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Hepatocellular carcinoma (HCC) remains a global health burden, and is mostly
diagnosed at late and advanced stages. Currently, limited and insensitive
diagnostic modalities continue to be the bottleneck of effective and tailored
therapy for HCC patients. Moreover, the complex reprogramming of
metabolic patterns during HCC initiation and progression has been
obstructing the precision medicine in clinical practice. As a noninvasive and
global screening approach, metabolomics serves as a powerful tool to
dynamically monitor metabolic patterns and identify promising metabolite
biomarkers, therefore holds a great potential for the development of tailored
therapy for HCC patients. In this review, we summarize the recent advances
in HCC metabolomics studies, including metabolic alterations associated
with HCC progression, as well as novel metabolite biomarkers for HCC
diagnosis, monitor, and prognostic evaluation. Moreover, we highlight the
application of multi-omics strategies containing metabolomics in biomarker
discovery for HCC. Notably, we also discuss the opportunities and
challenges of metabolomics in nowadays HCC precision medicine. As
technologies improving and metabolite biomarkers discovering,
metabolomics has made a major step toward more timely and effective
precision medicine for HCC patients.
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HCC, hepatocellular carcinoma; HBV, hepatitis B virus; HCV, hepatitis C virus; NAFLD, non-alcoholic
fatty liver disease; AFP, α-fetoprotein; NMR, nuclear magnetic resonance; MS, mass spectrometry;
DEN, diethyl-nitrosamine; GC, gas chromatography; LC, liquid chromatography; CE, capillary
electrophoresis; FFA, free fatty acid; ESI, electrospray ionization; FT-ICR, Fourier transform ion
cyclotron resonance; TOF, time of flight; Q, quadrupole; SRM, selected reaction monitoring; MRM,
multiple reaction monitoring; PCA, principal component analysis; PLS-DA, partial least squares
regression discriminant analysis; OPLS, orthogonal partial last squares; ROC, receiver operating
characteristic; NFSM, network-based feature selection method; UPLC, ultra-performance liquid
chromatographic; LASSO, least absolute shrinkage and selection operator; TACE, transcatheter arterial
chemoembolization; RFA, radiofrequency ablation; UGPase 2, uridine diphosphate glucose
pyrophosphorylase 2; TP53, tumor protein p53; TCF1, transcription factor 1; SCD, stearoyl-CoA-
desaturase; HBc, hepatitis B virus core protein; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes pathway.
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Introduction

Hepatocellular carcinoma (HCC) remains a global health

burden, accounting for approximately 1 million newly emerged

cases annually (1, 2). With an ever-increasing incidence and

poor prognosis, HCC ranks as the second leading cause of

cancer deaths worldwide (3). Driven by various genetic and

environmental factors, the majority of HCC develops and

progresses with the background of chronic hepatitis and liver

cirrhosis (4). Most risk-factors for HCC have been identified

nowadays, including chronic infection with hepatitis B virus

(HBV) or hepatitis C virus (HCV), liver cirrhosis, non-

alcoholic fatty liver disease (NAFLD), diabetes, and exposure to

toxins such as aflatoxins and aristolochic acid (5–8). Although

the understanding of HCC etiology has largely improved

recently, the details of molecular alterations with HCC

progression remain ill-defined, especially in a metabolic

perspective. Accumulating evidence suggests that metabolites

play essential roles in the malignant development of HCC (9,

10). The dynamic metabolic phenotype can reveal what is

currently occurring in HCC patients (11). Therefore, there is

an urgent need for comprehensive understanding of metabolic

characteristics for HCC progression.

The early diagnosis determines a better overall survival of

HCC patients (12). Because of the asymptomatic nature of

early-stage HCC, most HCC patients are firstly diagnosed at

advanced stage (13). The current screening of possible HCC

patients mainly relies on liver ultrasonography and serum

α-fetoprotein (AFP) testing (14). However, due to the limited

sensitivity and accuracy of ultrasonography, small HCC lesions

are difficult to be distinguished from cirrhosis nodules (15).

Even though ultrasonography can be combined with AFP

testing, unavoidable false positives still remain a major trouble

in HCC diagnosis (16, 17). Limited and less-specific biomarkers

obstruct timely diagnosis and treatment for HCC patients.

Nowadays, emerging studies have being focusing on identifying

novel biomarkers for HCC.

Metabolomics is a powerful technology for profiling metabolic

features by qualitative and quantitative analysis of various

metabolites in given samples (18). The contents of identified

metabolites are influenced by sample types and analytical

methods. Common biological materials for clinical

metabolomics studies include tissues, biofluids (including blood

and urine), and feces (9, 19, 20). Nuclear magnetic resonance

(NMR) and mass spectrometry (MS) are two widely applied

analytic platforms for metabolomics analysis, with the advantage

of high throughput, high resolution, and low invasion (21).

Biologically, in-depth analysis of metabolic profiles in clinical

samples enables better understanding of the metabolic features,

disease progression and other clinically related aspects (22).

Recently, improvements in analytical instruments and strategies

promote the biomedical and clinical applications of

metabolomics approaches, especially in the field of cancer
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therapy. Increasing studies employ metabolomics as a powerful

tool to uncover metabolic features, metabolite biomarkers, and

driving factors during HCC tumorigenesis. In particular,

metabolomics holds great promise in guiding precision

medicine for HCC patients to maximize therapeutic efficacy and

minimize decision failure (11, 23, 24). It is worth noting that

metabolic disturbances are associated altered molecular basis of

diseases, including metabolic gene/protein expressions and

epigenetic regulations (25). Therefore, the integrated analysis of

multi-omics data can provide comprehensive information from

different molecular insights. In this regard, multi-omics analysis

in an integrated framework has been proposed with great

potential to facilitate biomarker discovery and treatment

guidance in future clinical therapy (6, 26, 27).

Over the past decades, increasingly improved analytical

strategies and devices are the foundation for emerging HCC

metabolomics studies. Novel metabolites biomarkers, identified

from HCC metabolomics studies can promote the improvement

of HCC clinical treatment. In this review, we firstly introduce

the current metabolomics technologies for metabolic profiling.

Subsequently, we summarize the recent advances in

metabolomics studies for HCC biomarker discovery. Notably, we

highlight the application of multi-omics-based strategies

containing metabolomics in biomarker discovery for HCC.

These biomarkers are expected to make a major step toward

more timely and effective precision medicine for HCC patients.
Metabolomics approaches for
metabolite profiling

The general workflow of metabolomics analysis consists of

sample collection and preparation, analytical platforms for

metabolomics, and statistical analysis of metabolomics data

(Figure 1).
Sample preparation

During sample preparation, the first issue of concern is which

type of clinical materials is needed for metabolomics studies.

