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Introduction: Small cell lung cancer (SCLC) is a highly aggressive form of lung 
cancer, and chemotherapy remains a cornerstone of its management. However, 
the treatment is associated with significant risks, including heightened toxicity 
and early mortality. This study aimed to quantify the 90-day mortality rate post-
chemotherapy in SCLC patients, identify associated features, and develop a 
predictive machine learning model.

Methods: This study utilized data from the Surveillance, Epidemiology, and End 
Results (SEER) database (2000–2018) to identify prognostic features influencing 
early mortality in SCLC patients. Prognostic features were selected through 
univariate logistic regression and Lasso analyses. Predictive modeling was 
performed using advanced machine learning algorithms, including XGBoost, 
Multilayer Perceptron, K-Nearest Neighbor, and Random Forest. Additionally, 
traditional models, such as logistic regression and AJCC staging, were employed 
for comparison. Model performance was evaluated using key metrics, including 
the Area Under the Receiver Operating Characteristic Curve (AUC), calibration 
plots, the Kolmogorov–Smirnov (KS) statistic, and Decision Curve Analysis (DCA).

Results: Analysis of 12,500 eligible patients revealed 10 clinical features 
significantly impacting outcomes. The XGBoost model demonstrated superior 
discriminatory capability, achieving AUC scores of 0.95 in the training set and 
0.78 in the validation set. It outperformed comparative models across all datasets, 
as evidenced by its AUC, KS score, calibration, and DCA results. Additionally, the 
model was integrated into a web-based platform to improve accessibility.

Conclusion: This study introduces a machine learning model alongside a 
web-based support system as critical resources for healthcare professionals, 
facilitating personalized clinical decision-making and enhancing treatment 
strategies for SCLC patients post-chemotherapy.
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Introduction

Lung cancer ranks as the foremost cancer type worldwide and remains the principal cause 
of death (1). Small cell lung cancer (SCLC), representing about 10–15% of all lung cancer 
pathologies, is notorious for its aggressive nature, low degree of differentiation, rapid 
advancement, and bleak outcomes (2). Research reveals a stark prognosis for patients with 
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Extensive-Stage Small Cell Lung Cancer (ES-SCLC), where the 
median Overall Survival (OS) is alarmingly brief at roughly 10 months 
(3, 4), and the likelihood of survival at 5 years plummets to less 
than 5% (5).

The most prevalent genetic mutations in SCLC involve the 
inactivation of TP53 and RB1 genes. Despite this, targeted therapies for 
SCLC remain elusive (6). Immunotherapy has brought significant 
advancements to the treatment landscape, yet platinum-based 
chemotherapy, with or without radiotherapy, remains the standard first-
line treatment. Absence of chemotherapy leads to a drastic decline in 
survival rates, underscoring SCLC’s aggressive nature and its initial 
responsiveness to the therapy (7). Consequently, chemotherapy is 
recommended even for elderly patients with poor Performance Status 
(PS) and significant comorbidities. Nevertheless, the occurrence of early 
mortality post-chemotherapy points to a notable treatment challenge.

Several studies have concentrated on understanding early mortality 
in SCLC, yet they often face limitations due to patient selection 
heterogeneity and variable model performance, especially when 
traditional modeling algorithms are used (8, 9). Recently, however, 
oncology modeling has seen significant advancements with the 
integration of machine learning. These computational techniques have 
demonstrated remarkable accuracy in predicting cancer progression 
and treatment responses (10). While existing prediction models 
primarily rely on machine learning to assess OS in post-chemotherapy 
SCLC patients, often using tree-based and radiomic approaches (11, 
12), there remains a gap in models developed with other types of 
machine learning algorithms, particularly for predicting early mortality.

This study harnesses the Surveillance, Epidemiology, and End 
Results (SEER) database to forge prognostic models employing 
machine learning techniques aimed at predicting early mortality 
among SCLC patients receiving chemotherapy. It conducts an 
exhaustive comparative analysis to assess the efficacy of these models 
against conventional logistic regression and AJCC staging systems. The 
outcomes of this research have culminated in the development of an 
accessible, web-based classifier that provides visual insights, establishing 
itself as an indispensable asset for informed clinical decision-making.

