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Routine blood tests drive diagnosis, prognosis, and monitoring in traditional
clinical decision support systems. As a routine diagnostic tool with
standardized laboratory workflows, clinical blood analysis offers superior
accessibility to a comprehensive assessment of physiological parameters.
These parameters can be integrated and automated at scale, allowing for in-
depth clinical inference and cost-effectiveness compared to other modalities
such as imaging, genetic testing, or histopathology. Herein, we extensively review
the analytical value of routine blood tests leveraged by artificial intelligence (AI),
using the ICD-10 classification as a reference. A significant gap exists between
standard disease-associated features and those selected by machine learning
models. This suggests an amount of non-perceived information in traditional
decision support systems that AI could leverage with improved performance
metrics. Nonetheless, AI-derived support for clinical decisions must still be
harmonized regarding external validation studies, regulatory approvals, and
clinical deployment strategies. Still, as we discuss, the path is drawn for the
future application of scalable artificial intelligence (AI) to enhance, extract, and
classify patterns potentially correlated with pathological states with restricted
limitations in terms of bias and representativeness.

KEYWORDS

blood analyses, blood, artificial intelligence (AI), machine learning (ML), diagnosis

Introduction

Artificial intelligence (AI) stems from the data generated mainly since the beginning of
the fourth industrial revolution, which has progressively changed how people live, interact,
and work (Sarker, 2021). Automated systems, meant to emulate human cognitive
capabilities, deploy supervised applications to perform repetitive tasks more accurately
and efficiently, saving time and effort for high-volume workloads. In medicine, AI has
become a valuable tool for improving patient outcomes, particularly in diagnostics, where
image and text-based systems supported by machine learning (ML) and deep learning (DL)
technologies are reaching remarkable clinical results (Reardon, 2019). The COVID-19
pandemic is the paramount example of how AI applications enable new screening tools and
achieve early diagnosis by measuring disease severity (Luo et al., 2021), progression
(Demichev et al., 2021), and mortality prediction (Lin et al., 2021) through the
interpretation of routine blood tests. For instance, a recent meta-analysis from Li et al.
demonstrated that computational methods based on multi-center clinical datasets could
generate more accurate COVID-19 diagnosis, stratify patients into clusters of severity and
discriminate them from Influenza with 97.9% specificity (Li et al., 2020). Applications such
as the previous example become even more relevant when applied to low-income
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underdeveloped countries where access to diagnostic workflow is
limited and the need for real-time point-of-care systems for disease
screening is imperative.

John McCarthy first outlined the concept of AI in 1956 during
the Dartmouth conference, on which several scientists discussed the
concept of “thinking machines” in different areas such as
abstraction, creativity, computational theory, natural language
processing, and neural networks (Kline, 2011). Since then,
progress slowed and remained stationary until 2012, when an
ImageNet-DL-Algorithm triggered significant attention for the
technology, with high-accuracy performance classification metrics
that disrupted the current state-of-the-art (Krizhevsky et al., 2012).
AI is defined as a computer science subdivision that aims to
automatically understand and create intelligent systems based on
high amounts of data (Shukla Shubhendu and Vijay, 2013). In
medicine, the inequities and deficiencies that arose from the
global COVID-19 pandemic catalyzed a boost in AI applications.
Therefore, it aims to deliver effective, high-quality care, leveraging
increasing clinical world data to democratize and decentralize health
into patient care. The transformation of a patient’s blood analysis
into a probability state to epitomize a likely diagnosis is already a
reality (Gunčar et al., 2018).

The purpose of improving population health and patient care
with parallel reduction of healthcare costs supports the
implementation of AI strategies in the medium and long-term
periods. Bajwa et al., 2021 Concepts such as precision medicine,
ranging from diagnostics to prognostics and therapeutics with
connected care, are under development (The Medical Futurist,
2022). In parallel, AI strategies disrupt the classical paradigm of
scientific knowledge construction. Instead of collecting small
datasets that try to answer sequential questions (classical
approach), the new paradigm settles on collecting high amounts
of data where scientists try to find multiple answers directly (Ahmad
et al., 2021). However, significant challenges arise during this new
paradigm: the black-box nature of AI algorithms endorses the need
to generate explanatory, comprehensive systems able to dialogue
with the physician to justify each clinical prediction or outcome
(Bruckert et al., 2020). Also, legal and regulatory matters are under
development, which will be crucial to regulate howAI algorithms are
built and how continuous learning is evaluated.

Here, we focus on routine blood analysis as a proxy for
determining pathological states supported by AI algorithms. We
offer a comprehensive description of the ML pipeline with
contextualization on the learning strategies (machine,
reinforcement, deep, and federated learning), model development
(application, preprocessing, modelling, and validation), and clinic
deployment. We summarize the pathologies based on general health
parameters (summarized according to their function and associated
causes of variation), their inherent classification performance, and
principal findings associated with model development and selected
blood parameters. Finally, we discuss challenges related to clinic
deployment and suggest future research directions for the
development of models.

Overall, this review provides guidance for future research by
summarizing reports combining AI and routine blood tests to
diagnose disease or prognosis. Finally, it describes the
methodologies used and contributes to the continued use of this
technique in providing deeper insights into the potential of non-

appraised blood metabolites in traditional clinical decision
support systems.

How AI learns

Currently, AI drives innovation processes involving analytical
(data-driven decision-making), functional (operating according to
analytical AI), interactive (communication), textual (nature
language processing), and visual (augmented reality)
technologies. AI enables the development of models to solve
real-world problems based on different learning strategies, such
as machine learning, deep learning, data mining, rule-based
modelling, fuzzy logic, knowledge representation, case-based
reasoning, text mining, visual analytics, and optimization,
among others (Sarker, 2022). Next, we will briefly explain these
learning strategies.

ML is a pattern recognition method that automatically detects
regularities in large amounts of data. Based on statistical
methods, this process evaluates interactions between variables
and finds the most effective way of using them to reach a
predetermined goal without requiring human intervention to
define a strict set of rules or programming hypotheses (Kerr et al.,
2012). ML has become the preferred framework for deploying AI
applications, supported and leveraged by the continuous increase
of data availability (big data). Although these concepts are similar
and closely related, they are distinct: pattern recognition is one
possible approach to artificial intelligence, and machine learning
is a way to pattern recognition (Alsuliman et al., 2020). Data is
considered mandatory for the model’s development, and it is
commonly available in different forms such as structured (highly
organized on relational databases), unstructured (without pre-
defined format), semi-structured (organized but not on relational
databases), and metadata (data properties about data)
(Sarker, 2021).

ML algorithms such as gaussian naïve Bayes (GNB), k-nearest
neighbors (KNN), support vector machines (SVM), decision
trees (DT), linear regression (LR), or (Box 1) are the most
common techniques generally applied for supervised learning
strategies (Table 1 provides a comprehensive list). These
algorithms use sample inputs for model development and

BOX 1 Glossary of key terms.

AUROC The area under the receiving operating characteristic curve computed
with the true positive versus false positive rates. It provides an
aggregate measure of performance across all possible classification
thresholds

Bootstrap A statistical technique for sample extraction with replacement,
allowing repeated training and fixed test

Cross-
validation

The re-sampling method used to test and train different portions of
data in several iterations of the model development

Ensemble Combination of base estimators’ predictions to improve robustness
and generalizability over a single estimator

Feature Information input into the model during training and evaluation

Kernel The function applied to the original non-linear data to create higher-
dimensional spaces in which data will become separable

Overfitting Process in which the statistical model adapts perfectly to the training
data but does not generalize well on new data

Training set The subset of data used for the model’s learning and optimization
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TABLE 1 A comprehensive list of supervised ML algorithms for classification according to the desired learning strategy (Pedregosa et al., 2011).

Learning Algorithm Description

Linear Linear regression (LR) The target value is a linear combination of the features

Lasso Uses variable selection and regularization to estimate sparse coefficients, improving the accuracy and
interpretability of the model

Linear discriminant analysis (LDA) Transforms input data into a linear subspace that maximizes separation between classes and predicts
targets in closed-form solutions. Can also be used to provide dimensionality reduction in high-
dimensional data sets

Generalized linear models (GLM) Statistical model that could be used to model dependent variables that represent non-normally
distributed data, i.e., glmnet.

linear regression (LR) Statistical approach that seeks to generate a model from a collection of data that allows the prediction
of values taken by a categorical variable (usually binary), using a series of continuous explanatory
variables and/or binaries

Multivariate logistic regression (MLR) Extension of logistic regression to problems with more than two discrete outcomes

Bayesian Naïve Bayes (NB) This algorithm uses the Bayes’ theorem with conditional independence between every pair of features
to the value of the class variable

Bayesian networks (BN) These networks are adaptable since they fit joint probability distributions and allow knowledge
extraction, reflecting how the occurrence of one variable is affected by the state of another

Average two dependence estimators (A2DE) A2DE achieves high accuracy by averaging among a small number of plausible Naïve-Bayes-like
models that have fewer (and hence less detrimental) independence assumptions than Naïve Bayes

Nearest neighbors K-Nearest Neighbors (KNN) Uses the location of training samples that are closest in distance to the new point to estimate its label,
based on the initial k data points

Support vector
machines

Support Vector Machines (SVM) Effective in smaller, but high-dimensional data sets, that assigns training examples to points in space in
order to maximize the distance between the two categories. Different kernels could be used to evaluate
new instances, which are mapped into that same space and classified according to which side of the gap
they fall

Decision trees Chi-square automatic interaction detection
(CHAID)

A type of decision trees predicts the target value by learning simple decision rules inferred from data
features. Specifically, it selects the most important feature using a chi-square measurement and iterates
the procedure until all sub-informational data have a single choice

classification and regression trees (CART) CART builds binary trees by selecting the feature and threshold that provides the most information
gain at each node

Neural Networks Artificial Neural Network (ANN) This algorithm uses non-linear functions made from one or two hidden layers between the input and
the output dimensions

Deep Neural Network (DNN) DNN is an ANN with multiple layers between the input and output dimensions, and it is designed to
emulate the principles and structure of a human neural network

Multiple Layer Perceptron (MLP) Non-linear function different from logistic regression since it can employ one or more non-linear
layers between the input and output dimensions

Shallow neural network Employs a linear function in the second hidden layer of the two-layer network

Recurrent Neural Networks (RNN) It is cyclic DNN that loops outputs from specific nodes to affect the subsequent ones, and it is mainly
applied to text-recognition and natural language processing

Long short-term memory (LSTM) It refers to a type of recurrent neural networks (RNNs) that learn long-term dependencies with
feedback connections, and it is especially used in time-series data

Ensemble Random forests Random forests employ averaging to increase prediction accuracy and control overfitting by merging
various trees, using different sub-samples of the training set, which decreases variances and results in a
superior overall model

Adaboost Adaboost fits weak learners (models that are just slightly better than random guessing) in sub-samples
of the training set and gets a final forecast by merging the guesses by majority vote

Extra-trees Extra-trees differ from traditional decision trees since it applies random splits across randomly selected
features, picking the best split for creating the tree. In ensemble, it averages a meta estimator that fits
randomized extra trees to improve accuracy and prevent overfitting

Dynamic ensemble selection Uses the most locally accurate decision classifier by calculating the accuracy of each individual classifier
in specific local parts of the feature space surrounding a test sample

(Continued on following page)
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subsequent data for model prediction. Apart from predicting
specific diseases, other methods such as K-means, principal
component analysis (PCA), or Pearson correlation (ρ) allow
data exploration for clustering and dimensionality reduction
through maximizing variance between samples. Thus, they
enable an in-depth exploration of biomedical data with
significant importance in medical diagnosis.

Supervised ML algorithms differ from unsupervised ones
because they comprise training data wherein the real state of
the data is known, for instance, which subjects have anemia and
which are healthy. Based on training data, the algorithm
generates a model that is applied to predict the state of a set
of subjects for which the true state is unknown. These
predictions settle in the form of a classification problem that
identifies discrete states, such as different stages of anemia.
Alternatively, they are established as a regression problem
that evaluates continuous variables and predicts, for example,
the numeric value of hemoglobin (Svensson et al., 2015).
However, suppose the true state of the data is unknown. In
that case, learning might be conducted unsupervised, where
algorithms infer underlying patterns in unlabeled data to find
sub-clusters of the original data, identify outliers, or produce
low-dimensional representations. This way, it could be possible
to recognize new associations that were not perceptible. In the
example above, the algorithm could separate clusters of patients
between anemic and non-anemic, even without knowing the true
value of hemoglobin.

Reinforcement learning (RL) is a feedback-based approach
where algorithms learn through trial and error by balancing the
management of input knowledge with exploring unknown data.
The model executes the task by understanding some basic rules
and learns by weighting certain variables to find the correct
solution. The supervisor should only indicate whether the
algorithm’s answer is correct; it is like supervised learning but
delegates decision-making (weighting) to the algorithm’s trial-
error. An up-to-date application is the continuous management
of oxygen flow rate for critically ill COVID-19 patients (Zheng
et al., 2021), where the algorithm learned the appropriate flow
rate for each patient, reducing the mortality rate and increasing
the savings of oxygen-scarce resources in the pandemic.
However, these algorithms are known as ‘data-hungry’ since
they need large amounts of data to train different paths to

achieve sustainable performance, which is a limitation when
applied to non-structured clinical information.