Common samples include pathological tissues, blood-derived

samples, urine, and feces (23, 28). Tissues directly exhibit

metabolic alterations during disease development and

progression, and represent the most persuasive material for

studying mechanism of diseases (29). However, the acquisition

of pathological and healthy tissues is invasive and difficult. In

addition, quenching is an important step after tissue sampling,

which aims to rapidly inhibit metabolism, but is dispensable

for biofluids (30). Besides, fully extracting metabolites from

tissues, either by solvent extraction or acid extraction, is

another challenge (31). These limitations restrict the use of

tissues in metabolomics. Instead, blood, urine, and feces are
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FIGURE 1

The general workflow of metabolomics analysis. The general metabolomics analysis consists of sample collection and preparation, metabolomics
detection and statistical analysis. Common samples include pathological tissues, blood-derived samples, urine, and feces. Nuclear magnetic
resonance (NMR) and mass spectrometry (MS) are two widely applied analytic platforms. MS is always coupled with gas chromatography (GC),
liquid chromatography (LC) or capillary electrophoresis (CE) for different separation demands. The metabolic data obtained from these analytic
platforms require pre-processing, metabolite identification and quantification, and statistical analysis. Common statistical analysis includes
principal component analysis (PCA), partial least squares regression discriminant analysis (PLA-DA) and orthogonal partial last squares regression
discriminant analysis (OPLS). Finally, receiver operating characteristic curve (ROC) analysis and in vivo validation can be utilized to evaluate the
specificity and sensitivity of novel biomarkers.
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easy to access and low-invasion in clinical practice. Blood is

described as one of the most informative materials, which

carries many metabolites from local lesions or distant

metastasis sites into peripheral circulation. Therefore, serum

and plasma are ideal materials to identify biomarkers for early

diagnosis and prognosis (32, 33). To identified more

convincing metabolite biomarkers, some studies firstly identify

altered metabolites in tissue samples and subsequently validate

them in blood by targeted analysis. In addition, paired analysis

of entering and draining blood of pathological tissues can

provide bona fide information of tissue metabolic activity (34).

This arteriovenous-based paired approach has great power to

explore the pathological mechanisms which was often ignored

before. For example, portal venous blood, the unique blood

supply of liver originated from intestinal system, has recently

been subjected to in-depth metabolomics analysis. Metabolite

differences from portal venous to central venous in blood were

combined with metabolite profiles in tissues and feces. This

study is the first report to illustrate the metabolome

characteristics in portal vein of HCC patients and highlights

portal venous blood as reliable clinical materials (9). Due to the

stability of biofluid-derived samples, quenching is less

important considerations. Instead, immediately −80°C freezing

and storage are essential for maintaining sample integrity to
Frontiers in Medical Technology 03
achieve accurate analytical results. Besides, the use of urine and

feces samples in metabolomics are increasing nowadays. They

include both endogenous and exogenous metabolites, which

can indicate the influence of genetic and environmental factors

on metabolic alterations during disease progression (35).

Specifically, the fecal metabolomics studies can capture the

potential interactions between the gut microbiome and disease

development (36). Metabolites from gut microflora may

contribute to the initiation and progression of HCC, which are

promising biomarkers for diagnosis and prognostic evaluation.

It should be noted that some animal models, such as

diethyl-nitrosamine (DEN)-induced HCC in mice or rats, can

simulate human HCC in the typical pathological type (37).

Animal models play important roles in analyzing the dynamic

alterations of metabolites during hepatocarcinogenesis in pre-

clinic studies. 1H-NMR- and MS-based metabolomics studies

have been performed for the identification of metabolite

biomarkers for HCC by using DEN-induced HCC model (38–

40). However, other HCC animal models seem to be ignored

for metabolomics studies, such as HCC transgenic mouse

models (for example, c-myc and transforming growth factor α

expression systems) and tumor xenografts (41–44). Expanding

the application of metabolomics analysis in different HCC

animal models is an important ongoing area of investigation.
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Analytical platforms for metabolomics
studies

NMR and MS platforms are the most widely used analytical

tools for metabolomics studies (21). NMR identifies metabolites

based on the specific radiation generated by 1H or 13C atoms

in a magnetic field, which is highly reproducible and

nondestructive (45–47). 1H-NMR is widely applied due to its

simple sample preparation and robust structure characterization

ability (48). NMR has an advantage in analyzing organic

molecules, especially fatty acids (49). Moreover, NMR can

provide non-destructive analysis of metabolites in intact cells

and organisms, which has great potential for clinical

application (50). For example, proton magnetic resonance

spectroscopy can dynamically track D-2-hydroxyglutarate in

gliomas to monitor disease progression and predicting

treatment outcomes (51). However, the low sensitivity and

resolution of NMR limit its implication (52–54). In this regard,

two-dimensional NMR spectroscopy has been recently

developed with high resolution, which is promising to extend

the application of NMR in metabolomics studies (52).

Currently, MS is the most sensitive tool for metabolomics

analysis with broad coverage and high scalability. Because of the

complex diversity and heterogeneity of metabolite properties, no

single method can efficiently cover all metabolites at the same

time (30). Therefore, MS platform is always equipped with

different chromatographic columns to increase its sensitivity and

resolution for specific metabolites of interest. Gas

chromatography (GC), liquid chromatography (LC) and

capillary electrophoresis (CE) are common separation devices to

reduce sample matrix and separate individual metabolites (33,

39, 55, 56). GC-MS has a broad detect spectrum, and can well

identify nonpolar and volatile metabolites, such as organic acids,

sugars, and free fatty acids (FFAs) (57, 58). However, the high-

energy and low vapor pressure of GC limit its application to

heat-labile metabolites. Therefore, GC-MS needs to be coupled

with chemical derivatization process to increase candidate

stability (58). LC-MS, the most widely used tool for

metabolomics analysis, is quite versatile with several different

retention patterns, including reversed phase, normal phase, and

hydrophilic interaction chromatography (59). LC-MS is sensitive

and accurate that can be employed for metabolites with low

concentrations (60). However, LC-MS works poorly with non-

polar molecules. Recently, a dual derivatization LC-MS-based

metabolomics has been launched as an easy-to-use strategy for

quantifying nonpolar metabolites, such as FFAs. In this study, a

pair of light and heavy derivatization reagents are used to label

FFAs to improve their ionization efficiency, rendering these

non-polar metabolites suitable for LC-MS analysis (61). CE-MS

is a mature separation technique for polar metabolites.

However, due to its low sensitivity and high variability,

the application of CE-MS is largely limited in metabolomics

studies (62).
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For MS-based metabolomics analysis, the separated

metabolites need to be ionized for signal collection. It is worth

noting that different ionization methods will generate different

metabolomic profiles (63). Electrospray ionization (ESI), electron

impact ionization, and chemical ionization are common

ionization methods. ESI model can softly ionize a wide spectrum

of metabolites, representing the most effective ionization choice

for LC-MS (64). However, ESI lacks quantitative capability, due

to the ion suppression/enhancement from matrix interference.

Electron impact ionization and chemical ionization methods

have been developed to circumvent the interference of matrix

(65). Benefiting from the rapid development of separation and

ionization strategies, MS platform has steadily increased its

application for metabolomics studies.