Methods

Raw data source

Managed by the National Cancer Institute (NCI), the SEER 
program serves as an extensive repository of cancer statistics in the 
United States. It compiles and disseminates data on cancer incidence 
and survival from registries that span approximately 34.6% of the 
U.S. population. The study accessed this dataset after fulfilling the 

SEER Research Data Agreement and extracted clinicopathological 
details using the SEER*Stat software version 8.4.0.1.1

Patients and study endpoint

This study included patients diagnosed with SCLC between 2000 
and 2018, as defined by the International Classification of Diseases for 
Oncology, Third Edition (ICD-O-3), with site codes C34.0-C34.9 and 
histological type code 8041. Eligibility for the study required a 
pathologically confirmed diagnosis of SCLC, treatment with 
chemotherapy, and the presence of a single primary tumor without 
other malignancies recorded in the database.

Patients were excluded if they lacked detailed demographic 
information or comprehensive clinicopathological data, including the 
primary tumor’s site, size, laterality, histologic grade, and American 
Joint Committee on Cancer (AJCC) stage. Additionally, individuals 
were omitted if records of chemotherapy or radiotherapy treatment 
were incomplete or if survival status and follow-up data were missing.

The study’s primary endpoint, early mortality, was specifically 
identified as death within 90 days post-diagnosis among those who 
received chemotherapy, with those surviving beyond 90 days serving 
as the comparison group.

Baseline characteristics presentation

Initially, the clinical and demographic characteristics of the study 
population were methodically outlined. Continuous variables were 
summarized by their mean and standard deviation, while categorical 
variables were described via frequencies and percentages. The detailed 
analysis included 17 features aimed at identifying independent 
prognostic features in patients with SCLC. Demographic aspects such 
as age, sex, race, and marital status, as well as clinicopathological 
features of the tumor, including site, size, laterality, grade, and AJCC 
stage, were carefully evaluated. Furthermore, relevant treatment 
information, including chemotherapy and radiotherapy, was explored.

Feature engineering and data balancing

In the process of feature engineering and addressing data 
imbalance, the study initially applied Spearman correlation analysis to 
explore the relationships among data features. This method assesses 
monotonic relationships, shedding light on potential associations 
within the dataset and facilitating the identification of patterns 
through the creation of a correlation heat map.

Subsequently, to enhance machine learning model 
performance, the study implemented categorical label encoding, 
transforming categorical variables into binary matrices that 
represent category memberships through one-hot encoding. The 
challenge of class imbalance in outcome status was tackled by 
employing the Synthetic Minority Over-sampling Technique 
(SMOTE). SMOTE addresses this issue by generating synthetic 

1 Accessible at https://seer.cancer.gov/data-software/.
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samples from the minority class. It selects a random point from the 
minority class, identifies its k-nearest neighbors, and creates 
synthetic instances between the chosen point and its neighbors. 
This method achieves a more balanced class distribution and 
improves the model’s ability to recognize patterns associated with 
the minority class, thereby enhancing prediction accuracy for 
these cases.

Model construction and validation 
approach

Eligible patients were methodically divided into training and 
validation datasets in a 7:3 ratio through random allocation, providing 
a robust foundation for analysis. The training dataset played a crucial 
role in the development of the prognostic model and risk assessment 
classification, significantly refining the analytical approach. The 
validation dataset, maintained separately from its training counterpart, 
was essential in evaluating the model’s performance and ensuring the 
reliability of the findings. Within the prognostic framework, the 
classification threshold was optimized using 10-fold cross-validation 
on the training set, with the goal of maximizing the Area Under the 
Receiver Operating Characteristic Curve (AUC) to enhance the 
model’s predictive precision and generalizability.

To bolster the reliability and robustness of the model, the process 
began by screening potential prognostic features using univariate 
logistic regression. Following this preliminary analysis, the Lasso 
model was employed to pinpoint essential prognostic features. This 
two-step approach combines the strengths of the logistic proportional 
hazards model with the Lasso technique, effectively isolating 
significant features while minimizing the influence of less relevant 
ones. Subsequently, traditional predictive models were developed 
using logistic regression, incorporating the key determinants 
unearthed by the Lasso model. In parallel, the AJCC staging model 
was constructed using its distinct criteria. To identify the most 
accurate predictive tool, machine learning models, including 
XGBoost, Multilayer Perceptron (MLP), K-Nearest Neighbor (KNN), 
and Random Forest (RF), were trained and analyzed using the 
tidymodels package in R. Bayesian optimization was employed to fine-
tune the hyperparameters of these models, seamlessly integrating this 
technique into the machine learning workflow. The primary objective 
was to determine the model that most effectively predicts OS rates, 
thereby establishing an optimal prognostic framework.

