconnecting all synaptic feedforward
and feedback pathways from and to the LGN, respectively. All
other connections were left intact. This lesioning did not affect
the α oscillations in Py6; rather, the TCR α peak moved from
the α high (α-H) to the α low (α-L) sub-band due to lesioning
the Py6 feedback. Thus, our model supports the discussions
in Bollimunta et al. (37), Mila et al. (38) where both LGN and
the infragranular L6 in V1 demonstrate α rhythm generation
independently. In future works, we have plans to integrate the
infragranular L5 and supragranular L2/3 in our model, which will
allow us to test this aspect more thoroughly.

In addition to the above, lesioning of the LGN also did not
affect the Py4 peak frequency within the θ band. To understand
the origins of this θ oscillations, we lesioned the L4 and L6.
The Py4 peak frequency shifts to the α band, but the Py6
peak frequency moves from α-L to α-H. Investigating further,
we identified that the inhibitory feedback from Py6 to Py4 is
the primary cause of the θ dominance in Py4. In turn, the
feedforward excitation of L4 on L6 slows down the α band power
in Py6.

Next, from the intact base network state, we aimed at
identifying synaptic connectivity parameters that could cause
brain state transitions to θ , α, and β bands for TCR, Py4 and Py6
simultaneously. Our findings are as follows:

• Theta: Increased excitation from L4 to L6 caused a shift of
peak frequency from α to θ in Py6, which in turn caused
the TCR output to move from the α band into the θ band.
Selective lesioning in this state confirmed that the L4 drives
this θ rhythm state of the network. We did not find any
anatomical study to support this finding, and leave this as a
testable attribute identified by the model.

• Alpha: The TCR and Py6 were already oscillating within
the α band. Decreasing the inhibitory projections from L6
to L4 shifted the L4 dominant frequency to the α band.
We have already discussed (see above) the agreement of our
observations with anatomical studies.

• Beta: To generate β rhythm in our model, the following
changes to synaptic connectivity were made in the base state:
the TCR to L4 excitatory projections as well as the self-
excitatory loop in L4 were increased; the inhibitory feedback
from the L6 to L4 were decreased; (these three changes led
to an overall increase in the excitation in L4); the Py4 to Py6
excitatory projection was increased; (as L4 was already in an
increased excitatory state, this led to an overall increase in
excitation of the Py6 too); last, the feedback from Py6 to the
inhibitory populations of LGN was decreased; (this resulted
in disinhibiting the TCR, which in turn led to increased
excitatory efferents to L4, and onwards to L6). While the
overall increase in the excitatory state of L4 is essential to shift
the Py6 oscillations to the β band, the Py6 feedback is critical
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for the β band transition in LGN; if these feedback connections
are lesioned, the TCR oscillations shift out of the β band.
On the other hand, if the LGN feedforward path to the L4 is
lesioned, the β band oscillations in the L4 vanishes. Thus, our
study indicates that the β band originates at infragranular layer
L6, which then propagates to the LGN and L4.

A study of rat somatosensory and auditory cortex showed
20–30Hz (β high (β-H) band) oscillations to be characteristics
of the infragranular layers (40, 41). Also whole-cell in vivo
recordings of rat visual cortex found the β low (β-L) band
frequencies to be most pronounced in L5 (42). A recent
review on cortical layers and rhythms, carried out in René and
Pascal (43) supports the findings of β rhythm in infragranular
layers. Thus, our above-mentioned observations agree with the
theory of cortical β rhythm originating in the infragranular
layers. At the same time the overall thalamocortical loop
helped maintain the β rhythm in the Py6, which agrees with
observations mentioning the thalamocortical circuitry playing
a role in maintaining the cortical rhythms across its laminar
structures (5).

This concludes our study of the control state conditions of the
model in the θ , α, and β band oscillatory state.