Deep learning (DL) is another class of machine learning,
conceptually similar to the human brain since it mimics the inner
mechanisms of brain neurons to transport and process data,
create patterns, and enlighten decision-making. These
algorithms extract high-level interactions between hidden
layers of features from the input and learn complex
interactions to develop accurate models from raw data. In
medical diagnosis, this method has an application in image
analysis, namely, on X-ray risk fracture diagnosis, breast
density mammography analysis, or cardiovascular and
pulmonary image reconstruction, all with 510(k) premarket
notification clearance from the FDA (Benjamens et al., 2020).
Deep learning requires minimal human intervention (except for
sample labelling) but large amounts of curated data sets.
Additionally, computational power is also relevant to
conducting these tasks. Some researchers estimated that a life
cycle to train several large AI models could emit nearly five times
the CO2 of an average American car (Hao, 2023). These
challenges conducted the study and development of a new
learning approach based on sparse modeling technology. The
key differences compared to DL are the ability to provide
comparable or even better accuracy results, working with
small datasets, and performing feature extraction with much
less computational power (1% of the energy required for DL).
It also provides an explainable ‘white box’ the user can perceive
(Fujiwara, 2021). Although this technology opens new routes in
medical AI, the applications are still at a proof-of-principle and
feasibility stage for cerebral infarction diagnosis assistance, liver
cancer classification with a diagnosis support system, or anomaly
detection in ECG signals. Therefore, it is still far from being
approved for clinical deployment.

Federated learning (FL) is a new learning paradigm aiming to
correct limitations in the current state-of-the-art model
development for data governance, privacy, update, and
sharing. FL moves the model to the data instead of input data
for modeling. This approach enables training common AI models
from multiple independent data sources (with proprietary data
governance, privacy, and access policies) to deploy unbiased,
generalizable, and appropriate-fitting models. The most established
workflow of FL was proposed by Brendan McMahan et al. (2017).

TABLE 1 (Continued) A comprehensive list of supervisedML algorithms for classification according to the desired learning strategy (Pedregosa et al., 2011).

Learning Algorithm Description

Gradient boosting (GBM) Gradient boosting trains a large number of weak learners in a gradient descent function, where each
learner minimizes the loss function of the previous model, resulting in an ensemble of learners that is
improved incrementally until a stopping condition is achieved

Extreme gradient boosting (XGBoost) XGBoost is a regularized variation of GBM that controls overfitting and enhances performance by
using linear and tree-basedmodels that improve its capacity to execute parallel computation on a single
computer, making it faster and more efficient

Light gradient boosting (LightGBM) LightGBM learns from data more effectively than standard GBMs because it employs histogram-based
binning, which converts continuous feature values into discrete bins, reducing training time and
memory consumption

Category boosting (Catboost) In opposition to GBM, lightGBM or XGBoost, Catboost uses symmetric and balanced trees, keeping
the decision criteria consistent across all nodes, which makes this algorithm less prone to overfitting
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This workflow includes the distribution of the global model on
independent ‘clients’ that train the model in its data and send the
adjusted local model to the global server to perform the trained
models’ aggregation; this cycle repeats until the global model
converges. Dayan et al. (2021) implemented an FL approach for
the COVID-19 prognosis of oxygen supplies on symptomatic patients
using the inputs of vital signs, laboratory data, and chest X-rays from
20 institutes. The federated model impacted prediction metrics across
all participating sites (trained locally) by an average increase of 16%
and 38% in AUC and generalizability, respectively.

While learning remains a matter of study with newer approaches
being developed (Kairouz et al., 2021), the pipeline of AI-based
prediction models is still under standardization. The increasing
number of reports in this field compels the establishment of
guidelines not to gauge the quality of the prediction models but
to provide indications for transparent and unified reporting of
this matter.

Since this review focuses on AI application to blood parameters
to extract clinical value, we next provide a brief overview of the most
common routine blood tests before going deep into how AI has been
used to extract clinical value from them.

Blood and routine blood tests

Blood is the only fluid tissue present in the human body.
Typically, an average adult has 6–7 L of blood in total. Cell
elements compose approximately 45% of the blood; the
remaining 55% is the fluid portion, designated plasma or
serum. Many diseases cause changes in blood composition;
therefore, blood analysis is important in clinical diagnosis
(Badrick, 2013). Routine blood tests (RBT) typically merge the
hematology and biochemistry analysis to explore changes in the
cellular and molecular parts of the blood (Table 2). Depending on
the type of blood analysis, laboratory workflows require at least
two independent blood-collecting tubes for the separate study of
hematology and biochemistry, which often forces the patient to
provide 4–10 mL of venous blood.

In hematology, cell blood count (CBC) is the most performed
exam. It includes not only the analysis of the three most important
types of cells, erythrocytes (red blood cell, RBC), leukocytes (white
blood cell, WBC), and thrombocytes (platelet) but also comprises
differential information on WBCs subgroups (lymphocytes,
segments, monocytes, eosinophils, basophils). Hematology also
enlightens on hemoglobin concentration (Hb), hematocrit
percentage (HTC), mean corpuscular volume (MCV), mean cell
hemoglobin concentration (MCHC), and the red cell distribution
width (RDW) (Celkan, 2020).

Biochemistry panels examine other chemical substances, such as
electrolytes, hormones, and proteins. The portion of the blood that
remains after all blood cells removal is composed mainly of water
(90%), proteins (9%) that regulate plasma osmotic pressure and are
important in the transport of fatty acids, thyroid and steroid
hormones, and other chemical substances (1%) such as gases,
nutrients, and vitamins (Marieb and Hoehn, 2012). The serum
refers to plasma without clotting factors, i.e., fibrinogen, and is
commonly used for chemistry testing and coagulation studies
(Chatburn and Hematology, 2010). A general health blood

parameters panel typically includes CBC with differential,
comprehensive metabolic and lipid panels, uric acid, GGT, and
TSH (Richard et al., 2011).

Methods

We conducted a literature review of studies published between
2012 and 2022 that used artificial intelligence methodologies,
namely, machine learning algorithms, to extrapolate clinical
outcomes from routine blood tests. Using the query ‘artificial
intelligence OR machine learning AND routine blood tests’ in
the PubMed® electronic database, we found 164 articles that
proceeded to the screening stage. Rayyan Management Software
was used to import discovered reports, conduct study selection, and
apply eligibility criteria.

Original English-language studies that reported diagnosis or
prognosis of ICD-10 diseases based only on predefined blood
parameters, namely, RBC, Hemoglobin, Hematocrit, MCV, RDW,
WBC, Neutrophils, Eosinophils, Basophils, Lymphocytes, Platelets,
Glucose, Urea, Creatinine, Potassium, Sodium, Chloride, Albumin,
ALP, ALT, AST, Calcium, Triglycerides, HDL-cholesterol, Total
cholesterol, LDL-cholesterol, Uric acid, GGT, TSH and C-reactive
protein, were eligible for inclusion. The analysis did not include studies
that included other biofluids parameters or reviews, systematic reviews,
meta-analyses, protocols, commentaries, or book chapters.

The International Statistical Classification of Diseases and
Related Health Problems 10th revision (ICD-10) was used to
categorize the 54 studies, which were divided into 10 disease
classes: infections (or parasitic diseases) (9), neoplasms (6), blood
(3), endocrine (nutritional or metabolic) (5), mental (behavioral or
neurodevelopmental) (2), circulatory (3), respiratory (2), digestive
(5), genitourinary (1), and particular diseases (COVID-19) (18).

An overview of machine-learning
studies based on routine blood tests for
diagnosis or prognosis of ICD-10
pathologies

Most of the studies covered in this review fall into the
diagnosis category; we identify the exceptions in the outcome
column of each study (see tables below). We next describe how
machine learning has been applied to extract clinical value from
routine blood tests for specific diseases (using the ICD-10
classification as reference); Table 3 to 13 summarize
information (outcome, sample, selected features, methods, and
most relevant findings) for each study.

Infectious or parasitic diseases (ICD-
10 class I)

The infections or parasitic diseases studied include the human
T-lymphotropic virus, bacteremia, bloodstream infection, general
bacterial infection (in the surgical room and at hospital admission),
malaria, and dengue. The studies used the traditional blood-based
indicators of infection stated in Table 3, namely, white blood cells,
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TABLE 2 General health panel required in routine blood examinations (Matthew and Pincus, 2011).

Parameter Description Below normality, related
causes

Above normality, related causes

CBC with
differential

RBC Hemoglobin transport Anemia; Blood loss; Bone marrow
disorders; Cancer (certain types)

Low oxygen related to heart disease, pulmonary
fibrosis, smoking, or high-altitude living; High
consumption of anabolic steroids such as
erythropoietin; Myeloproliferative diseases such
as polycythemia vera; kidney diseases

Hemoglobin Oxygen and carbon dioxide exchange
from the lungs to the tissues

Anemia; Blood loss; Thalassemia Same as RBC causes

Hematocrit The proportion of red blood cells in the
whole blood

Anemia; Blood loss; Cancer (certain
types)

Dehydration, smoking or high-altitude living;
Heart, lung, or kidney diseases; Polycythemia vera

MCV The average volume of red blood cells
in the whole blood

Iron-deficiency anemia; Thalassemia;
Lead-poisoning; Chronic disease

Folic acid or B12 deficiency; Preleukemia;
Immune hemolytic anemia; Liver disease

RDW Size (anisocytosis) of red blood cells - Heart, kidney, or liver disease; Diabetes; Cancer

WBC Immunity Chemotherapy; Myelodysplastic
syndrome; Autoimmune disorders;
Leukemia; HIV

Viral or bacterial infection; Inflammation;
Rheumatoid arthritis; Pregnancy; Allergies,
smoking, or stress

Neutrophils Viral infection; Hepatitis; Aplastic
anemia; Lupus

Bacterial infection

Eosinophils Bacterial infection Allergies; Parasitic infection

Basophils Hyperthyroidism; Allergies; Infections Chronic inflammation; Hypothyroidism;
Myeloproliferative disorders

Lymphocytes Infections; Tuberculosis; Drug reactions;
Stress

Viral infections (i.e., Epstein-Barr virus)

Monocytes Bone marrow disorders; infections;
Systemic lupus erythematosus

Infections; rheumatoid arthritis; chronic
myelomonocytic leukemia

Platelets Blood coagulation Cancer (leukemia, lymphoma); Viral
infections; Anemia (certain types);
Chemo and radiotherapy

Genes mutation (essential thrombocythemia);
Infection; Cancer; Inflammation; Iron deficiency

Metabolic Glucose Energy regulation Diabetes treatment; Drug reactions Diabetes mellitus; Infection (severe)

Urea A waste product of protein digestion A low-protein diet (malnutrition); Severe
liver damage

Dehydration; Urinary tract obstruction;
Congestive heart failure or recent heart attack;
Kidney malfunction

Creatinine A waste product of muscles Muscle diseases; Excess water loss; Liver
diseases

Dehydration; High-intensity exercise; Kidney
malfunction (stones, infection, failure)

Potassium Electrolyte on body fluid regulation
and nerve function

Vomiting or diarrhea; Kidney damage Diabetes mellitus; Advanced renal failure;
Alcohol, burns

Sodium Electrolyte on body fluid regulation
and nerve function

Vomiting, diarrhea, or burns; Nephritis
or diabetic acidosis; Kidney or heart
failure

Severe vomiting, diarrhea, or burns; Dehydration,
excessive sweating, or adrenal glands disorders

Chloride Electrolyte on blood volume and
osmotic pressure regulation

Severe vomiting, diarrhea, or excessive
sweating Congestive heart failure, lung
disease

Dehydration Kidney disease or Cushing’s
syndrome

Albumin A protein carrier for hormones,
vitamins, and enzymes and prevents
leaking on blood vessel

Kidney, liver, digestive, or thyroid
diseases; Malnutrition or infection

Dehydration, severe diarrhea; Steroids, insulin,
and hormones intake

ALP An enzyme that removes the
phosphate group of several proteins

Malnutrition, vitamin deficiency;
Hypothyroidism

Liver or bone disorders

ALT An enzyme that converts alanine for
energy production

Chronic kidney disease; B6 vitamin
deficiency

Liver disease; Hemochromatosis; Mononucleosis

AST An enzyme that catalyzes aspartate
conversion

Kidney, liver, or cancer disease;
B6 vitamin deficiency; Autoimmune or
genetic conditions