MS-based metabolomics strategies can be either targeted or

nontargeted. To achieve different analytic goals, various mass

analyzers are available, including Fourier transform ion

cyclotron resonance (FT-ICR), orbitrap, time of flight (TOF),

ion trap, and quadrupole (Q) (59, 66). Of note, these analyzers

can be combined as hybrid MS systems for better performance

(67–69). Nontargeted metabolomics usually utilizes FT-ICR-,

TOF-, Orbitrap- or Q-TOF-based MS platforms to cover as

many metabolites as possible in a single analysis (70). Early

metabolomics studies often identify altered metabolites using

nontargeted strategies, but lack validation. Targeted

metabolomics acts as hypothesis-driven analysis and aims to

qualitative and quantitative pre-defined metabolites. To achieve

this attempt, tandem MS is always equipped with triple

quadrupole or Q-linear ion trap to specifically identify certain

molecules (69, 71). Selected reaction monitoring (SRM) and

multiple reaction monitoring (MRM) are the basic signal

collection devices in targeted metabolomics (72). In general,

altered metabolites are screened by untargeted metabolomics,

and subsequently verified by targeted analysis. It should be

noted that corresponding metabolite standard is required for

targeted analysis of candidate metabolites. Interestingly, a

pseudo-targeted method has recently been developed for

biomarker discovery based on both nontargeted and targeted

platforms. Briefly, ion pairs of metabolites were figured out by

nontargeted analysis. Subsequently, targeted devices were used

to quantify as many metabolites as possible based on

untargeted profiling information. Compared to nontargeted

metabolomics, the pseudo-targeted metabolomics method can

achieve better repeatability and wider linear range (73).
Statistical analysis of metabolomics data

The metabolomics data are quite massive and variable.

Therefore, sophisticated statistical analysis is required for

identifying significantly altered metabolites (74). After acquiring

the metabolomics data, analysis of the data distribution makes

primary. Then, for hypothesis-driven analysis, Student’s t-test
frontiersin.org

https://doi.org/10.3389/fmedt.2022.1065506
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


Wu et al. 10.3389/fmedt.2022.1065506
and Mann–Whitney U test can be utilized to compare the

differences between two groups. χ2 test and Fisher’s exact test

are suitable for categorical parameters (9). As for non-hypothesis

analysis, multivariate analytic approaches are required, such as

principal component analysis (PCA), partial least squares

regression discriminant analysis (PLS-DA), and orthogonal

partial last squares (OPLS). PCA is a common unsupervised tool

for data simplification, which can capture a panel of most

contributing factors by calculating dimensionless components

(75). Subsequently, supervised methodologies, including PLS-DA

and OPLS analysis, are carried out to produce intuitive data

interpretation by the reduction of dimensionality and noise of

data (76). Supervised methodologies are usually combined with

unsupervised PCA to identify the predictive metabolic

alterations from uncorrelated information in practice (9). Finally,

the specificity and sensitivity of selected metabolites can be

evaluated by receiver operating characteristic (ROC) curve

analysis and in vivo validation. However, due to the similarity

existed between the metabolic features between HCC and liver

cirrhosis, a pattern recognition approach has been developed

and employed for HCC metabolomics study based on sequential

feature selection in combination with linear discriminant

analysis (77). When combined with AFP diagnostic model, this

recognition analysis is effective enough to distinguish HCC from

healthy controls or liver cirrhosis than conventional data

processing methods (78). Additionally, a LC-MS-based

metabolomics study have established a network-based feature

selection method (NFSM) to define metabolites with the most

discriminant capacity of outcome prediction. In NFSM, paired

biomarkers were selected to infer metabolite networks and

calculate feature ratios, which were considered as presumptive

pathway reactions. By using statistical significance of feature

ratios, NFSM was conducted to define the key metabolites

associated with different outcomes. Finally, a risk score,

constituting of serum levels of paired metabolites, was

established and validated to predict the overall survival of HCC

post-surgery patients. Based on this approach, phenylalanine and

choline were identified as a biomarker panel for prognostic

evaluation of HCC patients after surgical intervention (63). With

the development of analytic methodologies, metabolomics-based

biomarker discovery has been speeded up for clinical practice.
HCC metabolomics for biomarkers
discovery

To date, emerging metabolomics studies have been

successfully conducted to characterize the metabolic features

of HCC (Supplementary Table S1). Several metabolites

involved in multiple metabolic pathways have been identified

as potential HCC biomarkers. In some cases, alerted

metabolites in biofluids can be utilized as biomarkers for early

diagnosis or prediction of the therapeutic outcomes in clinical
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practice. Moreover, metabolomics analysis of tumor tissues

enables the discovery of novel metabolites which contribute to

the development and progression of HCC. In particular,

multi-omics-based strategies have been used to identify

metabolic biomarkers for HCC (Figure 2).
Metabolite biomarkers in biofluids for
HCC early diagnosis

Early detection of HCC is vital for longer survival time and

more available therapeutic options (79). Blood and urine, which

are easy to access and simple to operation in clinical practice,

serve as ideal material sources for biomarker discovery (80).

A CE-MS-based metabolomics study employed 7 serum samples

from DEN-induced rats to discover polar metabolites for early

diagnosis of HCC. Among the 76 significant differential

metabolites, 5 metabolites, including betaine, creatine, kynurenine,

pipecolic acid, and one unidentified metabolite were cross-

selected based on the preliminary screening of multivariate and

univariate analysis. Among them, the increased ratio of creatine/

betaine achieved effective classification of pre-HCC and HCC

stages. This ratio also performed well in an external validation

study for cirrhosis and HCC patients (39). Besides, a 1H-NMR-

based metabolomics study was carried out to identify potential

biomarkers by using urine samples from DEN-induced HCC

rats. Time-dependent changes of metabolites in urine were

analyzed when rats were at the 8th, 10th, 12th weeks of age.

After multivariate statistical analysis, a total of 26 altered

metabolites were identified in HCC model. Then, pathway

enrichment analysis was performed for metabolite profiles at the

8th, 10th, and 12th weeks of age. The taurine and hypotaurine

metabolism was exhibited the highest alteration. The result

showed that urinary levels of creatinine, putrescine, choline, and

taurine were increased, whereas the level of hippurate was

decreased in HCC tissues compared with normal tissues (38).

These altered metabolites are associated with HCC occurrence

and suitable for HCC early diagnosis. However, these metabolites

need to be further validated in HCC patients. In addition, Tan

et al. conducted LC-MS-based metabolomics to discover potential

biomarkers in serum for small HCC diagnosis. Serum from

56 DEN-induced HCC rats were collected as discovery group.

Using LC-MS-based screening, 52 metabolites exhibited

significant differences. Among them, several metabolites,

such as taurocholic acid, lysophosphoethanolamine, and

lysophosphatidylcholine, exhibited increased trends of alterations

with hepatocarcinogenesis. To examine the diagnosis potential,

these selected metabolites were validated in human serum from

262 patients with HCC, 76 patients with cirrhosis and 74 patients

with HBV infection. The serum levels of taurocholic acid,

lysophosphoethanolamine, and lysophosphatidylcholine were

significantly up-regulated in HCC patients (40). Therefore, these

metabolites are regarded as promising biomarkers for HCC
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FIGURE 2

Metabolomics-based biomarkers discovery for tailored therapeutics for HCC patients. Significant altered metabolites identified from HCC
metabolomics studies can be employed as biomarkers for different clinical applications. Metabolite biomarkers in biofluids can be employed for
early diagnosis and prediction of therapeutic outcomes. Characterizing metabolic features in HCC tissues can improve the understanding of HCC
pathological signatures. In addition, the integrated multi-omics strategies containing metabolomics can provide comprehensive information from
different molecular insights for the identification of HCC biomarkers and therapeutic targets.
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diagnosis. These studies suggest that animal models can be

employed as discovery group to identify potentially altered

metabolites involved in HCC development and progression.

