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Background: Bone cement leakage (BCL) is one of the most prevalent 
complications of percutaneous kyphoplasty (PKP) for treating osteoporotic 
vertebral compression fracture (OVCF), which may result in severe secondary 
complications and poor outcomes. Previous studies employed several traditional 
machine learning (ML) models to predict BCL preoperatively, but effective and 
intelligent methods to bridge the distance between current models and real-life 
clinical applications remain lacking.

Methods: We will develop a deep learning (DL)-based prediction model that 
directly analyzes preoperative computed tomography (CT) and magnetic 
resonance imaging (MRI) of patients with OVCF to accurately predict BCL 
occurrence and classification during PKP. This retrospective study includes a 
retrospective internal dataset for DL model training and validation, a prospective 
internal dataset, and a cross-center external dataset for model testing. We will 
evaluate not only model’s predictive performance, but also its reliability by 
calculating its consistency with reference standards and comparing it with that 
of clinician prediction.

Discussion: The model holds an imperative clinical significance. Clinicians can 
formulate more targeted treatment strategies to minimize the incidence of BCL, 
thereby improving clinical outcomes by preoperatively identifying patients at 
high risk for each BCL subtype. In particular, the model holds great potential to 
be extended and applied in remote areas where medical resources are relatively 
scarce so that more patients can benefit from quality perioperative evaluation 
and management strategies. Moreover, the model will efficiently promote 
information sharing and decision-making between clinicians and patients, 
thereby increasing the overall quality of healthcare services.
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1 Introduction

The incidence of osteoporosis is escalating as the global population 
ages, causing a concomitant increase in osteoporotic vertebral 
compression fracture (OVCF). Annually, approximately 1.4 million 
new onset OVCFs are reported globally (1–3). OVCF causes low back 
pain, vertebral deformity, and severe functional impairment, which 
profoundly diminish the quality of life in the elderly population and 
impose substantial burdens on families and healthcare systems (4–6). 
Fortunately, percutaneous kyphoplasty (PKP) has become a widely 
adopted and effective clinical intervention for OVCF. PKP, as a 
minimally invasive approach, exhibits several merits, including 
substantial pain alleviation, partial vertebral height restoration, and 
early mobilization facilitation (7, 8).

However, bone cement leakage (BCL) has drawn significant 
attention as one of the most prevalent PKP complications, with 
incidence rates ranging of 5–80% (9, 10). Although a large proportion 
of BCLs are asymptomatic, poor outcomes still occur in specific 
individuals. Meanwhile, the type of complications significantly varies 
among different leakage locations. In particular, cement leakage into 
the spinal canal causes spinal cord and/or nerve root compression, 
potentially causing radicular pain and neurological dysfunction, 
which may require additional nerve decompression surgery (11). 
Furthermore, cement leakage into the paravertebral vein may cause 
serious conditions such as pulmonary embolism, cardiac perforation, 
cerebral embolism, and even fatality (12, 13). Additionally, cement 
leakage into the intervertebral disk exacerbates disk degeneration and 
increases the risk of adjacent vertebrae fractures (11, 14). 
Consequently, minimizing the incidence of BCL has become a crucial 
concern for surgeons. However, effective and intelligent methods to 
precisely predict BCL preoperatively remain lacking.

In recent years, the advent of deep learning (DL) has greatly 
facilitated the clinical applications of predictive models and the 
development of precision medicine. DL directly uses medical images 
as input, thereby automatically extracting effective features and 
leveraging computational power to integrate multimodal medical 
data, to construct more complex and high-performance predictive 
models, compared with traditional machine learning (ML) (15). 
However, previous studies predominantly used traditional ML 
techniques, mostly the traditional logistic regression models, to 
predict BCL (16–18). Such models somehow help clinicians in 
predicting BCL, but several limitations remain. First, manual imaging 
feature extractions are predominantly applied, which is not only time-
consuming but also introduces subjectivity and selectivity, thereby 
potentially omitting impactful features. Secondly, no further BCL 
classification was conducted by current predictive models, limiting 
their clinical application. To the best of our knowledge, no study has 
developed a DL model to directly predict BCL during PKP based on 
preoperative medical images, which is quite difficult but valuable.