Bruising, trauma, necrosis; Infection; Neoplasia of
liver or muscle

(Continued on following page)
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platelets, glucose, creatinine, albumin, AST, and CRP. However,
‘exceptions’ associated with feature selection were verified in
surgical-site infection (ALP and sodium), malaria (RBC, MPV,
MCV), bacteremia (MPV), and bloodstream infection (RDW).
The studies on surgical-site infection were concerned with the
relationship between time of blood analysis and the prediction of
a diagnosis. Significant progression was accomplished by Kocbek
et al., with the prediction of the full lasso model (AUC=0.95) at
different timeframes (60, 30, and 15 days), benefiting from the
findings of Soguero-Ruiz et al. (AUC=0.87) stating the importance
to adjust the temporal structure of blood analysis to increase
classification performance (Soguero-Ruiz et al., 2015; Kocbek
et al., 2019). While ALP was selected for post-operative surgical
infection, sodium was featured for surgical site infection. Malaria
was studied for supervised classification with discrimination
between uncomplicated malaria (UM), severe malaria (SM), and
non-malaria infections (nMI). Distinctions were modeled by an
artificial neural network with three different layers using distinctive
features for each discrimination. Interestingly, SM separated from
nMI based on the unique combination between MPV and MCV as
classifiers of SM (AUC=0.98). UM and nMI were also distinguished
based on PLT, RBC, and LY (AUC=0.86). The approach to Dengue
differed from the approach to malaria. Ho et al. evaluated the
probability of the condition in a predefined timespan of 35 weeks
(Ho et al., 2020). Clinical data was fed into a deep neural network in
competition with other learners, reaching an internal validation that
surpassed sensitivities of 90% in a 3% prevalence cohort.
Surprisingly, the weak learners performed similarly, indicating
the clinical data value based only on age, temperature, and WBC.
The approach from Sarbaz et al. outlined an infection by the human
t-lymphotropic virus type I, a retrovirus known to be asymptomatic
in most cases and evolve to malignancy and neural diseases in a few
patients (Sarbaz et al., 2013). Even so, the dataset used has a relative

balance between three outcomes: normal (n=101), leukemia (n=94),
and HTLV-I (n=107). The supervised classification model is based
on a decision-trees algorithm–CHAID, which is the chi-squared
automatic interaction detection, evaluating the association between
input features exploring the levels of the three to maximize the
classification performance. The internal validation achieved
excellent performance (AUC>0.90) with a sensitivity of 95.8% in
recognition of patients based on leukocytes, platelets, and percentage
of eosinophils information. Bacteremia was initially studied in
2014 by Ratzinger et al. in a cross-sectional study with the largest
cohort associated with infectious diseases (n=15,985) with
1,286 presenting a positive blood culture result: E. coli (n=406),
S. aureus (n=297), K. pneumonie (n=83) and others (n=500)
(Ratzinger et al., 2014). The dataset split kept the 8% prevalence
of bacteremia in training and validation sets, and the statistical
analysis identified NE/WBC as the most important individual
predictor (AUC=0.694). The A2DE algorithm (naïve-Bayes-
based) produced two models with similar performance: model 1
(20 variables, NPV=0.966) and model 2 (10 variables, NPV=0.966).
Results of internal validation kept the classification performance
constant and selected age, creatinine, CRP, eosinophil, bilirubin,
lymphocytes, monocytes, monocytes (%), neutrophils (%), and
sodium as important predictors of bacteremia. Mooney et al.
focused on a pregnant or post-partum cohort, where the
bacteremia prevalence was lower (nearly 3% in 255 patients)
(Mooney et al., 2021). The random forests classifier achieved an
NPV of 97.4%, supported by the NLR, MPV, and BA indexes.
Finally, Zoabi et al. evaluated bloodstream infection with a gradient-
boosting decision tree and compared the results of the full
(AUC=0.83) and compact (AUC=0.81) models with the standard
conventional scores (AUC=0.62) (Zoabi et al., 2021). The evaluation
of the model was made available, differentiating this study from the
previous and enabling a prospective assessment of the method.

TABLE 2 (Continued) General health panel required in routine blood examinations (Matthew and Pincus, 2011).

Parameter Description Below normality, related
causes

Above normality, related causes

Calcium Mineral with a vital role in muscle tone
and excitability

Acute pancreatitis; renal disease; D
vitamin deficiency

Excess secretion of PTH; Cancer

Lipidic Triglycerides Lipid Low-fat diet; Hyperthyroidism;
Malabsorption syndrome

Liver, kidney, or thyroid disease; Alcohol, obesity,
smoking; Uncontrolled diabetes

HDL-cholesterol,
direct

High-density lipoprotein Unhealthy lifestyle; Smoking Unhealthy diet; Genetics; Hypothyroidism

Total cholesterol Lipoprotein Malnutrition or malabsorption; Anemia;
Thyroid or liver disease

Unhealthy diet and lifestyle; Obesity

LDL-cholesterol,
calculated

Low-density lipoprotein Hemorrhagic stroke; Cancer; Anxiety or
depression

Unhealthy lifestyle; Genetics; Age

Others Uric acid A waste product of purines
metabolization

Wilson’s disease; Fanconi syndrome;
Alcoholism

Unhealthy lifestyle; Diabetes mellitus; Alcoholism

GGT Enzyme Unhealthy diet; B6 or magnesium
deficiency

Liver or bile ducts disease

TSH Hormone Hyperthyroidism Hypothyroidism

C-reactive protein Acute phase reactant protein - Inflammation; Bacterial or viral infections;
Autoimmune disorders; Heart attack; Sepsis

RBC, red blood cells; MCV, mean corpuscular volume; RDW, red cell distribution width; WBC, white blood cells; ALP, alkaline phosphatase; AST, aspartate transferase; ALT, alanine

transaminase; GGT, Gama-glutamyl Transferase; TSH, thyroid stimulating hormone; HIV, human immunodeficiency virus; PTH, parathyroid hormone.
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Neoplasms (ICD-10 class II)

The application of AI and blood parameters for neoplasia herein
reviewed include colorectal, leukemia (pediatric acute
lymphoblastic, leukemias differentiation and lymphocytic
prognosis), and non-specified cancer diagnosis in a primary care
center. Erythrocytes, hemoglobin, hematocrit, RDW, leukocytes,

platelets, aspartate aminotransferase (AST), calcium, and LDL-
cholesterol were the Cancer-related blood parameters identified
(Table 2). Studies related to colorectal cancer were Table 4 highly
consistent since they built on a high dimensional sample size (>10k
patients), employed a supervised decision tree classification
algorithm with similar internal validation (AUC=0.82 and
AUC=0.81), and externally validated with equal or higher

TABLE 3 Machine-learning-based routine blood tests for the diagnosis (or prognosis) of certain infections or parasitic diseases.

Study Outcome Sample Selected features Methods (AUC) Findings

Sarbaz et al.
(2013)

HTLV-I 101 (normal) 94
(leukemia) 107
(HTLV-I)

WBC, PLT, EO% L: supervised, classification;
FS: Pearson correlation; C:
CHAID (accuracy 91%);
V: NA

HTLV-I distinguished from
leukemia or normal patients with
clinical data based on differential
CBC. External validation: NA
Clinical deployment: NA

Ratzinger et al.
(2014)

Bacteremia 15,985 (1,286) NE/WBC L: supervised, classification;
FS: wrapper approach; C:
A2DE-20 variables (0.76) and
A2DE-10 variables (0.75); V:
0.80 and 0.78

Low-risk group: NPV >98.8%.
External validation: NA Clinical
deployment: NA

Soguero-Ruiz
et al. (2015)

Surgical-site infection
(post-operative)

1,005 (101) Thrombocytes, ALP, CRP,
Albumin, Creatinine, WBC

L: supervised, classification FS:
RBF-RFE C: non-linear SVM
(0.87) V: leave-one-out cv

Adjusting the temporal structure
of blood tests improves the
system’s accuracy. External
validation: NA Clinical
deployment: NA

Rawson et al.
(2019)

Bacterial infection
(hospital admission)

104 (35%) CRP, WBC, Creatinine, ALT,
Bilirubin, ALP

L: supervised, classification FS:
NA C: SVM (0.84) V: 10-
fold cv

Infection predicted in a
timeframe of 72 h after
admission. External validation:
NA Clinical deployment: NA

Kocbek et al.
(2019)

Surgical site infection 1,137 (233) CRP, WBC, Sodium, Hb,
Thrombocytes, Albumin

L: supervised, classification FS:
NA C: Full Lasso Model (0.95)
V: repeated hold-out cv

Infection was predicted based on
three timeframes of 60, 30, and
15 days before surgery. External
validation: NA Clinical
deployment: NA

Moranga et al.
(2020)

Malaria 2,207 (UM=703)
(SM=526) (nMI=978)

UM ≠ nMI: PLT, RBC, LY; SM
≠ nMI: MPV, MCV; SM:
RBC, PLT

L: supervised, classification FS:
NA C: ANN [UM ≠ nMI
(0.866), SM ≠ nMI (0.983)], V:
10-fold cv

Models are classified based on the
combination of PLT, RBC, LY,
LY%, and MPV. External
validation: NA Clinical
deployment: NA

Ho et al. (2020) Dengue 4,894 (2,942) Age, Temperature, WBC L: supervised, classification FS:
NA C: DNN (0.858) V: 10-
fold cv

For all three models, pre-peak
sensitivities (<35 weeks) were
higher than 90%. External
validation: NA Clinical
deployment: NA

Mooney et al.
(2021)

Bacteremia (pregnant
and post-partum)

255 (129) NLR, MPV, BA L: supervised, classification FS:
NA C: RF (0.98) V: 10-fold cv

NLR >20 achieved a negative
predictive value of 97.4% for a 3%
prevalence cohort. External
validation: NA Clinical
deployment: NA

Zoabi et al. (2021) Bloodstream infection 7,889 (2,590) Albumin, RDW, Creatinine L: supervised, classification FS:
NA C: Decision-Tree
(gradient boosting): inclusive
(0.82), compact (0.81) V:
cross-validation

ML showed substantial
improvement in the AUC score
compared to traditional methods
(0.83vs0.62 on the inclusive
model) and (0.81vs0.62 on the
compact model). External
validation (proxy): available at
github.com/nshomron/infecpred
Clinical deployment: NA

AUC, Area under the ROC (receiver-operating characteristic) curve, HLTV-I, Human T-lymphotropic virus type-I, UM, uncomplicated malaria; nMI, Non-Malarial Infections; SM, severe

malaria; WBC, white blood cells; PLT, platelets, EO% eosinophils count, NE, neutrophils; ALP, alkaline phosphatase, CRP C-Reactive Protein, Hb Hemoglobin, LY, lymphocytes, LY%

lymphocytes count,MPV, mean platelet volume;MCV, mean corpuscular volume; RBC, red blood cells;NLR, Neutrophil-to-Lymphocyte ratio, BA, basophils; RDW, red cell distribution width,

L Learning, FS, feature selection, C Classification, V Validation, CHAID, Chi-Squared Automatic Interaction Detection;NA, not available, A2DE, Averaged 2-Dependence Estimator; RBF-RFE,

Radial Basis Function - Recursive Feature Elimination; SVM, support vector machines; CV, Cross-Validation;ANN, artificial neural networks;DNN, deep neural networks; RF, Random-Forests;

CBC, cell blood count; NPV, negative predictive value; ML, machine learning.
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performance (AUC=0.81, AUC=0.87, and AUC=0.85). This
consistency endorses the relevance of its findings. Noteworthily,
different outcomes were verified: while Kinar et al. demonstrated
sensitivity stability between 480 and 240 days before diagnosis
(AUC≈0.76) with a posterior increase in the last 240 days
(AUC>0.80) (Kinar et al., 2016), Hornbrook et al. identified sub-
regions of colorectal cancer that were better diagnosed, namely, the
cecum and the ascending colon (Hornbrook et al., 2017).

Regarding leukemia, Mahmood et al. began to evaluate the
ability to diagnose pediatric acute lymphoblastic leukemia (ALL)
in a small cohort (n=94), where fifty patients had the disease

(Mahmood et al., 2020). The study findings were achieved through
the comparison of four classifiers wherein the classification and
regression trees (CART) performed better (accuracy=0.87) with a
decision tree that included low platelet (43%) and hemoglobin
(24%) levels and high levels of white blood cells (4%). The disease
was furtherly distinguished by Haider et al. on a set of other
pathologic conditions: acute myeloid leukemia (AML, n=354),
acute promyelocytic leukemia (APML, n=96), chronic myeloid
leukemia (CML, n=213), and chronic lymphoid leukemia (CLL,
n=153) (Haider et al., 2022). The authors based the approach on a
conventional cell blood count analysis and developed an artificial

TABLE 4 Machine-learning-based routine blood tests for the diagnosis (or prognosis) of neoplasms.

Study Outcome Sample Selected
features

Methods (AUC) Findings

Kinar et al.
(2016)

CRC Israel: 606,403
(3,135) UK: 25,613
(5,061)

Hb, MCH, MCHC,
HTC, MCV, RDW

L: supervised, classification FS: NA
C: Decision trees (0.82)
V: cross-validation

The model’s performance on a 10–12-
month time window achieved AUC=0.79

Sensitivities at a 6-month time window
were 10% higher compared to anemia
guidelines

External validation: UK (0.81)

Clinical deployment: NA

Hornbrook
et al. (2017)

CRC 17,095 (900) Gender, Birth
year, CBC

L: supervised, classification FS: NA
C: Decision trees (0.81)
V: cross-validation

The CRC detection model performed
best in detecting cecum and ascending
colon tumors rather than in transverse
and sigmoid colon and rectum

External validation: MHS (Israel) (0.87),
NHS (0.85)

Clinical deployment: CRC program in
Israel

Mahmood
et al. (2020)

Pediatric ALL 94 (50) PLT, Hb, WBC,
Gender

L: supervised, classification FS:
CART C: CART (0.87) V: 10-
fold cv

Platelet abnormality significant predictor
in pediatric ALL.