Biologically, in-depth analysis of serum metabolic profiles of

HCC patients and healthy populations enables biomarker

discovery for HCC. The level of endogenous metabolites in

blood are related to the risk of HCC. An ultra-performance

liquid chromatographic (UPLC)-MS-based metabolomics study

used 209 serum samples to characterize metabolic features of

HCC patients. Among 1960 detected metabolites, 9 metabolites

showed higher peak intensities, and 28 metabolites showed

significantly lower peak intensities in HCC groups. Correlations

analysis revealed that the occurrence of HCC is highly associated

with the increased serum levels of leucine, phenylalanine,

tyrosine, arachidonic acid, and 5-hydroxyhexanoic acid (81).

Besides, Wu et al. detected the differential metabolites in urine

through chemical derivatization followed by GC-MS analysis.

Among the 103 observed metabolites, 16 endogenous

metabolites were significantly up-regulated in HCC patients

compared with healthy controls, whereas 2 metabolites were
Frontiers in Medical Technology 06
down-regulated. Combining with AFP examination, these

metabolites performed well for early diagnosis through cross-

validated ROC analysis (56). This work may inspire future

studies to investigate more exogenous metabolites originated

from drugs or human floras as biomarkers for HCC. Non-

targeted serum metabolomics profiling is regarded as a

noninvasive tool to provide early diagnostic differentiation.

Recently, an untargeted metabolomics study aimed to examine

the association of plasma metabolites with the risk of HCC by

using two prospective cohorts (108 and 55 HCC and healthy

individuals, respectively) in China. UPLC-MS-based platforms

have discovered 44 dysregulated metabolites between HCC

patients and controls. After least absolute shrinkage and

selection operator (LASSO) and ROC curve analysis, 18

metabolites (including quinolinate, glycocholic acid, and

citraconate) were selected with the potential to predict HCC risk

in both training and validation sets (82). To distinguish early

and advanced HCC patients, an NMR-based studies used serum

samples from 64 HCC patients in early (28 populations) and

advanced (36 populations) disease stages for biomarker
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discovery. OPLS-based analysis showed the levels of alanine,

glutamine, 1-methylhistidine, valine, and lysine were increased in

early HCC, while N-acetylglycoproteins and glycine were

decreased. Moreover, Kaplan-Meier analysis highlighted the

serum tyrosine as a predictor for overall survival of early HCC

patients (83). Together, this study identified a set of metabolites

as potential biomarkers for early HCC. In addition to

endogenous metabolites, exogenous molecules could also serve

as promising biomarkers for HCC. For instance, a 1H-NMR-

based metabolomics employed serum from 144 HCC patients

and 222 healthy individuals as objects of study. A total of 285

differential metabolites were identified. Among them, serum

levels of 8 metabolites were higher in HCC patients, and 15

metabolites were lower. After ROC analysis, 16 metabolites,

including tyrosine, phenylalanine, citrate, glucose, propylene

glycol, glutamate, valine, acerate, leucine, isoleucine, choline, N-

acetylglycoproteins, unsaturated lipids, and very-low-density

lipoproteins were found to be significantly associated with HCC

risk. Specifically, propylene glycol, an exogenous metabolite, was

a strong risk positively associated with HCC (84).

It is known that some cases of HCC arise with a background

of HBV or HCV infections (85, 86). Therefore, several

metabolomics studies focus on investigating the difference of

blood metabolites in HCC and hepatitis patients. To distinguish

HCC and HBV patients, a GC-MS-based metabolomics study

investigated serum metabolites from 39 HCC patients, 49 HBV-

infected patients, and 61 healthy people. Peak signals of 300

metabolites were obtained. Among them, 11 metabolites were

significantly up-regulated in HCC serum compared to healthy

populations and patients with HBV and liver cirrhosis. These

altered metabolites in serum were proved to be associated with

the stepwise of hepatocarcinogenesis from hepatitis B to HCC

(87). Besides, a LC-MS-based metabolomics screening was

carried out to distinguish HCC from chronic hepatitis B and

liver cirrhosis. Metabolite profiling revealed that 858 and 1,720

metabolites were up-regulated and down-regulated respectively

in HCC serum samples compared with HBV patients. By

comparing metabolite profiling from liver cirrhosis patients, 51

differential metabolites were selected, which were altered with

the progression from chronic hepatitis B to liver cirrhosis to

HCC. Specifically, the levels of taurodeoxy cholic acid and 1,2-

diacyl-3-β-D-galactosyl-sn-glycerol were gradually increased with

liver disease progression, whereas the levels of 5-hydroxy-

6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid and glycyrrhizic acid

were decreased (88). As for HCV-based HCC, 40 HCC patients

with underlying HCV infections and 22 HCV patients were

recruited for a 1H-NMR-based study. Individual peaks from 19

known metabolites were collected and analyzed. It is shown that

the serum levels of choline and valine were increased, whereas

the level of creatinine was decreased in HCC patients. After

ROC analysis, these metabolites showed high sensitivity and

specificity for HCC diagnosis (89). Fitian et al. conducted GC/

LC-MS-based analysis to expand detecting scale for metabolites
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HCC. This work included 30 HCC patients, whose cancer arose

exclusively from HCV-cirrhosis and 27 HCV patients for

analysis. Among 485 detected metabolites, 107 metabolites were

markedly altered in HCV-infected HCC serum compared with

HCV patients. The random forest supervised class prediction

model, fold difference comparisons and ROC analysis were then

performed to identify metabolite expression trends that were

most closely associated with HCC. Results showed that elevated

serum levels of 12-hydroxyeicosatetraenoic acid, sphingosine,

xanthine, serine, glycine, aspartate, and acylcarnitine were

positively associated with the development of HCV-mediated

HCC (90). Additionally, a metabolomics study aimed to

decipher metabolic differences between HCC and HCV-related

liver cirrhosis. The plasma from 44 patients were collected for

GC-MS-based analysis. The MS platform detected 61 signals, 5

of which showed the strongest discriminatory capacity for

separation between HCC and HCV-related cirrhosis patients.

The plasma levels of oleic acid, octanoic acid, oleic acid, and

glycine were highly increased in HCC, whereas the level of

capric acid was decrease (91). Based on these metabolomics

studies, metabolites in blood were characterized as promising

biomarkers for hepatitis-related HCC.

Patients with liver cirrhosis are considered as one of the main

risk factors for HCC incidence. Early diagnosis of potential HCC

patients from cirrhosis patients is an urgent need in clinic.