Therefore, this study aims to utilize multimodal analysis of 
preoperative computed tomography (CT) and magnetic resonance 
imaging (MRI) of patients with OVCF to develop a DL-based 
prediction model for accurately predicting BCL occurrence and 
classification during PKP. Moreover, the study will test the 
generalization ability of the model in prospective and multicenter 
datasets. The model will help spine surgeons accurately and 
conveniently determine patients at high risk for BCL and provide 
further personalized treatment options.

2 Methods

2.1 Study design

This study will develop a DL-based prediction system for 
preoperatively predicting the four subtypes of BCL during PKP based 
on a retrospective internal dataset, and test its performance via 
prospective internal dataset and cross-center external dataset 
(Figure 1B). Approval for the protocol has been obtained from the 
ethics committees of our institution. Informed consent to this study is 
waived as its retrospective collection of preoperative data. This study 
protocol was conducted following the Transparent Reporting of a 
multivariable prediction model for Individual Prognosis or Diagnosis 
(TRIPOD) statement for developing the prediction model 
(Supplementary Table 1) (19). Our reporting will be updated if the 
TRIPOD-AI statement is published during our research (20).

2.2 Population

This retrospective study includes a retrospective internal dataset 
for DL model training and validation, a prospective internal dataset, 
and a cross-center external dataset for model testing. A retrospective 
internal dataset will be collected from consecutive inpatients of Beijing 
Chaoyang Hospital from January 2016 to July 2023. A prospective 
internal test dataset will be  drawn from a prospective cohort 
established from August 2023 to March 2024 in Beijing Chaoyang 
Hospital for evaluating postoperative complications, consisting of 
consecutive patients undergoing PKP for treating OVCF. This 
prospective cohort contained intact perioperative data of participants 
and was registered on the Chinese Clinical Trial Registry 
(ChiCTR2300073507). The external dataset will be retrospectively 
collected from consecutive inpatients of Beijing Shunyi Hospital from 
January 2022 to January 2024.

2.3 Inclusion and exclusion criteria

Inclusion and exclusion criteria are identical for both internal and 
external datasets. Inclusion criteria include: (1) age > 55 years; (2) 
diagnosis of acute or subacute OVCFs; (3) complete preoperative 
image data within 2 weeks preoperatively, including spine X-ray, CT, 
and MRI; and (4) undergoing PKP for treating OVCF. The diagnosis 
of acute or subacute OVCF was based on a comprehensive evaluation 
of history, physical examination, and radiographic evidence, which is 
elaborated as follows: (1) meeting the World Health Organization 
diagnostic criteria for osteoporosis (21), and (2) severe back pain 
occurred within 3 weeks, aligning with (3) tenderness or percussion 
pain at corresponding vertebral level, and (4) a decrease in vertebral 
body height or cortical disruption showed on spine X-ray, CT, or MRI, 
and (5) bone marrow edema shown on fat suppression T2-weighted 
images of MRI.

Exclusion criteria include: (1) reoperation on the index vertebral 
level previously undergone PVP or PKP; (2) spinal tumor, infection, 
or severe deformity; (3) incomplete preoperative demographic or 
clinical baseline data; (4) patients with neither immediate 
postoperative spine CT nor X-ray (within 1 week postoperatively); and 
(5) low image quality of spine CT or MRI.
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2.4 Surgical technique

Percutaneous kyphoplasty was performed in the prone position 
under local anesthesia, and all procedures were conducted using a 
unilateral or bilateral transpedicular approach. A needle and an 
inflatable balloon were inserted through the working channel into the 
fractured vertebral body under visualization with lateral and 
anteroposterior fluoroscopy. A kyphoplasty balloon was then used to 
inflate and create a cavity. Subsequently, the balloon was deflated and 
removed, followed by filling with viscous polymethylmethacrylate. 
The cannula was removed after the bone cement was fixed. Patients 
were allowed to move around gradually under the protection of 
thoracolumbosacral orthosis 2–3 days postoperatively.