XGBoost, a gradient boosting algorithm, was configured with 300 
trees and a stopping criterion of 25 iterations without improvement, 
with a 20% validation split for model evaluation. The model’s 
hyperparameters, including mtry, min_n, tree depth, learning rate, 
loss reduction, and sample size, were optimized using Bayesian 
optimization. The workflow integrated a preprocessing recipe and the 
tuned model for streamlined analysis. Hyperparameter tuning was 
performed through 50 iterations with 15 initial configurations, guided 
by classification performance metrics, with optimization controlled 
for no improvement over 15 iterations.

The MLP, implemented via the nnet engine, was optimized for 
hidden units, regularization penalty, and epochs. A maximum weight 
parameter of 10,000 ensured scalability for larger networks. The 
analysis combined data preprocessing with model training in a 
streamlined workflow.

The KNN, configured with the kknn engine, optimized 
hyperparameters such as neighbors (neighbors, 5–35) and weighting 
functions. The distance metric was fixed at a power of 2. The workflow 
seamlessly integrated data preprocessing and the tuned model 
for classification.

The RF model, implemented using the randomForest engine, 
was optimized by tuning key parameters, including the mtry from 
2 to 15, the total number of trees (ranging from 100 to 3,000), and 
the min_n from 7 to 55. Feature importance was assessed to 
evaluate the contributions of each variable. A streamlined 
workflow was established to efficiently integrate preprocessing 
and model training, ensuring a smooth and systematic 
analysis process.

Model performance evaluation

The performance of the model underwent a detailed evaluation 
using a set of well-established metrics. This comprehensive analysis 
included Receiver Operating Characteristic (ROC) curve analysis, 
calibration curve analysis, Decision Curve Analysis (DCA), and 
Kolmogorov–Smirnov (KS) statistic. The ROC curve, by quantifying 
the AUC, provided a crucial measure of the model’s ability to 
distinguish between outcomes, serving as a cornerstone of prognostic 
accuracy. DCA offered insights into the model’s clinical utility by 
evaluating the net benefits at different probability thresholds. 
Calibration analysis examined how well the model’s predicted 
probabilities matched actual outcomes, aiming for a model that closely 
aligns with the 45° diagonal in the calibration plot. The KS statistic is 
a valuable measure for comparing the cumulative distribution 
functions of two or more samples. In the context of machine learning 
and model evaluation, a higher KS statistic indicates a greater 
separation between the distributions of the positive and negative 
classes predicted by the model.

Model interpretation

The study utilized SHAP (SHapley Additive exPlanations) to 
interpret the machine learning model, clarifying the contribution of 
each variable and fostering greater model transparency. SHAP 
identifies influential features, enhancing the understanding of model 
predictions—an essential aspect for informed decision-making and 
model enhancement. The beeswarm summary plot, a feature of SHAP, 
graphically displays the impact of variables, providing a comprehensive 
view of their influence on the model’s results. This method enables 
practitioners to pinpoint the main features that shape model 
predictions, ensuring reliable and credible outcomes in complex 
machine learning endeavors.

To enhance the understanding of how features influence model 
performance, both breakdown and partial dependence analyses were 
employed. Breakdown analysis provides an interpretive lens, 
dissecting a model’s prediction for a specific instance to reveal the 
contributions of each input feature. This technique is particularly 
insightful for understanding the role of individual features in shaping 
the model’s predictions on a case-by-case basis. It proves especially 
useful for complex models, granting detailed insight into the decision-
making process at an individual level.
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In contrast, partial dependence analysis assesses the impact of key 
features on the model’s predicted outcome by neutralizing the effects 
of all other features. This method is particularly valuable for 
understanding the intricacies of complex models, such as ensemble 
methods or neural networks, where the relationship between inputs 
and outputs can be  intricate and not immediately clear. Partial 
Dependence Plots (PDPs) are utilized in this analysis to isolate and 
examine the influence of specific features. These plots provide insights 
into how the model responds across various values for those features, 
clarifying how certain features independently drive predictions, 
regardless of their interactions with other variables in the dataset.