External validation: NA

Clinical deployment: NA

Soerensen
et al. (2022)

Cancer diagnosis within
90 days on primary care

Cohort I: 5,224
(1,042) Cohort II:
1,712 (1,368)

ALB, PLT L: supervised, classification FS: NA
C: LR (0.80), ANN (0.91) on
cohort I and LR (0.79), ANN
(0.79) on cohort II V: NA

Reduced albumin and increased platelet
levels increase cancer risk in a
concentration-dependent way

External validation: NA

Clinical deployment: NA

Haider et al.
(2022)

Leukemias differentiation:
AML, APML, CML, ALL,
CLL, Other’s

1,577: (354), (96),
(213), (272),
(153), (489)

CBC L: supervised, classification FS: NA
C: ANN (0.83) V: NA

CBC not only differentiates from six
lineages of leukemia but also remains
predictive for the type (acute, chronic, or
other)

External validation: NA

Clinical deployment: NA

Meiseles et al.
(2022)

Prognosis of Lymphocytic
leukemia treatment within
2 years

109 Hb, Time from
diagnosis,
RDW, NLR

L: supervised, classification FS: NA
C: GBM using inexpensive
features (0.86); decision trees
(0.74) V: 10-fold cv

Low NLR and high values of RDW are
relevant predictors for treatment need

External validation: NA

Clinical deployment: NA

AUC, Area under the ROC (receiver-operating characteristic) curve, CRC, colorectal cancer; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; APML, acute promyelocytic

leukemia; CML, chronic myeloid leukemia; CLL, chronic lymphoid leukemia, Hb Hemoglobin; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration;

HTC, hematocrit; MCV, mean corpuscular volume; RDW, red cell distribution width; CBC, cell blood count; PLT, platelets; WBC, white blood cells; ALB, albumin; NLR, Neutrophil-to-

Lymphocyte ratio, L Learning, FS, feature selection, C Classification, V Validation, CART, classification and regression trees algorithm, NA not available; GBM, gradient boosting model; CV,

Cross-Validation; UK united kingdom; MHS, maccabi healthcare services; NHS, national health service.
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neural network to classify the six lineages of the disease: AML
(AUC=0.905), APML (AUC=0.805), CML (AUC=0.937), CLL
(AUC=0.870) and ALL (AUC=0.829). Internal validation sets
increased overall accuracy from 83.1% to 84.7%, which denotes
a non-overfitted model. Meiseles et al. evaluated the prognosis of
treatment needed in 2 years for patients with lymphocytic
leukemia with a dataset of 109 patients (Meiseles et al., 2022).
The outcome was predicted with a gradient boosting model (GBM,
AUC=0.768) and compared with a general linear model (GLM,
AUC=0.753), both with higher performances when related to the
current scoring system for prognostic evaluation of patients with
CLL (CLL-IPI, AUC=0.52). Despite predicting the general
progress of the disease, the CLL-IPI does not evaluate the
necessity of the treatment, and even a simple decision tree
based on inexpensive features–Hb, time since diagnosis, NLR,
and RDW–achieved higher performance (AUC=0.74).

Finally, a non-specified cancer diagnosis was approached by
Soerensen et al., through the modeling (training and internal
validation) on cohort I (n=6,266 from 2011 to 2018) and the
evaluation on cohort II (n=3,080 from 2019 to 2020). The
primary outcome was “cancer within 90 days,” and the proposed
methodology included an artificial neural networks versus logistic
regression approaches (Soerensen et al., 2022). The results were
slightly different since ANN predicted better in the modeling cohort
(AUC=0.91) but decreased its performance in the evaluation cohort
(AUC=0.79); in opposition, LR demonstrated higher stability in
both cohorts (n1, AUC=0.80, and n2, AUC=0.79). The
concentration decrease in albumin with a dependent increase in
platelet levels was related to an increased risk of cancer, even for
patients whose metabolite relationship was verified in
‘normal’ ranges.

Diseases of the blood or blood-forming
organs (ICD-10 class III)

The approach to blood diseases fundamentally combined
standard CBC parameters with artificial neural networks. The
outcomes included the diagnosis of iron deficiency anemia in
women, thalassemia minor (TM) in the general adult population,
and the distinction between iron-deficiency anemia and β-
thalassemia in three scenarios (males, females, and both). The
approach from Yilmaz et al. involved studying several ANN
strategies to verify which one had the best accuracy without
performing feature selection in the dataset (Yılmaz and
Bozkurt, 2012). The accuracy results obtained were highly
similar between the studied strategies (accuracies≥0.98), and
comparison with previous studies (Azarkhish et al., 2012)
showed a slight increase in sensitivity from 0.968 to 0.976,
conferring an excellent opportunity to perform an external
validation of the model with consequent valid clinical
deployment. In thalassemia minor, Magen et al., studied a
cohort of 185 verified alpha and beta TM patients with a
control group that included IDA, myelodysplastic (MDS), and
healthy subjects (Barnhart-Magen et al., 2013). Despite feeding the
ANN with six CBCmetabolites, only RBC, RDW, and MCV values
achieved higher metrics (Table 5). However, the specificity of 1.00
(TM vs. healthy and MDS) decreased to 0.90 (TM vs. healthy,

MDS, and IDA). Çil et al. reported improvement with the
distinction of β-thalassemia and IDA studied in gender groups
with different algorithms (weak learners and neural networks) (Çil
et al., 2020). The principal findings include a common gender
RELM algorithm (specificity=0.966), an ELM, RELM for females
(specificity=0.952), and an SVM model for males
(specificity=0.938). While these scores surpassed the previous
studies, the sample size was small, limiting the study findings.

Endocrine, nutritional, or metabolic diseases
(ICD-10 class IV)

This review reports endocrine, nutritional, or metabolic diseases
mainly applied to the diagnosis of type 2 diabetes mellitus (T2DM)
and the prediction of blood glucose on type 1 diabetes mellitus
(T1DM) and ensuing disease complications (insulin resistance,
polyneuropathy, and iatrogenic hypoglycemia). (Table 6)
Regarding diagnosis, Kopitar et al. approached early T2DM on a
cohort of 3,723 individuals employing different ML algorithms
without significant improvements related to diagnosis accuracy or
newly relevant features (Kopitar et al., 2020). Indeed, the authors
concluded that the model’s stability in linear regression was
preferred against other learning algorithms, and the increased
data available in electronic health records was useful to update
prediction models and stabilize important features: hyperglycemia,
age HDL-cholesterol, and triglycerides.

Kushner et al. studied T1DM blood glucose prediction using a
shallow neural network based on historical continuous blood
glucose monitoring (Kushner et al., 2020). The results improved
the current condition through a more extended prediction
(t=240min vs. 120min) with lower error (RMSE, 60min=28 mg/
dL vs. 43 mg/dL). Bernardini et al. initially featured disease
complications with evaluating clinical factors associated with
insulin resistance (Bernardini et al., 2019). The ensemble
regression forest allowed the identification of non-glycemic blood
parameters (HDL and total cholesterol, age, uricemia, WBC, and
GGT) as clinical factors that could provide early detection of glucose
deterioration. These findings agree with previous literature that
individually associated uricemia and WBC to insulin-resistant
conditions and GGT in high-risk T2DM individuals. Higher
sample studies employed supervised classification algorithms for
risk prediction of polyneuropathy (n=5,846) and iatrogenic
hypoglycemia. Regarding polyneuropathy, the authors found that
different ML models produced different features selection and
consequent classification metrics, relating co-morbidities
(nephropathy or retinopathy) to a rise in ANN (AUC=0.892),
increased neutrophil levels in random forests boosting
(AUC=0.898) or blood glucose levels in linear regression
(AUC=0.892). Of notice, the principal finding suggests that the
choice of the ML algorithm should consider not only the
performance metrics but also the kind of clinical information to
assess: the identification of early (i.e., ANN) or late biomarkers
(i.e., linear regression) of polyneuropathy, or the identification of
pathophysiological mechanisms (i.e., decision trees). The risk of
developing iatrogenic hypoglycemia (glucose≤70 mg/dL) was
approached by Mathioudakis et al. using a stochastic gradient
boosting ML model in an extensive data study (n=1 612,425)
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(Mathioudakis et al., 2021). Performance metrics of the developed
model (43 predictors) were slightly lower (c-statistic=0.86:0.90) than
previous reports (c-statistic=0.80:0.99) but was the first to be

externally validated in 4 different hospitals with stability in
model predictions, working 24 h after each blood glucose
measurement.

TABLE 5 Machine-learning-based routine blood tests for the diagnosis (or prognosis) of diseases of the blood or blood-forming organs.

Study Outcome Sample Selected
features

Methods (AUC) Findings

Yılmaz and Bozkurt
(2012)

Women’s IDA Training:
2000(NA) Test:
600 (122)

RBC, Hb, HCT,
MCV, MCH,
MCHC

L: supervised, classification FS: NA
C: ANN (0.99) V: test-set

ANN and medical diagnosis achieved
comparable results. ANN training with
several strategies (FFN, CFN, DDN, TDN,
LVQ, PNN) produced similar results
(accuracy ≥0.98). External validation: NA
Clinical deployment: NA

Barnhart-Magen
et al. (2013)

TM 526 (185) RBC, Hb, MCV,
RDW, MCH, PLT

L: supervised, classification FS: NA
C: ANN (specificity=0.967,
sensitivity=1) V: test-set

ANN only differentiates TM from the
control group based on MCV, RDW, and
RBC. External validation: NA Clinical
deployment: NA

Çil et al. (2020) β-thalassemia and
IDA distinction

342 (152) RBC, HCT, MCV,
MCH,
MCHC, RDW

L: supervised, classification FS: NA
C: several week learners and ANN
(>0.90)V: test-set

Different models were best according to
gender: SVM for males, RELM for both, and
ELM and RELM for females. External
validation: NA Clinical deployment: NA

AUC, Area under the ROC (receiver-operating characteristic) curve, IDA, iron deficiency anemia; TM, thalassemia minor; RBC, red blood cells, Hb Hemoglobin; HTC, hematocrit;MCV,

mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red cell distribution width; PLT, platelets, L Learning, FS,

feature selection, C Classification, V Validation, NA, not available; ANN, artificial neural networks; FFN, feedforward networks; CFN, cascade forward networks; DDN, distributed delay

networks; TDN, time delay networks; LVQ, learning vector quantization; PNN, probabilistic neural network; SVM, support vector machines; RELM, Regular Over-learningMachine; ELM,

extreme learning machine.

TABLE 6 Machine-learning-based routine blood tests for the diagnosis (or prognosis) of endocrine, nutritional, or metabolic diseases.

Study Outcome Sample Selected features Methods (AUC) Findings

Bernardini et al.
(2019)

Clinical factors
related to insulin
resistance

968 HDL cholesterol, Total
cholesterol, Age, Uricemia,
WBC, GGT

L: supervised, regression FS:
permutation out-of-bag C:
Ensemble RF + data imputation
(MSE <0.17) V: 10-fold cv

The ensemble approach correlated with
insulin resistance based on non-glycemic
blood data. External validation: NA
Clinical deployment: NA

Kopitar et al.
(2020)

Early T2DM
diagnosis

3,723 Hyperglycemia, Age, HDL
cholesterol, Triglycerides

L: supervised, regression FS: NA C:
lm (0.747), glmnet (0.740), lightgbm
(0.723), xgboost (0.715), RF (0.723)
V: 10-fold cv

No clinically relevant improvement with
more sophisticated ML algorithms. Higher
variables’ stability is preferred for model
calibration and clinic
interpretation.External validation: NA
Clinical deployment: NA

Metsker et al.
(2020)

Risk of diabetes
polyneuropathy

5,846
(2,342)

Retinopathy, Nephropathy,
Hb, Neutrophils, ALT, AST,
Glucose

L: supervised, classification FS: NA
C: ANN (0.892), SVM (0.864),
decision tree (0.898), lm (0.892),
logistic regression (0.894) V: 5-
fold cv

Different models showed different results
in terms of the feature’s importance and
significance: lm (glucose), rf (neutrophils),
and ANN (co-morbidities). Depending on
the needs, the choice of the algorithm
should vary. External validation: NA
Clinical deployment: NA

Mathioudakis
et al. (2021)

Risk of iatrogenic
hypoglycemia

1 612,425
(50,354)

Basal insulin dose, BG
coefficient of variation,
Previous hypoglycemic
episodes

L: supervised, classification FS: NA
C: MLR, RF, NB, SGB (0.90) V: 10-
fold cv

Iatrogenic hypoglycemia predicted after
short-term blood glucose measurement in-
hospital based on EHR data. External
validation: Hospital 2 (0.88), Hospital 3
(0.87), Hospital 4 (0.86), Hospital 5 (0.86)
Clinical deployment: NA

Kushner et al.
(2020)

Blood glucose
prediction in T1DM

24 Historic continuous glucose
monitoring

L: supervised, regression FS: NA C:
shallow neural network (RMSE):
t=60 (28 ± 4), t=90 (33 ± 4), t=120
(38 ± 6), t=180 (40 ± 8), t=240 (43 ±
12) mg/dL V: test-set

93% of predictions were clinically
acceptable, according to the Clarke error
grid. External validation: NA Clinical
deployment: NA

AUC, Area under the ROC (receiver-operating characteristic) curve, T2DM, Type 2 diabetes mellitus, T1DM, Type 1 diabetes mellitus;HDL, High-Density Lipoprotein; WBC, white blood cells;

GGT, Gama-glutamyl Transferase, Hb Hemoglobin; ALT, alanine transaminase; AST, aspartate transferase; BG, blood glucose, L Learning, FS, feature selection, C Classification, V Validation,

NA, not available; RF, Random-Forests;MSE, mean squared error; CV, Cross-Validation, lm Linear RegressionModel, glmnet Regularized Generalized Linear Model with Lasso (Least Absolute

Shrinkage and Selection Operator) Regression, LightGBM, Light Gradient-Boosting Machine, XGBoost Extreme Gradient Boosting, RF, random forests; ANN, artificial neural networks; SVM,

support vector machines; MLR, multivariable logistic regression; NB, Naïve-Bayes; SGB, stochastic gradient boosting; EHR, electronic health records.
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Mental, behavioral, or neurodevelopmental
disorders (ICD-10 class V)