2.5 Date collection

First, preoperative demographic and clinical baseline data of 
eligible participants, including age, sex, body mass index (BMI), bone 
mineral density (BMD), time from injury to surgery, fracture location, 
and previous OVCF, will be collected according to the medical records.

Besides, this study will collect matched preoperative spine CT 
images and MRIs of each patient for DL model training and validation. 

For both CT and MRI scan, all subjects are scanned in supine position. 
Image acquisition details of the internal dataset are described as 
follows: CT data acquisition of the spine are performed on a 64-slice 
MDCT scanner (Discovery CT750 HD, GE Healthcare, United States). 
A slice thickness of 1.25 mm and an in-plane resolution of 512 × 512 
pixels were set for CT scans. Spine MRI is performed using a 3.0-T 
magnetic resonance system (Magnetom Verio, Siemens, GER). The 
scan parameters are as follows: T1WI (TR/TE, 400–600/8 ms), T2WI 
(TR/TE, 3,000–3,100/100 ms), T2WI-FS sequence (TR/TE, 4,000–
4,200/70–80 ms), axial in-plane resolution: 256 × 224 pixels, axial slice 
thickness 3 mm, and intersection gap of 0.5 mm. Sagittal images were 
then reconstructed with an in-plane resolution of 320 × 256 pixels and 
a slice thickness of 4 mm. Noteworthily, most patients with OVCF 
usually complain of back pain at first visit, which sometimes is difficult 
to differentially diagnosed with degenerative spinal disease, especially 
in whom without definite trauma history. Hence, the reserved initial 
MRI may not contain continuous axial images at the fracture vertebral 
level in specific individuals. Therefore, we choose to collect continuous 
sagittal T2WI of MRI combined with continuous axial CT images, to 
obtain maximum information from multimodal image sources. For 
external dataset, spine CT is performed on a 16-slice CT scanner 
(SOMATOM Emotion 16, Siemens Healthcare, Germany). A slice 
thickness of 3.75 mm and an in-plane resolution of 512 × 512 pixels 

FIGURE 1

Establishment and validation of deep learning prediction model for the subtypes of bone cement leakage. (A) The pipeline of the deep learning model. 
The model utilizes matched preoperative axial CT images and sagittal MRIs as input, followed by vertebra segmentation and contour recognition to 
generate a bounding box. The bounding box contains but is not limited to the whole vertebra volume. Next, intermediate multimodal fusion CNN-
based classifiers will be used to integrate the information of the different modalities, and complete the multitask outputs. (B) Flowchart of the study 
design, including datasets, labeling, model development, and performance evaluation.
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were set. MRI is performed using the same 3.0-T magnetic resonance 
system (Magnetom Verio, Siemens, GER) as in the internal dataset. 
The scan parameters were generally same except for an axial in-plane 
resolution of 384 × 269 pixels, an intersection gap of 0.3 mm, and a 
sagittal in-plane resolution of 384 × 326 pixels. All image data will 
be stored in DICOM files for further processing. The retrospective 
internal dataset will be divided into training and validation sets at a 
9:1 ratio.

The procedure of data collection will be conducted by two junior 
spine clinicians (RC with 2 years of experience and YX with 2 years of 
experience) for the internal dataset and one junior spine clinician (TX 
with 3 years of experience) for the external dataset. These clinicians 
are not in charge of all involved patients and are blinded to the group 
allocation and outcome assessment.