Therefore, some metabolomics studies were conducted to

characterize the metabolic differences between HCC and liver

cirrhosis. Using UPLC/GC-MS-based metabolomics analysis,

Patterson et al. identified 12 up-regulated and 8 down-regulated

metabolites in HCC plasma compared with liver cirrhosis

patients. Among them, levels of glycodeoxycholate, deoxycholate

3-sulfate and bilirubin were significantly increased in HCC

plasma compared with liver cirrhosis (92). These altered

metabolites in plasma can deepen our understanding of HCC

pathobiology. Besides, a GC-MS-based metabolomics study was

performed in 89 plasma samples from Egyptian HCC patients

and cirrhosis patients. A total of 23 differential metabolites were

identified by TOF/Q-MS-based analysis in discovery cohort,

which were subsequently validated by targeted metabolomics

analysis. The results confirmed significant up-regulation of

glutamic acid, lactic acid, valine, isoleucine, leucine, α-

tocopherol, and cholesterol in HCC plasma. Notably, activation

of branched-chain amnio acid metabolism was found to be

associated with HCC occurrence (93). However, the limited

subject was the main shortcoming of this study. A large-scale

metabolomics study using 1,448 serum samples has been

conducted to compare the metabolic differences between HCC

and cirrhosis patients. These samples were divided into

discovery (108 populations), test (684 populations), and

validation (656 populations) groups. Moreover, samples from

small HCC patients were specifically recruited to access the

performance of potential biomarkers in early diagnosis. A total
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of 17 metabolites were identified with significant alterations in the

HCC serum compared to liver cirrhosis group by LC-MS-based

pseudo-targeted analysis. After validation, the combination of

phenylalanyl-tryptophan and glycocholate, decreased in serum

levels, exhibited favorable diagnostic performance for HCC,

especially small HCC (94). Using the similar strategy, Kim et al.

recruited 150 people (53 HCC patients, 47 liver cirrhosis

patients, and 50 healthy volunteers) for discovery and 162

people (82 HCC patients and 80 liver cirrhosis patients) for

validation. In total, 188 metabolites were detected based on GC/

LC-MS-based metabolomics analysis. After evaluation in test

group, increased methionine, proline, and ornithine, as well as

decreased pimelylcarnitine and octanoylcarnitine in serum

performed well as biomarkers to identify HCC patients from

liver cirrhosis populations (95). Besides, two UPLC-MS-based

metabolomics studies were conducted to identify biomarkers in

serum for HCC patients. Ressom et al. analyzed 262 serum

samples in three experiments using UPLC-QTOF-MS under

positive and negative detection modes. A total of 37

dysregulated metabolites were identified. Metabolism pathway

analysis showed that sphingolipid and phospholipid metabolism

were enhanced, and bile acid biosynthesis was weakened in

HCC cases compared to cirrhosis patients (96). Xiao et al.

conducted UPLC-MS-based metabolomics, and identified 34

significantly altered metabolites in HCC serum in discovery

group. Subsequently, a subset of these metabolites, such as Phe-

Phe, glycholic acid, glycodeoxycholic acid, 3β, 6β-dihydroxy-5β-

cholan-24-oic acid, and oleoyl carnitine, were verified by

targeted analysis in validation group. Targeted profiling showed

that bile acid-related metabolites and long chain carnitine were

significantly decreased in HCC serum compared with liver

cirrhosis patients. Moreover, the serum levels of glycholic acid,

glycodeoxycholic acid, 3β, 6β-dihydroxy-5β-cholan-24-oic acid,

and oleoyl carnitine were remarkable decreased in HCC (20).

These two studies both demonstrated the potential of bile acid-

related metabolites as biomarkers to distinguish HCC and

cirrhosis patients. Multiple types of analytic platforms have been

employed to identify metabolite biomarkers including NMR,

LC-MS, CE-MS, and GC-MS. A metabolomics study employed

both NMR and LC-MS devices to expand the detection scale. In

this study, totally 32 differential metabolites were selected to

evaluate the feasibility for HCC diagnosis by using 43 HCC

serum samples and 42 liver cirrhosis serum samples. Formate

and phytosphingosine were validated as a panel of biomarkers

for their high sensitivity and accuracy (97). In addition, Zeng

et al. used CE-MS-based approach to discovery the difference of

serum metabolome in HCC and liver cirrhosis patients. 53

metabolites were observed with significant alterations in serum

specimens. Among them, the serum levels of tryptophan and

glutamine were decreased in HCC, whereas the level of 2-

hydroxybutyric acid was increased. This study showed the

potential of CE-MS-based approach in identifying biomarkers

for HCC diagnosis (98). Apart from using biomarkers alone, the
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effective approach for distinguishing HCC from liver cirrhosis.

Poto et al. employed plasma samples from 63 HCC and 65 liver

cirrhosis patients. Using GC-MS-based analysis, peak signals of

46 metabolites were obtained, 11 of which were significantly

dysregulated in HCC cases. HCC cases showed higher levels of

valine, serine, isoleucine, α-D-glucosamine-1-phosphate, and

linoleic acid, while cirrhotic patients had elevated levels of

glycine, creatinine, glutamic acid, tagatose, lauric acid, and

phosphoric acid in plasma. Integrated ROC analysis showed the

higher sensitivity and specificity of the combination of these

metabolites and clinical covariates as an effective approach for

early diagnosis than using identified metabolites or AFP alone.

This work demonstrated the value of combining these

metabolites with clinical covariates for early diagnosis of HCC

with cirrhosis (99). Moreover, alcoholic cirrhosis is the common

risk factor for HCC in western world. A 1H-NMR-based study

profiled the metabolic features of HCC with cirrhosis compared

to alcoholic cirrhosis patients by using 158 serum samples. In

discovery set, the serum levels of glutamate, acetate, and N-

acetylglycoproteins were remarkably increased in HCC,

especially small HCC, whereas the levels of lipids and glutamine

were decreased. Validation in the test set showed that the model

could predict cirrhosis or HCC (100).
Metabolite biomarkers for HCC
therapeutic prediction

Metabolomics strategies have great advantages for HCC

therapeutic prediction. For example, a GC-MS-based

metabolomics study was performed to analyze the metabolic

profiling of 130 paired HCC and normal tissues. After false

discovery rates correction, 81 metabolites (21 higher and 60 lower

in HCC) were identified as differential metabolites by paired

nonparametric tests. Among them, FFAs, such as palmitoleic

acid, palmitelaidic acid, 2-hydroxyglutaric acid, O-

phosphocolamine, and elaidic acid were most increased

metabolites in HCC tissues. HCC prognosis risk stratification was

then performed by nonnegative matrix factorization clustering

based on differential metabolites between tumor and normal

tissues. This work showed that patients with higher FFAs levels

had a worse prognosis (101). In addition, a LC-MS-based

nontargeted and targeted metabolomics study was conducted to

characterize HCC metabolic features and identify potential

biomarkers for prognostic evaluation by incorporating both tissue

and blood metabolites. Among 138 altered metabolites, retinol

and retinal could independently differentiate HCC and cirrhosis.

Using univariate and multivariate cox regression analysis, low

abundance of retinol and retinal was identified as important

predictors for decreased survival time (102). These studies

demonstrate that metabolomics appears to have considerable

value for HCC therapeutic prediction.
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Liver transplantation is an effective curative therapy with