Using AI, depression was the only condition studied in the
context of mental, behavioral, or neurodevelopmental diseases
(Table 3). Despite the association between depression and routine
blood biomarkers still being under clarification, low HDL-
cholesterol values were previously associated with the condition.
The studies reviewed approached depression under the NHANES
database differently: while Dipnall et al. used data mining, machine
learning, and traditional statistics to identify related biomarkers
(Dipnall et al., 2016), Hochman et al. aimed to build a low-cost
diagnostic tool to perform diagnosis based on blood data (Hochman
et al., 2021). The methodology described in the first study explains
the feature selection process in three sequential hybrid processes:
multiple imputations, ML regression, and traditional statistical
regression. From 67 laboratory parameters, the workflow selected
21 after ML regression and only six after univariate analysis. The
final multiple logistic regression model suggested two related effects
(hemoglobin from bilirubin and cotinine from cadmium), which
resulted in the exclusion of Hb and cotinine. The posterior cadmium
elimination occurred since only RDW, glucose, and total bilirubin
remained significant to several confounder covariates, namely, age
(p<0.05). The authors explained related literature associations
between the selected biomarkers and depression, yet all with
indirect relationships. The subsequent study from Hochman et al.
configured a supervised approach for predicting depression using a
random forests classifier in four subgroups (Hochman et al., 2021).
Feature selection was made using the stepwise backward method,
which starts modeling with all features and successively eliminates
the least important feature in iterative steps until all features are
removed from themodel. Results were similar across the four groups
with full dataset [ratio of income to poverty (RIP), GGT, glucose,
triglyceride and RDW, AUC=0.83], overweight and obesity (GGT,
RIP, creatinine, RDW and glucose, AUC=0.80), diabetes (GGT,
eosinophils, RIP, basophils and eosinophils, AUC=0.82) and
patients with metabolic syndrome (RIP, GGT, eosinophils,
bilirubin and basophils, AUC=0.82). Table 7 Despite the
developed models accounting for the features selected in the first
study, namely, glucose and RDW (full dataset and overweight and
obesity), and bilirubin (patients with metabolic syndrome), the
results of internal validation did maintain the performance in the

external validation dataset (AUC, average=0.66); this fact
compromises the predictive ability of the developed models.

Diseases of the circulatory system (ICD-
10 class IX)

Outcomes related to the reviewed circulatory system diseases
include the prognosis of postoperative blood coagulation in
children with congenital heart disease and the diagnosis of
cardiac workload and ischemic stroke. Numerous studies refer
to associations between blood analysis and diseases of the
circulatory system. However, known routine blood tests
associated with heart disease are the low levels of sodium and
chloride and the elevated levels of erythrocytes, hematocrit, RDW,
urea, and c-reactive protein. The prognosis of postoperative blood
coagulation in children was assessed by comparing three different
classifiers (decision trees, naïve-Bayes, and support vector
machines). Applying recursive feature elimination resulted in
seven features, age being the most relevant (Table 8).
Traditional statistical tests also evaluated relevant features,
which confirmed the significance among the compared groups
(abnormal vs. normal blood coagulation). This statistical
verification also supports the model’s reliability, which achieved
accuracy values of 75% in internal validation based on a typical
CBC. The cardiac workload is generally measured by the rate
pressure product (RRP), which is the product between systolic
blood pressure and heart rate. The study from Shou et al. evaluated
how blood parameters predicted the biochemical profile related to
the resting RRP through the analysis of 55,730 individuals (Shou
et al., 2021). The supervised regression task was accomplished by
comparing a linear regression model (r=0.352) and a tree-based
model, XGBoost (r=0.377). The authors found that glucose alone
predicted rRRP with a Pearson correlation of 0.247 in the linear
model and 0.245 in the non-linear model; total protein and
neutrophils count were responsible for the additional variance,
exhibiting the recognition ability of ML-based approaches to find
new biomarkers. Indeed, Zheng et al. followed a similar strategy for
ischemic stroke (Zheng et al., 2022). Ischemic stroke is still a major
burden due to the high number of miss-diagnosed (or late) cases
due to challenges related to the triaging process. Four feature
selection techniques (univariate logistic regression, least absolute

TABLE 7 Machine-learning-based routine blood tests for the diagnosis (or prognosis) of mental, behavioral, or neurodevelopmental disorders.

Study Outcome Sample Selected features Methods (AUC) Findings

Dipnall et al.
(2016)

Depression
associated
biomarkers

5,227 RDW, Glucose, Total
bilirubin

L: supervised, regression FS: multiple
imputation, boosted regression,
imputed weighted logistic regression C:
multivariate weighted logistic
regression V: cross-validation

The hybrid approach provided a
variable selection of three biomarkers
for the prediction of depression.
External validation: NA Clinical
deployment: NA

Hochman
et al. (2021)

Depression Training: 7,702
(522) Validation:
1,752 (117)

Family income, GGT,
Glucose, Triglycerides, RDW,
Creatinine, BA%, EO%,
Bilirubin

L: supervised, classification FS:
backward feature selection C: random
forests: full (0.83), overweight (0.80),
diabetes (0.82), metabolic syndrome
(0.82) V: cross-validation

Selected features demonstrated good
predictive value in distinguishing
depression cases on the four studied
datasets. External validation: full
(0.69), overweight (0.63), diabetes
(0.66), metabolic syndrome (0.64)
Clinical deployment: NA

AUC, Area under the ROC (receiver-operating characteristic) curve, RDW, red cell distribution width; GGT, Gama-glutamyl Transferase, BA% basophils count, EO% eosinophils count, L

Learning, FS, feature selection, C Classification, V Validation, NA, not available.
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shrinkage and selection operator regression, recursive feature
elimination, and the spearman correlation) were applied to the
training set, reducing 41 to 15 features. Model development was
assessed by comparing six algorithms (XGBoost, RF, NN, LR,
gaussian NB, KNN); XGBoost showed the best performance with
an accuracy of 0.84, 0.83, and 0.86 in training, internal validation,
and external validation, respectively. The model was further
analyzed by explaining techniques (permutation feature
importance, local-interpretable model-agnostic, and Shapley
additive explanations) endorsing the importance of neutrophils
count, total protein, HDL-cholesterol, and hemoglobin. Aiming
for a future clinical deployment, the model was also made available
online for prospective validation.

Diseases of the respiratory system (ICD-
10 class X)

Regarding respiratory system diseases, we present here one
study related to asthma. Given the impact of smoking on
respiratory function, we included a study with AI and smoking-
related disorders in the review. Routine blood metabolites associated
with smoking were the high levels of erythrocytes, hematocrit,
leukocytes, triglycerides, and the low levels of HDL-cholesterol,
none related to asthma. Indeed, the study of Mamoshina et al.
found that HDL-cholesterol was the principal feature for the
classification of the smoking status, along with hemoglobin,
RDW, and mean cell volume (Mamoshina et al., 2019). These
findings were accomplished after an iterative analysis that started
with the prediction (regression) of biological age based on routine
blood tests. The feature importance shows HbA1C, urea, glucose,
and ferritin as the most important (training). The 24 features
selected were used to predict age in smokers (r2=0.55) and non-
smokers (r2=0.57), showing a potential impact of smoking in the

prediction. The addition of the feature ‘smoking status’ improved
the three tested regression models from 0.56 to 0.57
(23–24 features), 0.54 to 0.58 (20–21 features), and 0.55 to 0.60
(18–19 features) in the prediction of biological age. Authors also
found, based on the same models of 23, 20, and 18 features, the
ability to predict the ‘smoking status’ with an accuracy of 0.82
(equivalent for the three models), with HDL-cholesterol,
hemoglobin, RDW, and MCV the most relevant features for the
prediction. The study from Zhan et al. employed a Mahalanobis-
Taguchi system (MTS) to classify asthma patients (Zhan et al.,
2020). The algorithm was approached by constructing the
Mahalanobis space (collection and distance calculation of the
standardized normal and abnormal data), with further
identification of useful variables (orthogonal arrays and signal-to-
noise ratios for threshold definition and roc curve analysis). Results
achieved with the proposed algorithm were compared with an SVM
model, where the same features (selected by Pearson correlation)
predicted asthma patients with similar accuracy (Table 9). The
authors claim a more straightforward interpretability of the
model by calculating the Mahalanobis distance (MD) with the
values of PDW, MPV, WBC, eosinophils count, lymphocytes
count, and MCHC data.

Diseases of the digestive system (ICD-
10 class XI)

For digestive system diseases, we focused on studies applying
supervised classification methods to diagnose conditions related to
liver disease. In general, pathologies related to the liver split into
four stages: the inflammation stage [induced by hepatitis B virus
(HBV), hepatitis C virus (HCV), alcoholic liver disease (ALD), and
nonalcoholic fatty liver disease (NAFL)], the fibrosis stage, the cirrhosis
stage and the worst stage related to liver cancer or failure (Tian et al.,

TABLE 8 Machine-learning-based routine blood tests for the diagnosis (or prognosis) of circulatory system diseases.

Study Outcome Sample Selected features Methods (AUC) Findings

Guo et al.
(2021)

Postoperative blood
coagulation in children
with congenital heart
disease

1,690 Age, Sex, MCV, MCH, MCHC,
WBC, PLT

L: supervised, classification FS:
recursive feature elimination C:
DT (0.81), NB (0.82), SVM (0.82)
V: 5-fold cv

The accuracy rate of the overall
forecast was higher than 75%; Age
was the most important feature for
the decision-tree model. External
validation: NA Clinical
deployment: NA

Shou et al.
(2021)

Cardiac workload 55,730 Glucose, Total protein, Neutrophil L: supervised, regression FS: NA C:
LR (r=0.352), XGBoost (r=0.377)
V: NA

Positive correlation between the
measured resting rate pressure
(rRRP) with the predicted rRRP
based on blood biomarkers. External
validation: NA Clinical
deployment: NA

Zheng et al.
(2022)

Ischemic stroke 15,475
(4,999)

Age, NE%, NE, MO%, MCHC, LY%,
RDW-CV, MCV, Hb, Total
cholesterol, HDL-cholesterol, uric
acid, total protein

L: supervised, classification FS:
permutation feature importance C:
XGBoost (0.91) V: 5-fold cv

The model was developed based on
15 routine blood tests and externally
validated with excellent accuracy.
External validation: 5,011 (1,076),
XGBoost (0.92) Clinical
deployment: available online at
istriage.com

AUC, Area under the ROC (receiver-operating characteristic) curve, MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin

concentration; WBC, white blood cells; PLT, platelets, NE% neutrophils count, NE, neutrophils, MO% monocytes count, MCHC, mean corpuscular hemoglobin concentration, LY%

lymphocytes count, RDW-CV, Red Cell Distribution Width-Coefficient of Variation; MCV, mean corpuscular volume, Hb Hemoglobin; DT, decision trees; NB, Naïve-Bayes; SVM, support

vector machines; CV, Cross-Validation, L Learning, FS, feature selection, C Classification, V Validation, NA, not available; LR, linear regression, XGBoost Extreme Gradient Boosting, rRRP,

resting rate pressure.
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2022). Regarding inflammation, Fialoke et al. studied the discrimination
between non-alcoholic steatohepatitis (NASH) and simple steatosis in
NAFL (Fialoke et al., 2018). Since NASH is underdiagnosed due to the
lack of patient symptoms and relevant biomarkers (high values of AST
and ALT), the authors trained 4ML algorithms with the available data:
demographics, the maximum, minimum, and mean values of AST,
ALT, AST/ALT, PLT, and the binary diabetes condition. 5-fold cross-
validation displayed the model’s AUC higher than 0.83, being XGBoost
the top classifier (AUC=0.876) with the potential to perform external
discrimination with promising results. Ma et al. also approached the
inflammation stage by diagnosing NAFDL in a cross-sectional study of
10,030 individuals with a prevalence of 24% (Ma et al., 2018). Four
techniques were used for feature selection, and 11ML algorithms were
trained. Selected five biomarkers (Table 10) resulted in different
performance metrics across the tested traditional (KNN, SVM, LR,
NB, BN, DT), ensemble (AdaBoost, bagging, RF), and extension
algorithms (hidden naïve-Bayes, aggregating one-dependence). Since
F-measure (harmonic mean between precision and recall) was
considered the most important metric, the Bayesian network
achieved the best model (F-measure=0.655). Comparisons with
current diagnostic scores such as the FLI [calculated with
triglycerides, BMI, GGT, waist circumference (F-measure=0.318)],
and HIS [estimated with the values of AST, ALT, BMI, diabetic
condition, and gender (F-measure=0.524)] demonstrated a superior
diagnostic ability of the developed Bayesian network. Cao et al.
evaluated HBV-induced liver cirrhosis (inflammation and cirrhosis
stages) by studying seven routine blood tests enhanced by a
multilayered perceptron and a naïve-Bayes algorithm (Cao et al.,
2013). Both classifiers exhibited higher AUC in the internal
validation (MLP, AUC=0.942, and NB, AUC=0.899) rather than the
training, with better performance for the MLP (MLP, AUC=0.900, and
NB, AUC=0.831). This study also compared the ML metrics with the
currently used scores APRI (AUC=0.726), gauged with the AST to PLT
index, and the FIB-4 (AUC=0.817), calculated with the age, PLT, AST,
and ALT levels, with the MLP classifier shown superior performance,
enabling a potential reduction in the number of biopsies to perform
diagnosis. The worst stage of liver disease–liver failure - was studied by
Peng et al. to create a forecast model to predict patient deterioration
after hospitalization. This type of prediction is routinely assessed
through the model for end-stage liver disease (MELD) calculated

using the values of creatin, total bilirubin, standardized prothrombin
ratio (INR), and the etiology of the disease. In opposition, the authors
used a database of 15 clinical metabolites kept for modeling determined
by hepatologists; only variables with highmissing values were discarded.
Except for the GLMmodel, all other models (AUC>0.794) outstand the
classification performance of the MELD (AUC=0.699). However, the
limitation of the sample size (n=348) reinforces the need to perform
validation in a high number of subjects. Finally, Yao et al. approached
non-specific liver disease by deep learning on the largest dataset
(n=76,914), which comprised 12,688 patients with different stages of
liver disease (Yao et al., 2020). The application of a dense deep neural
network (DNN) was compared with standard logistic regression and
random forests. The network was explored based on the network width
(number of neurons per hidden layer) and dropout rate. Widths of 512
(AUC=0.8919) and 1,024 (AUC=8,922) were compared along with
dropouts of 0.3 (AUC=0.8812), 0.4 (AUC=0.8891), 0.5 (0.8919), 0.6
(0.8904), and 0.7 (0.8856). Feature importance was assessed with
random forests (for reference) since DNN and DenseDNN are
black-box algorithms with poor explainability. Global results
achieved excellent internal validation (AUC>0.87) except for logistic
regression (AUC=0.79). Indeed, a significant improvement was not
verifiable between an explainable random forest and the deep learning
approaches for diagnosing non-specific liver disease. The fibrosis stage
and liver cancer have not been approached yet.