Statistical analysis

Statistical analyses in this study were conducted using R software 
(version 4.2.12), employing two-tailed tests with a significance 
threshold of p < 0.05. The model was developed by integrating a suite 
of R packages such as “tidymodels,” “glmnet,” “dplyr,” “tidyr,” and 
“ggplot2.” The web-based dynamic model was constructed using the 
“shinydashboard” R package.

Results

Patient characteristics

From an initial cohort of 23,102 patients diagnosed with SCLC who 
met the eligibility criteria, 12,500 individuals were selected for this study 
based on predefined inclusion parameters. Among the patients included, 
19.03% experienced early mortality. The cohort predominantly 
comprised older individuals, with an average age exceeding 66 years. 
Within this group, the median observed mortality rate stood at 16%. 
Demographically, the majority were Caucasian (86.82%), with a slight 
majority being female (51.13%) and over half being married (52.31%). 
The primary tumors were most commonly located in the right side of 
the lung (57.48%) and the upper lung lobes (59.27%), with lower lobe 
occurrences at 23.71%. The cohort’s average tumor size was 52 
millimeters, and advanced tumor stages accounted for the vast majority 
(89.73%) of cases. Metastases were observed in the bone (22.43%), brain 
(15.5%), liver (26.96%), and lung (11.98%). Radiotherapy was 
administered to 60.78% of the cohort. Table  1 and the ridge plot 
(Supplementary Figure S1) provide a comprehensive summary of the 
baseline characteristics. Spearman correlation analysis revealed minimal 
multicollinearity among the dataset’s features (Figure 1A).

Predictive feature identification and model 
development

The study undertook a thorough examination, analyzing a wide 
array of features including demographic details, tumor specifics, and 
treatment approaches, treating them as covariates in both univariate 

2 https://www.r-project.org/

TABLE 1 Baseline characteristics of SCLC patients post-chemotherapy.

Features Total (n = 12,500)

Age(years), Mean ± SD 66.27 ± 9.44

Tumor size (mm), Mean ± SD 52.62 ± 38.11

Sex, n (%)

  Male 6,109 (48.87)

  Female 6,391 (51.13)

Race, n (%)

  White 10,853 (86.82)

  Black 1,131 (9.05)

  Others 516 (4.13)

Marital status, n (%)

  Married 6,539 (52.31)

  Unmarried 5,513 (44.10)

  Unknown 448 (3.58)

Primary tumor site, n (%)

  Main bronchus 1,401 (11.21)

  Upper lobe 7,409 (59.27)

  Middle lobe 561 (4.49)

  Lower lobe 2,964 (23.71)

  Overlapped lesions 165 (1.32)

Tumor grade, n (%)

  Grade I 16 (0.13)

  Grade II 27 (0.22)

  Grade III 1,213 (9.70)

  Grade IV 1949 (15.59)

  Unknown 9,295 (74.36)

Tumor laterality, n (%)

  Left 5,304 (42.43)

  Right 7,185 (57.48)

  Bilateral 11 (0.09)

T stage, n (%)

  T1 2,043 (16.34)

  T2 3,341 (26.73)

  T3 2,836 (22.69)

  T4 4,280 (34.24)

N stage, n (%)

  N0 2,017 (16.14)

  N1 1,011 (8.09)

  N2 6,885 (55.08)

  N3 2,587 (20.70)

M stage, n (%)

  M0 4,897 (39.18)

  M1 7,603 (60.82)

(Continued)
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logistic regression and Lasso analyses. As depicted in Table 2, the initial 
univariate logistic regression analysis excluded marital status, primary 
tumor location, and tumor grade as standalone predictors of early 
mortality. The subsequent Lasso analysis refined feature selection, 
pinpointing 10 critical factors—age, sex, tumor size, tumor laterality, 
AJCC stage, T stage, M stage, radiotherapy, and metastases to the brain 
and liver—as key influencers of early mortality in SCLC patient. This 
selection process via the Lasso algorithm is illustrated in 
Figure 1B. Building on this foundation, the study developed a traditional 
prognostic model using logistic regression. To further enhance the 
accuracy of survival predictions, this study also crafted additional 
prognostic models based on the machine learning algorithms, aiming 
for a higher precision in forecasting patient outcomes.