2.6 Diagnostic criteria for BCL and dataset 
labeling

Although postoperative CT is the most accurate approach to 
detect BCL, it is not necessary for all types of BCL (22), and the 
postoperative X-ray can achieve satisfactory sensitivity (23). Therefore, 
either the immediate postoperative spine CT or X-ray will be checked 
to confirm the occurrence of BCL. BCL was defined as the presence 
of extravertebral cement. Further, we proposed modified four subtypes 
of BCL are differentiated by the location of the extravertebral cement 
according to Bermejo et  al. (9): (1) Type I, leaking through the 
segmental vein; (2) Type II, leaking through the cortical defect to 
perivertebral soft tissue; (3) Type III, leaking into intervertebral disk; 
(4) Type IV, leaking into the spinal canal (through basivertebral vein 
or cortical defect) (Figure 2).

The evaluation of BCL of the whole internal dataset will 
be  initially conducted by two spine surgeons (Reader 1: PD with 
15 years of experience and Reader 2: JL with 29 years of experience) 
independently. The inconsistent assessments will be reviewed and 
adjudicated by a third spine specialist (LZ with 31 years of 
experience), and the final results will serve as the reference standard. 
The external dataset will be checked by two spine clinicians (Reader 
3: TW with 5 years of experience and Reader 4: QW with 8 years of 
experience) independently, and inconsistent assessments will also 
be  reviewed and adjudicated by the same spine specialist 
LZ. Additionally, Reader 3 and Reader 4 labeled the internal test set 
independently, for further evaluation of interobserver reliability and 
served as the control group to compare with the DL model. All 
selected readers are blinded to patients’ demographics, clinical 
baseline data, and surgical procedures, without any prior information 
except postoperative images.

2.7 Preparation and development of DL 
model

All algorithms will be conducted in Python 3.8.0 running on the 
Ubuntu 18.04 operating system, based on the hardware including Intel 
(R) Xeon (R) CPU E5-2620 V4, Titan V 12G GPU.

The schema of the expected neural network pipeline is shown in 
Figure  1A. The DL system consists of two main steps: (1) 

Preprocessing, including resampling, scale adjustment, vertebral 
segmentation, and bounding box generation; (2) Classification. Our 
team has once designed an interactive U-net neural network 
architecture to perform the CT vertebral segmentation task, and the 
vertebral segmentation Dice coefficient reached 96.8% ± 1.2% (24). 
The approach begins with an interactive initialization locator module, 
which allows surgeon manually determined the target vertebrae, 
followed by automatically segmentation. The interactive design omits 
the iterative search of freshly fractured vertebrae and avoids the 
possibility of localization error, especially in patients with multi-level 
or previous fractures. Further training on MRI data and 
corresponding U-net neural network architecture optimization will 
be conducted. Second, a bounding box generation technique (25) was 
performed to reduce the search area for CNN classifier, and to reserve 
sufficient information beyond the vertebrae of the initial image such 
as paravertebral vessels. The bounding box starts with contour 
detection of segmentation mask (in both axial and sagittal images) 
and cropped out of the original image (25).

Next, intermediate multimodal fusion CNN-based classifiers will 
be  designed to integrate the information of axial CT image and 
sagittal MRI (26). The framework of the applied architecture is shown 
in Figure  3. The approach begins with transforming input data 
(preprocessed CT and MR images) into higher-level representations 
by elaborate feature extraction and selection. A shared representation 
layer is then fused by the representations from different sources. 
Finally, several CNN-based classifiers, such as VGG, ResNet, Yolo, 
etc., were used to perform final multi-task predictions.

2.8 Outcomes

The primary outcome measures will be  the main exactitude 
performance of DL model for binary predicting (0/1) different 
subtypes of BCL, including sensitivity, specificity, and the area under 
the receiver operating characteristic curve (AUROC), in both internal 
and external test sets. Secondary outcomes include other exactitude 
performance such as accuracy, precision, and F1 score. Additionally, 
the reliability of the model will be  evaluated by calculating its 
consistency with reference standards and comparing it with that of 
clinician prediction.