long-term outcomes (103). A UPLC-MS-based metabolomics

analysis aimed to explore effective biomarkers for evaluating

the recurrence of HCC post-transplant. Metabolic profiling

was performed on 122 HCC patients post-transplant, 25 liver

cirrhosis patients, and 52 healthy individuals. Univariate

analysis identified 5 differential metabolites related to HCC

recurrence after liver transplantation. In detail, the increased

plasma level of phosphatidylcholine (18:2/OH-16:0) as well as

decreased levels of nutriacholic acid, phosphatidylcholine (o-

16:0/20:4), and 2-oxo-4-methylthiobutanoic acid in HCC

post-transplant were highly associated with tumor recurrence

and worse outcomes (104). Apart from liver transplantation,

image-guided ablation, such as transcatheter arterial

chemoembolization (TACE) and radiofrequency ablation

(RFA), is an alternative therapy for small and located HCC

nodules (105). Two independent 1H-NMR metabolomics

studies have been conducted in TACE-treated patients for the

identification of HCC prognostic biomarkers. The first study

recruited 60 HCC patients to identify serum metabolites that

were associated with therapeutic outcomes of HCC after

TACE treatment. It was found that higher levels of total

cholesterol, low density lipoprotein cholesterol, and low-

density lipoprotein particles were associated with a poorer

overall survival (106). Another 1H-NMR-based study aimed to

investigate the metabolic alterations in plasma of recurrent or

metastatic HCC patients after TACE treatment or post-

surgery. Increased glucose consumption and lactate and

pyruvate production were observed in both TACE and post-

surgery plasma compared with healthy controls. However,

TACE or surgical treatments did not immediately change the

metabolic features of HCC patients (19). Additionally, a 1H-

NMR-based metabolomics also failed to generate the

considerable results to distinct metabolic difference after RFA

treatment, which might be due to the low sensitivity of the
1H-NMR platform (107). Interestingly, a GC-MS-based

metabolomics study performed well in determining the

candidate biomarkers for the prediction of HCC recurrence

after RFA treatment. In this study, serum samples from 11

recurrent and 21 non-recurrent HCC patients after RFA were

analyzed. The result showed that the combination of aspartate

and glutamate can identify HCC patients for RFA treatment,

whereas elevated levels of glycerol and proline can predict

better patient outcomes after RFA treatment (108). Therefore,

metabolomics analysis plays an important role in biomarker

discovery for HCC prognostic evaluation.
Tissue-based metabolite biomarkers for
HCC development and progression

Characterizing metabolic anomalies in HCC nodules

promotes the understanding of regulatory mechanisms involved
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NMR-based metabolomics study aimed to identify metabolic

preferences of HCC according of fibrosis levels. Fifty-two pairs

of HCC tissues, including 26 HCC developed in severe fibrosis

and 26 HCC in mild fibrosis, were sampled. A total of 34

metabolites have been observed with significant difference in

different fibrosis degrees of HCC tissues. Among them, the

abundance of glucose, choline derivatives, phosphoethanolamine,

monounsaturated fatty acid, and triacylglyceride were detected

with the most significant alterations. In detail, the results

demonstrated that HCC tissues with mild fibrosis exhibited

higher levels of choline derivatives and glutamine, whereas HCC

tissues with severe fibrosis were characterized with decreased

monounsaturated fatty acid (109). Similarly, a GC-MS-based

metabolomics study provided a landscape of the metabolic

differences in HCC patients with or without diabetes. Metabolic

profiling was conducted for 120 diabetes or non-diabetes HCC

issues. Using PCA-based analysis for selection, 2-hydroxystearate

was only up-regulated in HCC tissues with diabetes, and was

positively correlated with the blood glucose levels (75). These

works emphasize the importance of metabolomics analysis on

deciphering mechanisms of hepatocarcinogenesis in the

metabolic perspective. Moreover, profiling metabolome of HCC

tumors tissues in situ and metastases tissues can characterize the

metabolism features of tumors with metastasis. Therefore, Wang

et al. performed metabolic profiling of HCC metastasis using

DEN-induced rat model with lung metastasis. After metabolic

profiling, tumor tissue from metastasis sites showed decreased

glucose and glycogen, and increased choline, glycine, alanine,

and lactate. This 1H-NMR-based metabolomics analysis showed

that elevated glycolysis was associated with HCC invasion and

metastasis (110).

Some metabolomics studies identified metabolite biomarkers

for HCC based on both serum and tissue samples. For example,

Han et al. carried out LC-MS-based metabolomics analysis to

select metabolites, the levels of which were alerted in both

HCC tissue and serum samples. After integrated analysis, the

abundance of chenodeoxycholic acid, lysophosphatidylcholine,

and glycocholic acid were increased in HCC patients, whereas

the levels of succinyladenosine and uridine were decreased. The

combination of these differential metabolites can be used as a

biomarker panel to improve the diagnostic accuracy of HCC

(33). The identification of specific biomarkers, which are

accessible in peripheral circulation can improve the diagnostic

efficiency of HCC. A LC/GC-based nontargeted metabolomics

analysis firstly employed 50 pairs of HCC tissues and distal

non-cancerous tissues samples for global metabolic profiling. A

series of 62 metabolites were observed with significant

alterations in HCC tissues. Specifically, the levels of acetyl-

carnitine correlated most strongly with tumor grade and could

distinguish HCC and matched normal tissues. Subsequently, a

targeted metabolomics was employed for external validation by

using 58 serum samples (18 from HCC patients, 20 from liver
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cirrhosis, and 20 from healthy individuals). These findings

showed that serum acetyl-carnitine was appears to be a

potential biomarker for the diagnosis and progression of

hepatocellular carcinoma (111). Besides, Huang et al. aimed to

identify metabolites which were both alerted in both HCC

tissues and serum samples. Using LC/GC-MS-based

metabolomics analysis, 105 dysregulated metabolites in HCC

tissues (30 populations) were identified compared with adjacent

and distal non-tumor tissues (60 populations). These

differential metabolites were then validated in HCC serum

samples (30 populations) compared with serum from healthy

individuals (30 populations). Through integrated analysis, the

levels of betaine and propionyl-carnitine were found to be

decreased in both tissues and serum (112). Previously,

peripheral blood is considered unusable for investigating the

mechanisms of HCC formation and development. However, a

recent integrated metabolomics analysis successfully employed

portal vein serum as an important sample material to identify

altered metabolites as HCC progression. Portal and central vein

serum, tissues, and feces samples were collected for UPLC-MS-

based metabolomics analysis. Through comparing with

metabolic profiling, dysregulated metabolites with the same

trend in these profiling were selected for in-depth validation. In

detail, higher levels of DL-3-phenyllactic acid, L-tryptophan,

glycocholic acid, and 1-methylnicotinamide in portal vein

serums and tissues were observed in patients with impaired

liver function and poorer survival. In addition, the lower levels

of linoleic acid and phenol in portal veins and feces samples

were associated with higher malignant potential. This work

showed that the abundance of metabolites in gut-liver axis were

essential for investigating the molecular mechanism of

hepatocarcinogenesis and identifying novel therapeutic targets

for HCC (9). Metabolic alterations may contribute to the

development of HCC, which means that the dysregulated

metabolites may represent a potential target for HCC treatment.
Multi-omics strategies containing
metabolomics for biomarker discovery in
HCC

Integrated omics analysis has received much attention in

recent years, due to its promising values in information

acquisition. Multi-omics studies can integrate multiple aspects

of biological information to characterize the overall molecular

information for HCC (27, 113). Recently, Le et al. performed a

systematic multi-omics study to reveal the metabolic landscape

of pro-metastatic HCC cell lines by integrating genomics,

transcriptomics, proteomics, and metabolomics analysis (114).

Firstly, whole-exome sequencing was performed to analysis the

single-nucleotide polymorphisms and copy number alterations.