Discriminatory ability and clinical utility of 
the predictive models

Figure 2A presents the performance metrics for the training and 
validation datasets. The logistic regression model achieved an AUC of 

0.723 (95% CI 0.715–0.731) for early mortality prediction in the 
training set, which slightly declined to 0.699 (95% CI 0.677–0.72) in 
the validation set. The AJCC staging approach showed limited 
discriminatory power, with AUCs of 0.596 (95% CI 0.588–0.603) in 
the training set and 0.603 (95% CI 0.585–0.622) in the validation set.

In contrast, the XGBoost model demonstrated superior 
performance, with an AUC of 0.946 (95% CI 0.935–0.971) in the 
training set and 0.780 (95% CI 0.772–0.787) in the validation set. The 
MLP model attained AUCs of 0.826 (95% CI 0.812–0.850) in the 
training set and 0.714 (95% CI 0.693–0.735) in the validation set. 
Similarly, the KNN model achieved AUCs of 0.867 (95% CI 0.832–
0.884) in the training set and 0.637 (95% CI 0.613–0.660) in the 
validation set, while the RF model recorded AUCs of 0.853 (95% CI 
0.841–0.877) in the training set and 0.710 (95% CI 0.684–0.728) in the 
validation set. Figure  2B highlights the superior prognostic 
performance of the XGBoost model, as demonstrated by the 
DCA. This analysis shows that XGBoost outperforms both other 
machine learning algorithms and traditional approaches, such as 
logistic regression and AJCC staging, in both the training and 
validation datasets.

Figure 3 provides additional insights into the hyperparameter 
tuning process and the resulting AUCs across the training phase for 
the machine learning models.

Assessment on calibration and KS

Figure  4 presents the calibration plots for the training and 
validation datasets across all constructed models. Notably, the 
XGBoost model stands out for its superior precision in predicting 
early mortality, outperforming both machine learning and traditional 
models in terms of accuracy. This enhanced predictive capability is 
further supported by the KS statistic in Supplementary Table S1, 
which show values of 0.802 for the training cohort and 0.666 for the 
validation cohort. Together, these findings underscore the significant 
clinical utility of the XGBoost model in accurately prognosticating 
early mortality for SCLC patients following chemotherapy.

Model interpretation

Given the effectiveness of the XGBoost model in forecasting early 
mortality within the datasets, this study utilized SHAP plots to 
delineate the feature hierarchy and comprehend their respective 
impacts on prognosis within the model framework. Figure 5 reveals a 
distinct pattern, indicating that features with elevated SHAP values are 
linked to an increased risk of adverse prognosis in SCLC patients post-
chemotherapy. The plot’s color spectrum offers further insights, with 
red signaling smaller eigenvalues, purple for eigenvalues near the 
mean, and blue for larger eigenvalues. Notably, this analysis highlights 
the profound impact of radiotherapy and age on mortality risk, with 
tumor size and metastases to the brain and liver also being 
significant features.

To delve deeper, this study performed a breakdown analysis on 
the first individual in the cohort to assess how various features 
influence the predicted outcome. As illustrated in Figure 6, the model’s 
initial average predictive value was 0.056. Several features were found 
to negatively impact the model’s prediction, including radiotherapy, 

TABLE 1 (Continued)

Features Total (n = 12,500)

AJCC stage

  I 680 (5.44)

  II 603 (4.82)

  III 3,614 (28.91)

  IV 7,603 (60.82)

Bone metastasis, n (%)

  Yes 2,804 (22.43)

  No 9,561 (76.49)

Unknown 135 (1.08)

Brain metastasis, n (%)

  Yes 1,937 (15.50)

  No 10,430 (83.44)

  Unknown 133 (1.06)

Liver metastasis, n (%)

  Yes 3,370 (26.96)

  No 9,007 (72.06)

  Unknown 123 (0.98)

Lung metastasis, n (%)

  Yes 1,498 (11.98)

  No 10,855 (86.84)

  Unknown 147 (1.18)

Radiotherapy, n (%)

  Yes 7,598 (60.78)

  None/unknown 4,902 (39.22)

Status, n (%)

  Alive 10,501 (84.01)

  Dead 1,999 (15.99)

SD, Standard Deviation.
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FIGURE 1

Procedure of feature screening. Correlation (A) and Lasso (B) analyses.

the absence of metastases to the brain and liver, a tumor stage of T2, 
smaller tumor size, and an AJCC stage of III. On the other hand, 
features such as being male and having a tumor in the right lung 
emerged as positive influencers. This analysis ultimately resulted in a 
final predicted odds of 0.165 for early mortality. The goal of this 
analysis is to highlight and clarify the key features that contribute to 
prognostic outcomes in the studied population.