Diseases of the genitourinary system (ICD-
10 class XIV)

Concerning disorders of the genitourinary system, we focus on
chronic kidney disease (CKD). CKD lacks early diagnosis since
obvious symptoms only appear in an advanced stage of the disease
wherein the patient’s renal function declines with a glomerular
filtration rate (GFR) of 60 mL/min/1.73 m2 (Tarwater, 2011). The
need to create screening procedures that perform early diagnosis
motivated several studies for routine blood and urine analysis.
Indeed, the study of Mahfuz et al. evaluated 250 CKD patients in
a cohort of 400 individuals with information regarding urine
(specific gravity, albumin, sugar, red blood cells, pus cell, pus cell
clumps, bacteria) and blood (glucose, urea, creatinine, sodium,

TABLE 9 Machine-learning-based routine blood tests for respiratory system disease diagnosis (or prognosis).

Study Outcome Sample Selected features Methods (AUC) Findings

Mamoshina
et al. (2019)

Smoking status and
aging in smokers

149,000
(49,000)

Smoking: HDL-cholesterol,
Hb, RDW, MCV Age:
HbA1C, urea, glucose,
ferritin

L: supervised, classification (smoking),
regression (aging) FS: permutation feature
importance C: Feed-forward deep neural
networks: Age (r>0.74), smoking
(accuracy>0.81) V: 5-fold cv

Blood tests could quantify aging
caused by smoking; still, this method
was less accurate than DNA
methylation. External validation: NA
Clinical deployment: NA

Zhan et al.
(2020)

Asthma 1,835 (355) PDW, MPV, WBC, EO%, LY
%, LY, MCHC

L: supervised, classification FS: person
correlation C: MTS, 7 var
(sensitivity=0.941); SVM, 7 var
(sensitivity=0.935) V: 10-fold cv

MTS showed high classification
accuracy on asthma patients (94.15%)
and healthy volunteers (97.20%) based
on 7 routine blood parameters; SVM
achieved similar performance.
External validation: NA Clinical
deployment: NA

AUC, Area under the ROC (receiver-operating characteristic) curve, HDL, High-Density Lipoprotein, Hb Hemoglobin; RDW, red cell distribution width; MCV, mean corpuscular volume,

HbA1C Glycated Hemoglobin, PDW, platelet distribution width; WBC, white blood cells, EO% eosinophils count, LY% lymphocytes count, MCH, mean corpuscular hemoglobin; MTS,

Mahalanobis-Taguchi system; DNA, deoxyribonucleic acid, L Learning, FS, feature selection, C Classification, V Validation, NA, not available; CV, Cross-Validation; SVM, support vector

machines.
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potassium, hemoglobin, packed cell volume, white blood cell count
and red blood cell count) metabolites. The authors performed
training on five algorithms and performed feature importance
based on the SHAP technique, reducing the number of features
from 24 to 13 in concordance between tested gradient boosting,
random forest, and extreme gradient boosting. With the 13 selected
features, the authors manually split the dataset into six different
subsets: all features, blood and others, urine and others, only blood,
only urine, and only others. A new train-test cycle applied to these
subsets resulted in a classification accuracy ranging from 76% to
99%. Interestingly, results were very similar between all features (RF,
AUC=0.99) and only blood (RF, AUC=0.97), with slight variations
between the tested classifiers. (Table 11) While this study provides
an interesting interpretation approach to CKD screening based on
different bundles of metabolites (SHAP explained), it lacks sample
size, which limits the findings.

Codes for special purposes (ICD-
10 class XXII)

Lastly, we included an analysis for special purposes ICD-10
codes, in which, for instance, the coronavirus 2019 (COVID-19)
disease is included. COVID-19 is caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2); noticeably, it

received particular interest in AI-based diagnostics. First reported in
November 2019, this virus emerged as a pandemic in March 2020,
accounting for 563M infections (Our World in data, 2023) and
6.37M deaths (Data, 2023). The evolution of the virus was irregular,
and its spread was facilitated by the struggle to achieve a real-time
diagnosis able to distinguish between real positive COVID-19
infections from other viral and bacterial respiratory infections.
Indeed, the symptomatology of COVID-19 remains challenging
to differentiate from other infections: 40% of patients display
mild disease (fever, cough), 40% show moderate disease
(pneumonia), 15% are severe (shortness of breath), and 5% refers
to critical illness (ICU admission) (Wu and McGoogan, 2020).
Additionally, 9–12 days is the average time for ICU admission,
with a median length of stay of 9 days. The median length of
mechanical ventilation is 8.4 days, and COVID-19 mortality in
the ICU is nearly 30% (Auld et al., 2021). Regarding diagnosis,
reverse transcription polymerase chain reaction (RT-PCR) and
computerized tomography (CT) images are still recognized
technologies for determining viral infection. However, both
methods comprise disadvantages: CT yields radiation (inherently
endorses the risk of cancer development), it is bulk, expensive and
hinders the possibility of performing screening. RT-PCR tests are
less costly, available in higher volume, and offer a specificity close to
100% and, depending of the primers and strain, a remarkably high
sensitivity (Böger et al., 2021). RT-PCR tests require laboratory

TABLE 10 Machine-learning-based routine blood tests for the diagnosis (or prognosis) of digestive system diseases.

Study Outcome Sample Selected features Methods (AUC) Findings

Cao et al.
(2013)

HBV-induced liver
cirrhosis

239 (124) Age, ALT, AST, PT, PLT,
Hb, RDW

L: supervised, classification FS: genetic
search C: MLP (0.942), NB (0.899) V: 10-
fold cv

Compared to currently used scores for
liver cirrhosis prediction (APRI
(AUC=0.726) and FIB-4 (AUC=0.817)),
the developed MLP achieved excellent
performance in the test set. External
validation: NA Clinical deployment: NA

Fialoke et al.
(2018)

NASH in NAFL 34,949
(17,359)

ALT_mean, ALT_max,
AST_max, AST mean

L: supervised, classification FS: genetic
search C: LR (0.835), DT (0.842), RF
(0.870), XGBoost (0.876) V: 5-fold cv

The model improved by adding
longitudinal (temporal) data rather than
only using recent values

External validation: NA

Clinical deployment: NA

Ma et al.
(2018)

NAFL 13,030
(2,522)

BMI, Triglycerides, GGT,
ALT, Uric acid

L: supervised, classification FS:
correlation, redundancy analysis, out-of-
bag estimation, Scott-Knot test C: BN
(F=0.655) V: 10-fold cv

Tested ML algorithms improved the
prediction accuracies from nearly 52% in
FLI and HIS rules to >80% for NAFL
diagnosis. External validation: NA
Clinical deployment: NA

Yao et al.
(2020)

Liver disease 76,914
(12,688)

AST, Total bilirubin,
Direct bilirubin, Age

L: supervised, classification FS: RF C: LR
(0.797), RF (879), DNN (0.886),
DenseDNN (0.891) V: 5-fold cv

AUC was slightly higher in deep learning
than in weak learners; Selected features
were achieved by random forests since
DNNs are black-box algorithms. External
validation: NA Clinical deployment: NA

Peng et al.
(2020)

Exacerbation risk in
patients with liver
dysfunction

348 (174) AST, NE, LY, Creatinine,
ALT, ALB, Total protein,
Total bilirubin

L: supervised, classification FS: manual C:
ANN (0.912), CART (0.794), GLM
(0.554), SVM (0.853) V: 10-fold cv

While the MELD achieved an AUC of
0.669, ML algorithms enhanced the
prediction to nearly 80% (except GLM).
External validation: NA Clinical
deployment: NA

AUC, Area under the ROC (receiver-operating characteristic) curve, NASH, Non-Alcoholic Steatohepatitis; NAFL, Non-Alcoholic Fatty Liver Disease; ALT, alanine transaminase; AST,

aspartate transferase; PT, platelets, Hb Hemoglobin; RDW, red cell distribution width; BMI, body mass index; GGT, Gama-glutamyl Transferase; NE, neutrophils; LY, lymphocytes; ALB,

albumin, L Learning, FS, feature selection, C Classification, V Validation, NA, not available; MLP, multilayer perceptron; NB, Naïve-Bayes; CV, Cross-Validation, XGBoost Extreme Gradient

Boosting, LR, linear regression; DT, decision trees; RF, random forests; BN, bayesian network; DNN, dense neural networks; CART, classification and regression trees algorithm; GLM,

generalized linear models; SVM, support vector machines; APRI, aspartate aminotransferase to platelet ratio index; FIB-4, Fibrosis Index Based on 4 factors; ML, machine learning; MELD,

Model for End-Stage Liver Disease.

Frontiers in Medical Engineering frontiersin.org15

Santos-Silva et al. 10.3389/fmede.2024.1369265

https://www.frontiersin.org/journals/medical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmede.2024.1369265


specialists and infrastructure and produce a 15% false-positive rate
on 48–72 h of turnaround time. Rapid diagnostic tests (RDTs)
emerged as a point-of-care solution to facilitate access to
diagnosis and reduce dependence on laboratory infrastructures.
There are more than 400 RDTs commercially available, based on
two technologies: antigen-based (immunoassays) to detect domains
of the surface proteins of the virus and molecular nucleic acid
amplification tests (NAATs) that reveal the presence of viral gene
targets (Diagnostics for All, 2023). The criteria for approval and
commercialization of RDTs are based on a sensitivity superior to
80% and specificity above 98% (World Health Organization, 2021),
tested on a prospective cohort study involving less than 30 persons
infected with SARS-CoV-2 and 30 persons without the infection
(Food and Drug Administration. Emergency use authorizations for
medical devices, 2021). Accepted by the Food and Drug
Administration (FDA), these standards do not require
independent verification of clinical validation provided by each
test manufacturer. Indeed, several studies reported varying
degrees of sensitivity (36%–82%) and specificity (98%–100%)
when these RDTs are tested in asymptomatics (Prince-Guerra
et al., 2021). Notably, most validation studies conducted for
RDTs were performed before the appearance of new variants,
namely, delta and omicron. The WHO, CDC, and European
Center for Disease Prevention and Control guidelines advise
using these point-of-care solutions for diagnosing symptomatic
persons and screening asymptomatic individuals. Despite the
growing need for these solutions, especially in underdeveloped
countries, supply-chain limitations hinder the availability and
consequent clinical relevance of these tests.

COVID-19 researchers and clinicians explored AI state-of-
the-art learning techniques to find alternatives for COVID-19
forecasting, management, surveillance, and recognizing scalable
and cost-effective ways to deal with the pandemic. Regarding
diagnosis, several studies emerged in mid-April 2020 through the
study of routine blood tests using proprietary datasets (single
center), characterized by low sample size (n<1,000) and mostly
without external validation. Joshi et al. provided an interesting
methodology, modeling diagnosis using an L2-regularized
logistic regression trained only with levels of hematocrit,
neutrophils, and lymphocytes, achieving an internal validation
(AUC=0.78) that was consistent with the evaluation performed in

four different sites (average AUC=0.77) (Joshi et al., 2020).
Brinati et al. also used logistic regression but compared the
classification performance with a random forest classifier,
using 14 features (Table 12) (Brinati et al., 2020). Results were
very similar among the internal test set, but the decision tree
provided larger comprehension with AST (<25.4) and
lymphocytes (<1.3) as major predictors of COVID-19
negativity. Alves et al. also employed a random forest classifier
compared with five algorithms in which the ensemble achieved
the best internal classification (AUC=0.87) (Alves et al., 2021). A
decision tree explained the model, and criteria graphs allowed a
visual interpretation of the association between selected blood
parameters. An artificial neural network was designed by
Banarjee et al. in comparison with a random forest and a
lasso-elastic-net regularized generalized linear model (fitting a
logistic regression) (Banerjee et al., 2020). The network was
tested in community individuals (n=619) and patients in the
hospital regular ward (n=69). While ANN and RF presented the
best metrics for hospitalized and non-hospitalized patients, the
glmnet identified a decreasing pattern in monocytes, leukocytes,
eosinophils, and platelets that was applied to a logistic regression
achieving an AUC of 0.85. The ensemble designed by Abayomi-
Alli et al. was built under a small dataset (n=279), taking the input
of 16 features. Comparisons were made between 15 classifiers
wherein the ExtraTrees (AUC=0.99) and the AdaBoost
(AUC=0.98) outperformed the remaining models. Wu et al.
also achieved similar internal classification values using a
slightly larger cohort (n=603) and a novel dynamic ensemble
selection method, first approached with data imbalance
techniques and modeled with a hybrid clustering with a
posterior bagging classifier (Wu et al., 2021). The authors
achieved better results with the hybrid approach rather than
by using the bagging approach, tested in divisions 70:30 and 60:
40 and with 5-fold cross-validation. Contrary to previous
supervised studies, Souza et al. reported an unsupervised
clustering approach based on self-organizing maps that
detected positive COVID-19 patients with a discrimination
power of 83% (LDA model) (Souza et al., 2021). This
clustering approach was performed on 599 registers, of which
only 81 were COVID-19 positive. It identified WBC, BA, EO, and
RDW as features with a strong influence on clustering

TABLE 11 Machine-learning-based routine blood tests for the diagnosis (or prognosis) of diseases of the genitourinary system.