Compared with low metastatic Huh7 cells, 169 and 65

nonsynonymous single-nucleotide polymorphisms, which were
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metastatic MHCC97L and HCCLM3 cells. As for copy number

alterations, the up-regulated alterations were observed in 19.8%

and 18.8% of MHCC97L and HCCLM3 regions, while the

down-regulated alterations were detected in 13.6% and 7.1% of

MHCC97L and HCCLM3 regions. These altered regions were

involved in 2,449 genes. Then, 9,635 differentially expressed

mRNAs were detected by microarray-based transcriptomics

analysis. For proteomics analysis, robust HPLC-MS/MS-based

system was combined with triplex demethylation isotopic

labeling approach for quantitative analysis. As a result, 737

dysregulated proteins were identified. Specifically, 311

overlapped differential genes at both mRNA and protein levels

were identified in total. As for metabolomics profiling, LC-MS-

based metabolomics identified 287 altered metabolites in highly

metastatic HCC cells compared with HCC cells with low

metastatic capacity. Glycolysis, starch and sucrose metabolism,

and glutathione metabolism were up-regulated in highly

metastatic HCC cells. After integrated analysis of multi-omics

data and validation through western blot assay, 12 out of 311

identified genes were dysregulated at multiple biological levels

at the same time. Among these selected genes, uridine

diphosphate glucose pyrophosphorylase 2 (UGPase 2) in

glycogen metabolism was positively correlated with the

quantified metastatic capability at both mRNA and protein

levels with the highest coefficient. The multi-omics data

showed that UGPase 2 played an important role in promoting

metastasis through the up-regulation of glycogen synthesis, and

was verified as a promising pro-metastasis biomarker (114).

This work demonstrates the importance of multi-omics-based

analysis in biomarker discovery for HCC diagnosis and

therapy. However, this study employed HCC cell lines as

sample types, lacking typical pathological features of HCC

tumors in clinic. Multi-omics studies are urgently required to

be applied for HCC biomarker discovery using clinical

materials, such as tissues or blood, in the near future.

In addition, some studies integrated data from

metabolomics and transcriptomics analysis for uncovering

HCC metabolic/transcriptional features. For example, in order

to uncover subtypes of HCC by metabolomics-based

classification, a recent multi-omics-based study firstly

employed metabolomics and transcriptomics analysis on 77

tumor and paired adjacent non-cancerous tissues from HCC

patients. LC/GC-MS-based metabolic profiling identified a

total of 69 most significantly differential metabolites, such as

nicotinamide riboside, 4-hydroxyglutamate, glutathione,

sphingosine, and mono-saccharide. Then PCA-based analysis

of metabolomics data showed that the normal tissues were

clustered together, whereas the HCC tissues were divided into

3 subgroups (S1, S2, and S3), whose survival and clinical

parameters are significantly different from each other. For in-

depth analysis, subtype-specific genes were further selected for

each subgroup. In detail, S1 subgroup, with a relatively poor
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prognosis, was characterized by a low concentration of the

degradation products of phosphatidylcholine and

phosphatidylethanolamine, as well as up-regulated genes on

chromosome 6q27. S2 subgroup, whose prognosis was the

best, showed lower levels of mono-saccharide and phosphate

type, as well as few alterations in genic expressions. Finally, S3

subgroup had higher levels of unsaturated fatty acid

metabolites and the worst survival outcomes (115). This

metabolite-based classification provides a stable and

reproducible classification method that can help predict the

prognosis and prospective therapies of HCC patients. Besides,

a multi-omics study employed both GC-MS-based

metabolomics and transcriptomics analysis to link the

metabolic perturbations with transcription classification in

HCC. A panel of 30 paired tumor and non-cancerous tissues

were collected for integrated analysis. The levels of glucose,

glycerol-3-phosphate, glycerol-2-phosphate, malate, and

linoleic acid were identified with 2-fold up-regulation in HCC

tissues. This study yielded precise biochemical remodeling of

HCC development, including increased glycolysis and fatty

acid catabolism. As for unsupervised transcriptome analysis,

transcriptomics data showed 6 subgroups of HCC (G1-G6). In

detail, G1 subgroup was associated with low copy number of

HBV. G2 subgroup was characterized with a high copy

number of HBV. G3 subgroup was typified by mutation of

tumor protein p53 (TP53) and overexpression of genes

controlling the cell cycle. G4 subgroup was characterized with

the mutation of transcription factor 1 (TCF1). G5 and G6

subgroups were strongly related to beta-catenin mutations that

lead to Wnt pathway activation (116). However, HCC

subgroups by transcriptomics-based classification failed to be

correlated with altered metabolites (117). Another integrated

study conducted LC/GC-MS-based metabolomics and RNA

microarray-based transcriptomics to identify lipid biomarkers

associated with HCC progression by using HCC tissues (30

populations) and healthy people (30 populations). This

integrated study identified 28 metabolites and 169 genes that

were significantly associated with aggressive HCC. Among

them, stearoyl-CoA-desaturase (SCD) and its product,

monounsaturated palmitic acid, were markedly increased in

HCC tissues, and demonstrated poor prognosis of HCC

patients (118). Compared with using metabolomics alone,

integrated omics analysis can provide more comprehensive

and accurate information associated with HCC progression.

The alterations of metabolomics profiles may be attributed to

the different expression of key enzymes in metabolic pathways.

Therefore, integrated analysis of proteomics and metabolomics

data can enable the understanding of overall perspective of

metabolic activities in HCC patients. For example, a multi-

omics-based analysis aimed to investigate the biological

function of HBV core protein (HBc) in HCC occurrence and

development. Firstly, the differentially expressed proteins were

screened by LC-MS-based proteomics. A total of 165
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up-regulated and 81 were down-regulated in HBc-

overexpressing HepG2 cells. Gene Ontology (GO) enrichment

analysis showed that the up-regulated proteins, with a clear

trend of metabolic clustering, were mainly associated with

glycolysis, glycine metabolism, and phenylalanine and tyrosine

metabolism pathways, indicating the influence of HBc in HCC

metabolism. Then, metabolomics data were acquired for

enrichment analysis by NMR-based platform. The relatively

higher levels of lactate, glutathione, phosphocholine and a

range of amino acids were detected in HBc-overexpressing

cells. The up-regulated metabolites were mainly clustered into

glycolysis and amino acid metabolism, which was consistent

with proteomics data. Finally, co-immunoprecipitation coupled

with qualitative proteomics were employed to identify the

interacting proteins of HBc. The results indicated that HBc

regulated glycine and phenylalanine metabolism by directly

binding with multiple enzymes in related pathways, including

glycine N-methyltransferase, sarcosine dehydrogenase,

phenylalanine hydroxylase, and 4-hydroxyphenylpyruvate

dioxygenase. Besides, HBc could also interact with max-like

protein X (a transcription factor) to upregulate key enzymes in

glycolysis pathway. Therefore, this study exhibited a global

insight into the function of HBc in HCC (119). In addition, a

recent study employed proteomics and metabolomics analysis

to investigate biological alterations involved in sorafenib

resistance in HCC. By employing UPLC-MS-based

metabolomics analysis, 26 metabolites were discovered with

significantly increased abundance, such as uridine 5′-
monophosphate, adenosine monophosphate, guanosine

monophosphate, adenine, and cytosine. Whereas L-arginine

was the only decreased metabolites in sorafenib-resistant

Hep3B cells. In UPLC-MS-based proteomics analysis, 730

proteins were identified, 18 of which were significantly

changed. Among them, 13 proteins were down-regulated in

-resistant cells compared to parental cells, whereas 5 were up-

regulated. Finally, all these dysregulated proteins/metabolites

were included for a joint pathway analysis to integrate the

metabolomics and proteomics profiles. The enrichment analysis

revealed several dysregulated pathways involved in sorafenib-

resistance, including the antifolate resistance pathway, amino

acid metabolic pathway, pathways related to the protein

synthesis, and other energy production metabolism. Together,

this work identified potential biomarkers and therapeutic

targets for sorafenib-resistant HCC (120).