As a case study, we demonstrate the known alterations in
θ and β band frequencies in the condition of Schizophrenia.
It is reported by Adams et al. (6) that resting state EEG of
Schizophrenia patients show a decrease in β band power and
increase in θ band power compared to controls. (They have
also mentioned alterations in the γ band, but we do not
consider the γ band oscillations in this work). At the same
time, the authors make a computational study to validate their
psychophysical results and propose possible synaptic correlates
of the frequency band alterations in Schizophrenia conditions.
Overall, they identified several combinations of excitatory-
inhibitory imbalances that simulated the β and θ band power
alterations in their model. Similar combination of psychophysical
and animal model-based studies also indicate the excitation-
inhibition imbalance as the neuronal correlates of the β band
alterations observed in Schizophrenia patients compared to
controls (9). We observed that two critical changes in our model
induced a significant decrease and increase (with P < 0.001)
in β and θ band power, respectively: (a) decrease in the AMPA
andGABAA synaptic conductance parameter values; (b) decrease
in the excitatory synaptic connectivities from LGN to L4. The
observations in (a) conform to those in the above-mentioned
researches (6, 9). The observations in (b) are particularly
interesting, where visual pathway impairment is identified by
many researches as a biomarker of Schizophrenia (44). Along
these lines, an SSVEP study by Giri et al. (45) demonstrated
significant decrease (P < 0.001) within the β band power
in SSVEP outputs corresponding to selected visual flicker
stimuli. Tested with our model for simulated conditions of
Schizophrenia, the results agree with these observations.

Readers may note that the condition of Schizophrenia in
our work is simulated with the β band oscillatory model state
as the control condition. However, in Adams et al. (6), the
EEG studies were made when all controls and patients were
in the awake resting state and showing an α peak oscillation.

While we could generate a reduced β band power when the
model is in the α oscillatory control state, we did not see an
increase in the θ band power, thus unable to fully validate
the experimental results in the model. The main criticism of
the model presented here is that the synaptic as well as the
structural layout of the V1 module is simplified. Also, synaptic
connectivity parameters in the model are informed by the
cat visual cortex, but the Schizophrenia symptoms that are
being validated are observed in humans; this is in spite of the
primate visual system having evolved with significant differences
compared to cats. As a future work, we will enhance the V1
model by adding the superficial L2/3 and infragranular L5 and
parameterizing based on primate anatomical and physiological
data (46). Furthermore, we aim to include γ rhythm observations
in the model, as these are also identified as possible neuromarkers
in the EEG of Schizophrenia condition. Also, we plan to use
cross-frequency coupling (CFC) measures to analyse our model
dynamics, as CFC allows a better understanding of thalamus and
neocortex information processing (47) and abnormal behavior in
neurological diseases (48).

The in silico model presented here belongs to the neural
mass genre of computational models (NMM) that can simulate
complex biological phenomena with fewer state variables and
parameters. This make NMMs computationally less expensive
compared to spiking neural networks (SNN), although at the
cost of single-neuron-level dynamics unlike in the latter (49).
In addition, the sigmoid function used in NMMs to represent
the neuronal activity for a population is not based on
a detailed biophysical description of spiking neuron (50).
Subsequently Byrne et al. (50) suggested a change in NMM
tactics and proposed a next generation NMM. Recently, Huang
and Lin (51) proposed a current density based model of NMM.
Interestingly, Ruffini et al. (52) proposed a laminar based NMM
for transcranial current stimulation (tCS). tCS is emerging as a
promising alternative treatment in drug resistant Schizophrenia
patients (53) and hence modeling this use case gives opportunity
to personalize the treatment for individual patients. As future
work, we see potential to extend the Schizophrenia case-study
presented here to better understand the effects of tCS in
the condition.

5. CONCLUSION

In conclusion, we have tested a simple in silico neuron
population network of the thalamocortical loop in the brain
visual pathway. The model could generate brain rhythms within
the α, θ and β bands and correlate with specific synaptic
connectivities and pathways. As a case study, we have simulated
the oscillatory power alterations as observed in experimental
studies on Schizophrenia patients. Our results show a significant
(P < 0.001) decrease in beta band power and a simultaneous
increase in the theta band power, similar to that observed
in Schizophrenia.

The main contribution of this work is a thorough analysis of
the synaptic connectivity parameter combinatorics that generates
the α, θ , and β oscillatory states in the in silico model;
for brevity, we have presented only selected combinations in
this work. Findings from anatomical and physiological studies
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suggest that all three oscillatory states are observed in both
LGN and the V1. It is however hard to identify the exact
synaptic connectivity combinations that underpin the continuum
of changing brain states in vivo. Our findings demonstrate the
potential for designing and using simple brain inspired neural
networks to simulate both control and neurological conditions.
This in turn has the potential to be used for investigating
individual therapeutic requirements to reverse or suppress those
conditions. As ongoing work, we are developing this model
to allow deeper insight into the synaptic connectivities and
attributes that underpin the conditions of Schizophrenia.
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