Figure 7 presents the partial dependence profiles, which provide 
insights into how both categorical (Figure  7A) and continuous 
(Figure 7B) features influence the model’s performance. By isolating 
the effects of individual features, the analysis reveals that radiotherapy 
and brain metastasis have a significant impact on the model’s 
predictive capabilities. In contrast, factors such as age over 60 and 
tumor size greater than 250 millimeters are key determinants in 
shaping the model’s performance.

Development of a predictive system on a 
web server

Building on the robust XGBoost model, this study has developed 
a web-based application that simplifies the predictive assessment of 
early mortality using patient data as input. This platform is tailored to 
support researchers without a background in machine learning by 
providing an intuitive, automated system for setting up, training, and 
evaluating a XGBoost model. The application’s user-friendly interface 
is detailed in Supplementary Figure S2 and can be accessed through 
the following link: https://the-lungcare-innovators-research-team.

shinyapps.io/early-mortality-predictor/. It stands as a practical tool 
for researchers conducting prognostic studies on post-chemotherapy 
survival in SCLC patients.

Discussion

This research analyzed 12,500 patients who underwent 
chemotherapy for SCLC. The XGBoost model outperformed other 
machine learning models, including MLP, KNN, and RF, as well as 
traditional methods like logistic regression and AJCC staging in 
predicting early mortality. A beeswarm summary plot revealed that 
radiotherapy was the most significant risk factor, followed by age, 
tumor size, and the presence of brain and liver metastases, highlighting 
key prognostic indicators for this patient group. The refined XGBoost 
model was used to develop a web-based prognostic tool, aimed at 
providing clinicians with personalized insights and potentially 
transforming patient care. This research represents an innovative 
approach in applying a machine learning-driven prognostic model 
specifically for SCLC patients post-chemotherapy, addressing a critical 
gap in the existing literature.

While recent studies have highlighted the potential of 
immunotherapy in treating SCLC, there are inconsistencies in their 
findings. The CASPIAN phase III study found that adding 
durvalumab, a PDL1 inhibitor, to chemotherapy enhances outcomes 
in ES-SCLC patients (13). The IMpower133 study echoed these 
benefits with the addition of atezolizumab (14). Conversely, the 
CheckMate 331 phase III study observed no survival benefit with 
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nivolumab as a second-line treatment post-chemotherapy (15). 
Despite new options, chemotherapy remains the unwavering primary 
treatment for SCLC. Yet, significant early mortality persists post-
chemotherapy due to factors like advanced disease stage, metastatic 
potential, and poor overall health. Therefore, developing a predictive 
model for this patient group could revolutionize care by enabling 
personalized treatment plans, improving outcome predictions, and 
enhancing overall patient survival.

The AJCC and Veterans Administration Lung Study Group 
(VALSG) staging systems are commonly used for predicting SCLC 
prognosis but fall short in accurately reflecting the disease’s metastatic 
potential and treatment response variability. These systems focus 
mainly on the anatomical extent of tumors, neglecting key biological 
and molecular factors that could impact prognosis and treatment 
effectiveness (16, 17). This oversight highlights the need for more 
nuanced predictive tools that incorporate a broader range of clinical 
data for better precision in SCLC prognosis. Machine learning offers 
a promising approach by analyzing diverse data types, such as clinical, 
genetic, and imaging information, to identify intricate patterns. This 
enables more precise prognosis predictions, tailored treatment plans, 
and the discovery of new therapeutic targets, thereby improving 
patient care and advancing cancer research (18). Nonetheless, there 
remains a notable gap in developing models specifically designed for 
predicting survival outcomes in SCLC patients following 

TABLE 2 Univariate logistic regression analysis.