In addition, a multi-omics studies firstly employed

microbiomics, metabolomics, and proteomics strategies to clarify

the underlying mechanisms of progression from liver cirrhosis

to HCC. Firstly, 16S rRNA sequencing-based microbiomics was

conducted to uncover the bacterial metataxonomic signatures for

HCC and cirrhosis tissues by using 9 HCC tissues, 4 distal non-

cancerous tissues, and 11 liver cirrhosis tissues. The highest

LDA scores were identified for Elizabethkingia in HCC tissues,
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Subsaxibacter in liver cirrhosis tissues, and Stenotrophomon in

distal non-cancerous tissues. Then, plasma (from 27 HCC

patients, 30 healthy volunteers, and 23 liver cirrhosis patients)

and tissues (46 from HCC patients and 30 from liver cirrhosis

patients) samples were separately collected for UPLC-MS-based

metabolomics analysis. Through integrating differential

metabolites from plasma and tissues profiles, 16 specific

metabolites were identified as dysregulated metabolites in HCC

patients. 2E-eicosenoic acid and L-threonate were up-regulated

in both HCC plasma and tissues, whereas betaine, choline, L-

pyroglutamic acid, and phthalic acid mono-2-ethylhexyl ester

were down-regulated. Besides, LC-MS-based proteomics analysis

was conducted to discovery the dysregulated proteins. Compared

to liver cirrhosis group, there were 107 up-regulated proteins

and 137 down-regulated proteins in HCC tissues. Specifically, a

combined analysis of metabolomics and proteomics by using

Kyoto Encyclopedia of Genes and Genomes pathway (KEGG)

analysis showed that vitamin B6 metabolic pathway was the

significantly dysregulated metabolic pathway in HCC compared

with liver cirrhosis. This work firstly employed microbiomics

strategy for HCC multi-omics analysis, which may provide new

insights into the early diagnosis, monitoring and treatment of

HCC with liver cirrhosis (121).
Conclusions and future perspective

In this review, we summarized the current workflow of

metabolomics analysis and introduced the recent advances of

HCC biomarkers discovery by metabolomics analysis.

Accumulated evidence shows that specific metabolites in

biofluids have great potential for early diagnosis, prognostic

evaluation, and prediction of therapeutic outcomes. Notably,

multi-omics-based strategies containing metabolomics have been

successfully conducted for the discovery of metabolic biomarkers

for HCC. It is through these metabolomics studies that our

understanding of HCC metabolism has improved significantly.

Over the past decades, metabolomics has exhibited an

increasingly important role in cancer biomarker discovery. In

clinical studies, metabolomics has provided a cost-effective and

productive route for biomarker discovery, which has advantages

of low invasion, low sample costs, and robust reliability.

Moreover, benefited from the improvement of analytical

technologies, more novel metabolites can be covered and

identified. However, there are still a large number of trace

metabolites being ignored due to technique issues. Besides,

sample type is an essential influence factor for metabolomics

analysis. Some studies employed tumor cells as research objects.

Nevertheless, cell lines cannot well mirror the bona fide

metabolic features of HCC patients. Importantly, liver is a

specific organ, whose blood supply is influenced by gut-liver

axis interactions. Therefore, it is worth in-depth investigation of

the metabolites generated from gut for HCC biomarker
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exogenous metabolites derived from environmental factors,

such as drugs and microbe-generated metabolites, can be

detected to evaluate HCC states. Last but not least, most

metabolomics studies are carried out without absolute

quantification of metabolites. To become reliable and robust

tools for guiding clinical practice, these biomarkers need to be

validated by targeted metabolomics or related biochemical

analysis. Multi-omics strategies have been constantly increasing

recently. Tracking biological activities by multiple types of

omics technologies can provide more comprehensive and

accurate information of metabolic alterations for disease

progression than using metabolomics alone. However, the large

volume and diversity of multi-omics data make the data

integration difficult. Even worse, some emerging omics

methods are lack of robust database for integrated analysis,

such as metabolome. Therefore, one of the main problems of

multi-omics analysis is how to truly integrate multiple omics

data. KEGG or other biological pathway-based annotation can

simplify analysis and map to certain pathway. Other novel and

effective analytical tools for annotation or correlation analysis

need to be developed for integrated analysis of multi-omics study.

Some metabolites have been identified as promising

biomarkers for HCC, which are implicated in several

dysregulated metabolic pathways. Metabolites in peripheral

circulation are easily accessed, which can provide timely

information of how metabolism is undergoing in tumor, even

though for small HCC nodules. These biomarkers generated

from metabolomics studies have great potential to optimize

HCC therapy in clinical practice. In fact, how to translate these

metabolite biomarkers in clinical practice still remains as an

essential step. It has been reported that some metabolites can

be accessed in-situ by imaging-based approaches for HCC early

diagnosis or subtype classification. Therefore, in conjunction of

metabolomics analysis with imaging approaches, isotope

labeling methods, and derivatization-based labeling methods

will accelerate the biomarker discovery and application in

clinical practice. Therefore, subsequently studies need to be

highlighted the validation and translation of promising

biomarkers into clinical practice. In addition, most present

studies aimed to identified known metabolites as biomarkers

for diagnosis and prognosis, which have been discovery before.

There are many unknown metabolites needed to be

characterized during HCC development. Some metabolites have

potential to be treated as novel therapeutic targets in clinical

practice. Nowadays, metabolomics-based strategies are proposed

to become an essential part of hypothesis-driven studies to

discover functionally associated molecules or drugs for HCC.

Precision medicine is emerging as a tailored therapeutic

strategy for individual patients based on our increased

understanding of pathophysiological knowledge. Currently,

metabolomics faces both opportunities and challenges in HCC

precision medicine. Metabolite biomarkers, identified from HCC
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metabolomics studies, are regarded as one of the major

components of HCC precision medicine. These potential

biomarkers can be selectively employed for different clinical

applications, including early diagnosis, prognostic evaluation, the

prediction for therapeutic outcomes, and characterization of

HCC metabolic signatures. Moreover, metabolomics analysis can

uncover the metabolic status of patients, which can be utilized

to guide the treatment choices and reflect the effect of current

therapy. In addition, the effect of gut microflora for patients is a

new dimension of HCC precision medicine. Characterizing

microbe-generated metabolites by metabolomics analysis is being

expected to promote the development in HCC precision

medicine. However, metabolomics for precision medicine

requires specialized analytical platforms for the generated big

data. Comprehensive and effective medical databases

incorporating metabolomics data need to be developed for

integrated large-scale data processing. Besides, to increase the

accessibility of metabolomics approach, metabolomics methods

need to be far more standardized. Currently, precision medicine

is still in its infancy. Promising metabolite biomarkers need to

be applicated into clinical practice to promote the development

of precision medicine. With the conducting of large scale and

in-depth clinical metabolomics studies and applicating of

metabolite biomarkers, metabolomics will play an increasingly

important role for HCC precision medicine in the near future.
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