Study Outcome Sample Selected
features

Methods (AUC) Findings

Rashed-Al-Mahfuz
et al. (2021)

Chronic kidney
disease

400 (250) Hb, Creatinine,
Glucose, Urea, RBC,
Sodium

L: supervised, classification FS: SHAP
C: RF (0.97), GB (0.96), XGBoost (0.95),
LR (0.94), SVM (0.94) V: 10-fold cv

Selected features (SHAP) were consistent
with the literature regarding CKD
diagnosis, and the performance of ML
classifiers was similar for each bundle of
features. Hemoglobin was the most
important predictor

External validation: NA

Clinical deployment: NA

AUC, Area under the ROC (receiver-operating characteristic) curve, Hb Hemoglobin, RBC, red blood cells; SHAP, shapley additive explanations; RF, random forests; GB, gradient boosting,

XGBoost Extreme Gradient Boosting, LR, linear regression; SVM, support vector machines, L Learning, FS, feature selection, C Classification, V Validation, CV, Cross-Validation; NA, not

available; CKD, chronic kidney disease; ML, machine learning.
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TABLE 12 Machine-learning-based routine blood tests for the diagnosis (or prognosis) of COVID-19.

Study Outcome Sample Selected features Methods (AUC) Findings

Brinati et al.
(2020)

COVID-19
diagnosis

279 (177) AST, LY, LDH, CRP, WBC, EO,
ALT, Age, NE, GGT, MO, BA,
ALP, PLT

L: supervised, classification FS: RF
C: LR (0.84), RF (0.85) V: nested-cv

AST<25 is predictor of COVID-19
negativity (NPV=83%); AST>25 is
predictor of COVID-19 positivity
(PPV=76%) External validation:
NA Clinical deployment: NA

Joshi et al.
(2020)

COVID-19
diagnosis

390 (33) NE, LY, HTC, Gender L: supervised, classification FS:
manual C: L2-regularized LR
(c-statistic 0.78) V: cross-validation

NE and LY were negative predictors,
while male and HCT were positive
COVID-19 predictors. External
validation: c-statistic 0.75, 0.75,
0.81 Clinical deployment: NA

Banerjee et al.
(2020)

COVID-19
diagnosis

786 (81) EO, WBC, RBC, MPV, BA, PLT L: supervised, classification FS:
glmnet; C: RF (0.94), Flexible ANN
(0.95); V: 10-fold-cv

LR subtraction model between MO,
WBC, EO, and PLT shows
AUC=85% (community). External
validation: NA Clinical
deployment: NA

Plante et al.
(2020)

COVID-19
diagnosis

12,183 (2,182) EO, CA, AST, WBC, BA, RDW,
RBC, ALB, TB, MCV, MCH, SO,
HCO3, UR, Chloride

L: supervised, classification FS:
recursive feature elimination; C:
XGBoost (0.91); V: 5-fold-cv

NPV for rule-out-ED >97% for 1%,
10%, and 20% covid-19 prevalence.
External validation: XGBoost (0.91)
Clinical deployment: NA

Tschoellitsch
et al. (2021)

COVID-19
diagnosis

1,537 (65) WBC, NLR, Hb, CA L: supervised, classification FS: RF;
C: RF (0.74); V: 5-fold-cv

ElevatedWBC and NLR improved
the model accuracy. External
validation: NA Clinical
deployment: NA

Alves et al.
(2021)

COVID-19
diagnosis

608 (84) WBC, PLT, EO, MO, CRP L: supervised, classification FS:
decision-tree-based; C: DTX + RF
(0.86), LR (0.85), XGBoost (0.85),
SVM (0.85), MLP (0.81), Ensemble
(0.87); V: nested-cv

Explainable patterns based on
selected features, according to
previous literature. External
validation: NA Clinical
deployment: NA

Souza et al.
(2021)

COVID-19
diagnosis

599 (81) WBC, BA, EO, RDW L: unsupervised, clustering FS:
SOM; C: Neural Network SOM,
LDA; V: NA.

Unsupervised pattern recognition
applied to routine blood tests.
External validation: NA Clinical
deployment: NA

Cabitza et al.
(2021)

COVID-19
diagnosis

1736 (NA) Age, HCT, Hb, MCH, MCHC,
MCV, RBC, WBC, PLT, NE, LY%,
MO%, EO%, BA%, NE, LY, MO,
EO, BA, Gender

L: supervised, classification FS: NA;
C: SVM-RBF kernel (0.76); V: 10-
fold-nested-cv

Meta-validation with robustness and
cardinality implications in COVID-
19 ML models states significant
model degradation when tests are
performed in different settings
(equipment or populations) External
validation: SVM-RBF (0.84) Clinical
deployment: NA

Babaei et al.
(2022)

COVID-19
diagnosis

279 (177) 1,624 (786)
600 (80)

WBC, PLT, MO, EO, Age quantile,
CRP, RBC, Hb, LY, BA, CREA,
NE, PO, UR, SO, AST, ALT, G

L: supervised, classification FS:
SHAP; C: DNN (0.92), SVM (0.87),
LR (0.85), NB (0.83), XGBoost
(0.81), RNN (0.80), CNN (0.76), DT
(0.72), KNN (0.72), LSTM (0.51). V:
4-fold-cv

Deep neural networks performed
better than previous studies based on
the same dataset; WBC, Age, AST,
and LDH were predictors on the
three datasets. External validation:
NA Clinical deployment: NA

Wu et al. (2021) COVID-19
diagnosis

603 (83) Age, HTC, HGB, PLT, RBC, LY,
MCHC, WBC, BA, MCH, EO,
MCV, MO, RDW, G, CRP

L: supervised, classification FS:
recursive feature elimination; C:
Dynamic Ensemble Selection (0.99);
V: 70–30 and 60–40 training-test
and 5-fold-cv

Dynamic ensemble selection
application on imbalanced data;
External validation: NA Clinical
deployment: NA

Campagner et al.
(2021)

COVID-19
diagnosis

1,736 (816) Age, HTC, Hb, MCH, MCHC,
MCV, RBC, WBC, PLT, BA%, NE
%, LY%, MO%, EO%, BA, NE, LY,
MO, EO, BA, covid-19 specific
symptoms, Gender

L: supervised, classification FS:
recursive feature-elimination; C:
SVM (0.975), LR (0.965), E (0.95),
RF (0.945), NB (0.935), KNN (0.93);
V: 5-fold-nested-cv

The most important predictors
were RBC, MCV, NE, EO, and
MO. External validation: SVM
(0.98), SVM (0.97) Clinical
deployment: NA

Abayomi-Alli
et al. (2022)

COVID-19
diagnosis

279 (177) Age, gender, WBC, PLT, CRP,
AST, ALT, GGT, ALP, LDH, NE,
LY, MO, EO, BA, swab

L: supervised, classification FS: PCA
C: Extra-Trees (0.99), Adaboost
(0.98), Decision tree (0.98) V: 10-
fold cv

Strong comparison between many
classifiers, with higher AUC on the
proposed ensemble. External
validation: NA Clinical
deployment: NA

(Continued on following page)
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TABLE 12 (Continued) Machine-learning-based routine blood tests for the diagnosis (or prognosis) of COVID-19.

Study Outcome Sample Selected features Methods (AUC) Findings

Chadaga et al.
(2022)

COVID-19
diagnosis

5,644 (558) WBC, EO, PLT, MO L: supervised, classification FS:
Pearson correlation C: RF (0.80), LR
(0.78), KNN (0.67), XGBoost (0.79)
V: NA

Only internal validation was used
to evaluate model performance on
an imbalanced dataset (sampled
with smote). External validation:
NA Clinical deployment: NA

Chadaga et al.
(2023)

COVID-19
diagnosis

1,169 (270) ALB, TWBC, BA, SO, AST, PO,
TB, DB, UR, TP, LY, NE, Hb, HTC,
CREA, MO, NLR

L: supervised, classification FS: Grey
wolf optimization (GWO) C: RF
(0.99), LR (0.74), DT (0.88), KNN
(0.83), STACKA (0.96), Adaboost
(0.95), Catboost (0.96), LightGBM
(0.98), XGBoost (0.99), STACKB
(0.99), STACKC (0.98) V: 5-fold-cv

The RF model’s results were
interpreted using xAI (Explainable
AI): albumin, TWBC, basophil,
sodium, and AST are critical for
distinguishing COVID-19 from
other infections. Increased AST and
decreased TWBC and basophils
indicate infection with COVID-19

Luo et al. (2021) COVID-19
severity

196 (129 ICU) Age, WBC, LY, NE L: supervised, classification FS:
maximum relevance and minimum
redundancy C: MCDM (TOPSIS +
NB) (0.93) V: 80–20 (train-test)

Advanced age, low immunity, and
combined bacterial infections are
reasons for COVID-19 severity;
The MCDM algorithm is stable on
small datasets. External validation:
NA Clinical deployment: NA

Benito-León
et al. (2021)

COVID-19
severity

853 C1 (58 ICU) C2
(300 H) C3 (495 +)

C1: higher levels of AST, LDH,
CRP, NE, and lower levels of MO
and LY; C2: intermediate levels;
C3: lowest AST, LDH, CRP, NE,
and higher levels of MO and LY.

L: unsupervised, clustering FS:
unsupervised; C: X-means; V: 80–20
(train-test)

Serum levels of AST, LDH, CRP,
and NE were enough to separate
patients’ severity. External
validation: NA Clinical
deployment: NA

Famiglini et al.
(2022)

COVID-19
severity

1,004 (181) Age, LY, NE, MCHC, Gender,
MCV, MO

L: supervised, classification FS:
SHAP; C: MLP (0.71), DT (0.76),
SVM (0.85), XGB (0.81); V: hold-
out test set

Data consists of literature; CBC data
could be used to predict ICU
admission on COVID-19 patients.
External validation: NA Clinical
deployment: NA

Karthikeyan
et al. (2021)

COVID-19
prognosis

370 (200 recovered)
(170 death)

Age, NE, LY, LDH, hs-CRP L: supervised, classification FS: NN
forward feature selection; C: NN
(0.99), LR (0.99), XGBoost (0.98),
RF (0.98), SVM (0.99), DT (0.97); V:
80–20 (train-test) with 5-fold-cv

Higher levels of Age, hs-CRP,
neutrophils, LDH, and lower levels
of lymphocytes predicted mortality
with 96% accuracy during the
disease span. External validation:NA
Clinical deployment: NA

Fernandes et al.
(2021)

COVID-19
prognosis

1,040 (288 ICU)
(106 MV) (92 M)

Age, LymCRP, CRP, Braden scale L: supervised, classification FS:
SHAP; C: MV: ANN, Extra Trees
(0.94), RF, Catboost, Extreme
Gradient Boosting M: ANN, Extra
Trees (0.97), RF, Catboost, Extreme
Gradient Boosting; V: 70–30 (train-
test) with 10-fold-cv

ML algorithms could predict
untrained outcomes (death) based
on other outcomes (ICU + MV),
with AUROC higher than 0.91.
External validation: NA Clinical
deployment: NA

Murri et al.
(2021)

COVID-19
prognosis

921 (120 M) Age, Hb, PLT, NE, SO, UR, CRP,
SpO2

L: supervised, classification FS: LR
C: LR (0.87) V: 5-fold-cv

Abnormal HGB, PLT, NE, high
levels of URE, CRP, SO, and lower
SpO2 were associated with an
increased risk of death

External validation: LR (0.82)

Clinical deployment: NA

AUC Area under the ROC (receiver-operating characteristic) curve, AST Aspartate Transferase, ALT Alanine Transaminase, Hb Hemoglobin, MCH Mean Corpuscular Hemoglobin, MCHC

Mean Corpuscular Hemoglobin Concentration, HTC Hematocrit, MCV Mean Corpuscular Volume, RDW Red Cell Distribution Width, CBC Cell Blood Count, ALB Albumin, NLR

Neutrophil-to-Lymphocyte ratio, HDLHigh-Density Lipoprotein,WBCWhite Blood Cells,GGTGama-glutamyl Transferase, RDW Red Cell DistributionWidth, PLT Platelets,CRPC-Reactive

Protein, LDH Lactate dehydrogenase, LY Lymphocytes, LY% Lymphocytes Count, EO Eosinophils, EO% Eosinophils Count, NENeutrophils, NE% Neutrophils Count, MOMonocytes, MO%

Monocytes Count, BA Basophils, BA% Basophils Count, ALP Alkaline Phosphatase, MPV Mean Platelet Volume, CA Calcium, ALB Albumin, TB Total Bilirubin, DB Direct Bilirubin, SO