Features S.E Z-score p-value OR (95%CI)

Age 0.00 11.11 <0.001 1.04 (1.03 ~ 1.04)

Tumor size 0.00 4.97 <0.001 1.01 (1.01 ~ 1.01)

Sex

  Male 1.00 (Reference)

  Female 0.06 −5.56 <0.001 0.72 (0.64 ~ 0.81)

Race

  White 1.00 (Reference)

  Black 0.11 −2.91 0.004 0.72 (0.58 ~ 0.90)

  Others 0.16 −1.68 0.092 0.77 (0.56 ~ 1.04)

Marital status

  Married 1.00 (Reference)

  Unmarried 0.06 1.13 0.259 1.07 (0.95 ~ 1.20)

  Unknown 0.15 1.90 0.058 1.33 (0.99 ~ 1.77)

Tumor laterality

  Left 1.00 (Reference)

  Right 0.06 3.10 0.002 1.20 (1.07 ~ 1.35)

  Bilateral 1.08 −0.02 0.982 0.98 (0.12 ~ 8.12)

Primary site

  Main 

bronchus

1.00 (Reference)

  Upper lobe 0.09 −1.12 0.264 0.90 (0.75 ~ 1.08)

  Middle lobe 0.16 −0.47 0.635 0.93 (0.67 ~ 1.27)

  Lower lobe 0.10 −0.69 0.489 0.93 (0.76 ~ 1.14)

  Overlapped 

lesions

0.25 0.42 0.671 1.11 (0.68 ~ 1.82)

Tumor grade

  Grade I 1.00 (Reference)

  Grade II 1.47 −0.36 0.718 0.59 (0.03 ~ 10.48)

  Grade III 1.05 0.44 0.661 1.59 (0.20 ~ 12.51)

  Grade IV 1.05 0.55 0.581 1.79 (0.23 ~ 14.02)

  Unknown 1.05 0.65 0.515 1.98 (0.25 ~ 15.47)

AJCC stage

  I 1.00 (Reference)

  II 0.27 1.18 0.236 1.37 (0.81 ~ 2.31)

  III 0.21 2.51 0.012 1.68 (1.12 ~ 2.51)

  IV 0.20 7.34 <0.001 4.27 (2.90 ~ 6.28)

T stage

  T1 1.00 (Reference)

  T2 0.10 3.55 <0.001 1.44 (1.18 ~ 1.77)

  T3 0.10 4.83 <0.001 1.66 (1.35 ~ 2.03)

  T4 0.10 6.42 <0.001 1.87 (1.55 ~ 2.27)

N stage

  N0 1.00 (Reference)

  N1 0.14 −0.70 0.484 0.91 (0.68 ~ 1.20)

(Continued)

TABLE 2 (Continued)

  N2 0.09 4.04 <0.001 1.43 (1.20 ~ 1.70)

  N3 0.10 3.58 <0.001 1.44 (1.18 ~ 1.75)

M stage

  M0 1.00 (Reference)

  M1 0.07 14.62 <0.001 2.77 (2.42 ~ 3.17)

Radiotherapy

  Yes 1.00 (Reference)

  None/

unknown

0.06 20.85 <0.001 3.59 (3.18 ~ 4.04)

Bone metastasis

  Yes 1.00 (Reference)

  No 0.06 −8.45 <0.001 0.58 (0.51 ~ 0.66)

  Unknown 0.26 −0.22 0.826 0.94 (0.56 ~ 1.58)

Brain metastasis

  Yes 1.00 (Reference)

  No 0.07 −7.47 <0.001 0.58 (0.50 ~ 0.67)

  Unknown 0.27 0.20 0.839 1.06 (0.62 ~ 1.80)

Liver metastasis

  Yes 1.00 (Reference)

  No 0.06 −15.30 <0.001 0.40 (0.35 ~ 0.44)

  Unknown 0.28 −1.26 0.207 0.70 (0.40 ~ 1.22)

Lung metastasis

  Yes 1.00 (Reference)

  No 0.08 −6.46 <0.001 0.60 (0.51 ~ 0.70)

  Unknown 0.25 0.05 0.960 1.01 (0.62 ~ 1.65)

S.E., Standard Error; OR, Odds Ratio.
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FIGURE 2

Model performance evaluation: AUCs (A) and DCAs (B) for training and validation datasets.

FIGURE 3

Refined hyperparameter optimization (HPO) process for four distinct machine learning models: XGboost (A), MLP (B), KNN (C), and RF (D).
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chemotherapy, regardless of the sophistication of the methods used, 
be it advanced machine learning techniques or traditional algorithms.