Sodium, TP Total Protein,HCO3 Bicarbonate, URUrea, PO Potassium, CREA Creatinine, GGlucose, hs-CRPHigh-Sensitivity C-Reactive Protein, LymCRP Lymphocytes to C-Reactive Protein

Ratio, SpO2 Oxygen Saturation, NN Neural Network, H Hospitalized, M Mortality, ICU Intensive Care Units, MV Mechanical Ventilation, PPV Positive Predictive Value, NPV Negative

Predictive Value, ED Emergency Department, L Learning, FS Feature selection,CClassification,VValidation, CVCross-Validation,NANot Available, RF Random Forests, LR linear regression,

glmnet Regularized Generalized Linear Model with Lasso (Least Absolute Shrinkage and Selection Operator) Regression, ANNArtificial Neural Networks, XGBoost Extreme Gradient Boosting,

DTX Decision Trees Explainer, SVM Support Vector Machines,MPLMultilayer Perceptron, SOM Self-Organizing maps, LDA Linear Discriminant Analysis, RBF Radial Basis Function, DNN

Dense Neural Networks, RNN Recurrent Neural Networks, CNN Convolutional Neural Networks, KNN K Nearest Neighbors, DT Decision Trees, LSTM Long Short-term Memory, PCA

Principal Component Analysis, MCDM Multi Criteria Decision Making, TOPSIS Technique for Order of Preference by Similarity to Ideal Solution, STACKA Stacked model.
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performance but was ambiguous regarding the feature range in
outcome prediction. While reviewed studies improved the
accuracies supported with more complex ML algorithms, the
studies with higher sample sizes (n>1,000) showed a similar
increase in classification metrics in concordance with the
addition of blood features. In a cohort of 1,537 participants,
Tschoellitsch et al. achieved a moderate AUC of 0.74 and a
negative predictive value of 98%, which agreed with previous
results using random forest (Tschoellitsch et al., 2021). Cabitza
et al. described a novel methodology comprising cardinality and
similarity as metrics of model’s reliability in external validation
settings (Cabitza et al., 2021). Considering data regarding
demographics and complete blood cell count, the SVM with
RBF kernel was applied to eight different external datasets
with AUC ranging from 0.66, 0.75, 0.80, 0.83, 0.87, 0.89,
0.97 and 0.98 and similarity values (according to the degree of
correspondence) of 0.315, 0.341, 0.348, 0.444, 0.323, 0.447, 0.439,
and 0.445, respectively. Babaei et al. compared the performance
of 12 ML algorithms in three different datasets. In the third
dataset, all algorithms’ comparison performance exhibited
DNN with the higher classification metrics (Table 12) (Babaei
et al., 2022). Interestingly, the previous studies of Brinati et al.
(Brinati et al., 2020), and Cabitza et al. (Cabitza et al., 2021), were
also compared with DNN surpassing in the first dataset
(AUC=0.92 vs. AUC=0.84, from Brinati et al. (Brinati et al.,
2020)) and the second dataset (AUC=0.93 vs. AUC=0.84, from
Cabitza et al. (Cabitza et al., 2021)), highlight deep neural
networks as a promising approach for COVID-19 diagnosis.
Plante et al. used a large cohort of 66 hospitals to perform an
internal and external validation of an extreme gradient boosting
tree based on 15 features. The external validation performed in
23 different hospitals led to the validation of the methodology
(AUC=0.91) and allowed a deeper comprehension of the best
cutoff score, independently of the disease prevalence (studied for
1%, 10%, and 20%). Campagner et al. validated six algorithms in
two different sites (Bergamo, n=245 and Desio, n=337) with 42%
and 48% of COVID-19 positive cases (Campagner et al., 2021).
The models achieved an AUC always higher than 93%, with SVM
achieving the best results on both external sets. Violin plots of
specific key CBC parameters showed high similarity between the
training and validation cohorts, namely, in white blood cells,
neutrophils, lymphocytes, red blood cells, platelets count, and
patient’s age, which justifies the stability in the model’s
performance. Chadaga et al. used similar approaches in two
public datasets: the Albert Einstein hospital in Brazil [n=5,644,
RF (AUC) = 0.80] and the Dr. TMA Pai hospital in India
[n=1,169, RF (AUC) = 0.99]. While both studies used smote
to resolve imbalanced data, the second study used explainable
methods to describe how parameters influenced the final
decision. Significant improvements in performance metrics
were observed (especially through the comparison of the same
RF algorithm). Nonetheless, neither study has received external
validation.

Regarding the diagnosis of COVID-19 severity, Benito-León
et al. used a non-supervised clustering model (X-means) to
differentiate intensive-care, hospitalized, and non-hospitalized
positive patients (Benito-León et al., 2021). According to the
David Bouldin index (lowest value refers to best cluster

distribution with higher intercluster distance and lower
intracluster distance), the algorithm defined three clusters
(Manhattan distance = 0.701). Relevant features are in Table 12
for the differentiation among clusters, assessed by the p-values and
effect size. Famiglini et al. used a supervised classification approach
for predicting ICU admission in a cohort of 1004 COVID-19
patients, with only 18.3% admitted to the ICU (imbalanced data)
(Famiglini et al., 2022). Data curation (imputation and bias
evaluation) and model selection resulted in better AUC score
(classification=0.85), lower Brier score (calibration=0.144), and
standardized net benefit (clinical utility=0.69), predicting ICU
admission with significant importance of the NLR levels
(consistent with the literature). Luo et al. also studied this
outcome (mild, n=67 and severe, n=129) with the application of
a hybrid system built on multi-criteria decision-making (MCDM)
through the combination of a technique for order of preference by
similarity to ideal solution (TOPSIS) algorithm and a naïve-Bayes
classifier. TOPSIS runs preprocessing and feature ranking while NB
performs feature selection. Despite this method achieving a higher
AUC (0.93), the sample size was small and did not include external.

Murri et al. developed models for the prognosis of COVID-19
by developing an interpretable logistic regression model
constructed with data from 921 hospitalized patients, of which
120 died (prevalence of 13%) (Murri et al., 2021). Despite the
discriminatory ability assessed through the levels of hemoglobin,
platelets, neutrophils, urea, c-reactive protein, and sodium was
higher (AUC=0.87), the subsequent external validation on a
population with a prevalence of 22.6%, decreased (AUC=0.81).
Fernandes et al. extended the discriminative ability for fatality,
invasive mechanical ventilation, and ICU (multipurpose
algorithms) (Fernandes et al., 2021). Considering fewer
features (age, lymphocyte-to-c-reactive-protein ratio, c-reactive
protein, and results from the Braden scale), the authors
concluded that each of the studied outcomes (ICU, IMV or
fatality) could be predicted using data from the others
(outcomes), always with an AUC>91%. In the study of
Karthikeyan et al., higher predictive performance was
accomplished by applying an XGBoost for feature importance
and a neural network for feature selection on a dataset comprised
of deceased (n=170) and recovered (n=200) patients. Selected
features predicted the number of days until the outcome, and
accuracy results were consistently higher than 90% for models
trained until 12 days before the outcome (with data not only from
the closest days–case 2). Notably, the authors also showed blood
patterns related to mortality prediction, such as high values of hs-
CRP, LDH, and neutrophils and low values of eosinophils,
consistent with previous literature.

Challenges

Despite the rising developments in AI reinforced by big data,
computational power, and neural networks enhanced the quality of
studies relating routine blood analysis with principal diagnosis and
prognosis outcomes, the clinical deployment stage remains a
foremost challenge. The studies and the pathologies we reviewed
confirm the delay in implementing AI-based technology in the
clinical setting. The research highlighted in this review was
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motivated by the available statistical information expressing
significant associations between blood metabolites and numerous
pathologies and by the opportunity provided by the high number of
general health panels typically performed in a medical health center.
As referred, these analytical panels include complete cell blood
count, metabolic and lipidic that are currently consistently
evaluated with gold-standard, highly stabilized techniques, not
prone to systematic errors or bias. A vast amount of non-
appraised clinical information cannot be 100% perceived by a
single clinician acting in a consultation or emergency setting
(especially in longitudinal profiles) that can be processed,
patterned, statistically evaluated, and flagged, if necessary. Since
current clinical decisions are accomplished in a framework of rule-
based systems, i.e., thresholds passively updated according to newer
guidelines, the primary reasons that explain the resistance to ML-
based solutions are the necessity to use external applications (which
require manual data input and consumed extra time), and the non-
interpretability of ML algorithms, especially the ones concerned to
deep learning (‘black-box’). Indeed, a recent study by Henry et al.
evaluated the adoption of a AI-based sepsis targeted real-time early
warning system (TREWS); these authors found a lack of
interpretability of the computation model, but this was not
considered a significant barrier, especially after experiencing the
system through different patients and following interactions with
peers and research team members (Henry et al., 2022). On the other
hand, the theoretical ‘competing diagnosis’ may be perceived as
threat to autonomy by some physicians, making them hesitant in
adopting these solutions because it may alter their decision-making
process with the risk of acting solely on model recommendations,
which may not be completely accurate.

Regarding routine blood analysis, data sources (i.e., equipment,
disease incidence, patient demographics) with different reference
values should also be evaluated and discussed. The study should
distinctly report information regarding the data source type (cohort,
randomized control trial, or other), data source quality
(representativeness, bias, features, and outcome with the exact
time of measurement and associated medication or treatment),
and data source quantity. People’s biochemical fingerprint
variates in basal conditions for several reasons; most have little to
do with their clinical condition. Re-test studies could ultimately
elucidate if the AI model’s predictions connect to features that
correlate with the problem of interest or if they only capture external
variabilities, such as sensor noise, ambient temperatures, user
manipulation, etc. (Stegmann et al., 2020)

Considering the evaluation of the reviewed medical
applications, only a few were performed in external centers,
and most were conducted with retrospective data. Therefore,
working with data matching the same conditions met in
traditional clinical settings is essential, principally user interface
(i.e., healthcare professionals or patients) and technology
integration into the clinical workflow (physical conditions such
as illumination, temperature, humidity, and others). Curiously, a
recent evaluation in a prospective assessment regarding the
performance of a deep-learning system for the detection of
diabetic retinopathy demonstrated a ‘larger-than-expected
proportional of the retinal images as ungradable owing to
blurring or darkening’, caused by poor ambient lighting during
the measurement procedure (Co-operation, 2021). Regarding

COVID-19 prediction models, one study found that the
underlying data distribution, known as domain shifts,
significantly impacts anticipated performance and
dependability, resulting in model failure in clinical applications.
Domain shifts, which can be induced by changes in disease
prevalence, adjustments to RT-PCR testing protocols, or viral
mutations, suggest that machine learning models may lose
reliability and performance over time, underlining the
importance of constant monitoring and updating (Roland et al.,
2022). These examples emphasize how training should
incorporate the original conditions to generate truthful
coefficients for the desired problem-solving.

These challenges should be revised and improved by
consistently implementing the described ML pipeline to develop
federated learning (training in multiple institutions) and the
deployment in ETL (i.e., extract, transform and load), keeping
data ‘healthy’.

Future perspectives

The deployment of a cost-free real-time blood augmentation
diagnostic tool, based on longitudinal data and source-stable (gold-
standard), should address probabilistic metrics of diagnosis and
provide the clinician with a landscape view for each individual. AI
can play a key role in delivering explainable decision support systems
to assure that patterns are correctly identified, and biomarkers are
accurately measured, directly influencing the outcome. Measures of
clinical effectiveness, such as user feedback, clinical reliance, and
interpretability, must improve and be better described, particularly
in the upcoming guidelines for model development and reporting
(TRIPOD-ML). Although this protocol is still under development,
The Transparent Reporting of a multivariate prediction model for
Individual Prognosis or Diagnosis (TRIPOD, 2015) standard (Collins
et al., 2015) should be considered since It provides guidance and
recommendations for reporting a multivariate prediction model for
diagnosis or prognosis. Representativeness, in particular, should
always be addressed because it is an essential concept in data
quality, covering the necessary heterogeneity of the studied
population in a balanced proportion, which is especially important
whenmodels aim to predict categorical or binary events in the context
of medical problems.

In the future, deployingMLmodels will still face data shifts across
time, hindering representativeness and compromising the model’s
performance. A paramount example refers to the performance of the
covid-19 models trained during the initial alpha strain with the
current disease condition, led by several other variants of the virus,
and the influence of the addition of vaccines that altered disease
outcomes for the vast majority of infected individuals. Therefore,
deployment should start with isolated pilot studies to receive feedback
from healthcare experts on user experience, interface, efficiency, and
real-time evaluation performance.

Outlook

This review summarizes the application of artificial
intelligence algorithms in the diagnosis and prognosis of ICD-
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10 disorders using routine blood tests only. Reports herein
analyzed differ in data source type, quality, and quantity and
describe a multitude of ML algorithms for outcome prediction.
Principal findings indicate virtuous performance metrics in
validation studies and a clear gap between standard disease-
associated metabolites and those chosen machine learning
models, resulting in higher performance metrics than
traditional clinical practice scores.

Although there is still a sizable gap between reviewed studies and
their clinical application, AI is changing the practice of medicine,
and digital tools are key for helping physicians evaluate patients
more personalized, rapid, and efficiently. The use of routine blood
parameters as exclusive input features for model development could
allow the translation of high-level diagnosis from primary or
secondary care to point-of-care, making these analyses more
valuable in lowering time to diagnosis and overall healthcare costs.
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