Numerous studies have explored the risk of early mortality in 
individuals with SCLC. For example, Li et al. (19) discovered that factors 

like age, sex, clinical stage, the presence of metastases (specifically in the 
liver and lung), and the absence of treatments (including surgery, 
radiotherapy, and chemotherapy) significantly impact patients’ 
prognosis, with their model achieving an AUC of 0.86. Similarly, Chen 

FIGURE 4

Comparison of prognostic models for calibration curves across both training (A) and validation (B) datasets.

https://doi.org/10.3389/fmed.2025.1483097
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liang and Luo 10.3389/fmed.2025.1483097

Frontiers in Medicine 10 frontiersin.org

et al. (9) focused on six clinical parameters that predict early mortality, 
such as age, advanced AJCC stage, brain metastasis, and the lack of 
surgical, chemotherapeutic, and radiotherapeutic interventions, 
achieving an AUC of 0.823. While these models are robust, they tend to 
apply to the broader SCLC population rather than providing personalized 
insights for individuals based on specific treatments received.

In the realm of predictive modeling for SCLC post-chemotherapy, 
Hai et al. (8) identified race, advanced age, higher T stage, multiple 
organ metastases, and the absence of radiotherapy as key prognostic 
features for early mortality, though their model showed limited 
discriminatory power with an AUC of 0.653. Jones et al. (7). found 
PS and tumor stage to be linked with early mortality, while Lassen 
et al. (20) pinpointed age, PS, and lactate dehydrogenase levels as 
predictors for early non-toxic death. Both studies, however, did not 
culminate in a predictive model, likely due to a paucity of data 
features. In contrast, this model is specifically designed for SCLC 
patients post-chemotherapy, providing enhanced precision in 
predicting early mortality. Utilizing a wide geographical dataset and 
robust machine learning techniques, this model promises wider 
applicability for future prognostic assessments.

The prognostic evaluation of SCLC patients revealed that the 
Lasso algorithm identified 10 independent predictive features, 
aligning with findings from previous studies (9, 21). Additionally, 
there is evidence that surgery could affect SCLC outcomes (21, 22). 
However, due to the retrospective design of the study and the 

treatment differences between Limited Stage (LS) and ES-SCLC, this 
study excluded surgical data to avoid potential selection bias. 
Consequently, this may have led to an underestimation of surgery’s 
impact in LS-SCLC patients. Therefore, more in-depth studies with 
prospective design are required to validate and further expand the 
findings. Furthermore, biomarkers like serum YKL-40 and urea have 
been associated with early mortality in SCLC (23, 24), but their 
absence in the database limits the understanding of their roles in this 
context. This omission could affect the model’s predictive accuracy.

To ensure the robustness of the model, 10-fold cross-validation 
was utilized to address overfitting and test its generalizability across 
varied patient groups. Calibration curves confirmed the reliability of 
the XGBoost model, closely aligning predicted and observed survival 
probabilities. The model’s validity is further supported by a strong KS 
score, outperforming other models. Clinical utility was demonstrated 
by employing DCA, which revealed that the model surpassed 
conventional ones in predicting net benefits for both the training and 
validation datasets. These results underscore the model’s potential for 
clinical adoption, suggesting it could significantly refine decision-
making and enhance patient care.

The study’s development of an XGBoost model for a specific 
patient subset offers promising predictive capabilities; yet, 
potential limitations must be considered. The retrospective design 
may introduce selection bias, and while the SEER database is 
extensive, it lacks detailed information on smoking status, specific 

FIGURE 5

Summary plots of SHAP values in the XGBoost model.
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treatments, and critical patient characteristics such as genetic 
profiles, lab results, and comorbidities. Furthermore, despite the 
use of Lasso regularization and 10-fold cross-validation to 
minimize overfitting, there is a necessity for external validation to 
confirm the model’s effectiveness across different datasets and 
enhance its generalizability.

Conclusion

This study marks a groundbreaking application of XGBoost 
models for prognostic evaluation in post-chemotherapy SCLC patients. 
The innovative predictive tool empowers clinicians to customize 
treatment plans based on individual patient profiles. Additionally, it 

FIGURE 6

Breakdown analysis utilizing features derived from the first member of the cohort in the XGBoost model.

FIGURE 7

Partial dependence profiles showing the influence of categorical (A) and continuous (B) features on model performance.
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aids in the strategic planning of follow-up appointments, thereby 
refining and personalizing the approach to patient care.
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