2.9 Sample size

The data for DL in this study will be a matched series of spinal 
axial CT and sagittal MRI so that each participant represents one 
sample. According to a sample size determination study based on DL 
models and 3D images, the receiver operating characteristic (ROC) 
curve of classification accuracy became stable when the training 
sample size increased to 200, and reached a high 98% classification 
accuracy at a training sample size of 1,000 per class (27). In the present 
study, binary predictions are warranted for each subgroup of BCL, so 
at least 250 participants in the internal dataset, containing 200 (80%) 
for the training set, as the minimal sample size will be acceptable for 
accurately performing the task. However, more eligible patients up to 
1,250 participants, containing 1,000 (80%) for the training set, will 
be enrolled to achieve a higher accuracy.
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2.10 Statistical analysis

All data will be analyzed using Python 3.8.0. The confusion matrix 
of DL model and readers in detecting Type I–IV of BCL will be used 
to evaluate the predicting performance. Quantitative evaluation 
metrics containing accuracy, sensitivity, specificity, precision, and F1 
score, will be calculated based on the confusion matrices. Meanwhile, 
the ROC curve for binary classification will be plotted and AUROC 
will be  calculated. Linearly weighted Cohen’s kappa coefficient 
between Reader 3, Reader 4, and the DL model with the reference 
standard will be used to assess the interobserver and model’s reliability. 
Statistical significance is set at p < 0.05.

2.11 Dissemination

The findings of the study will be  published in peer-reviewed 
journals, and national or international conferences. All data related to 
this study will be kept until 5 years of publication, and available from 
the corresponding author on reasonable request.

3 Discussion

This study aims to develop and validate a DL-based multimodal 
image analysis model capable of predicting subtypes of BCL using 
preoperative spine CT and MRI scans of patients with OVCF. The 
model holds an imperative clinical significance. By preoperatively 
identifying patients at high risk for each subtype of BCL, clinicians can 

formulate more targeted treatment strategies to minimize the 
incidence of BCL thus improve clinical outcomes. Moreover, the 

FIGURE 2

The modified classification of bone cement leakage. (A) Type I, leaking through the segmental vein; (B) Type II, leaking through the cortical defect to 
perivertebral soft tissue; (C) Type III, leaking into intervertebral disk; (D) Type IV, leaking into the spinal canal (through basivertebral vein or cortical defect).

FIGURE 3

Architecture of the deep learning prediction model.
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model will promote information sharing and decision-making 
between clinicians and patients efficiently, thereby increasing the 
overall quality of healthcare services.

A primary concern of spine surgeons during PKP is reducing the 
occurrence of BCL. Despite rigorous efforts, the rate of BCL remains 
alarmingly high, even up to 80% (9, 10). This is particularly disturbing 
as certain types of leakage can cause severe complications, even 
mortality. Notably, leakage remains an unavoidable risk even if the 
operator is an experienced specialist. Currently, intraoperative C-arm 
fluoroscopy is still the most predominant approach for monitoring 
BCL, yet its image quality is even inferior to that of plain radiographic 
images (23). This hampers the early and accurate detection of BCL, 
particularly leakage into the spinal canal, during the intervention. 
Consequently, developing an effective and reliable preoperative BCL 
prediction model to facilitate precise individualized risk prediction 
in patients with OVCF is crucial. To date, only a few studies attempted 
to predict BCL using several traditional ML models (16–18). Li et al. 
used six ML models to predict BCL by incorporating clinical baseline 
characteristics and surgery-related variables, and the AUROC for 
these models was 0.633–0.898 (16). Further, Hu et al. incorporated 
radiographic variables from 425 patients to predict BCL using five 
ML models and revealed that the XGBoost demonstrated the highest 
AUROC of 0.8819 (17). However, these traditional ML models had 
inherent limitations, such as depending on manually extracted 
features and a lack of subtyping for BCL, which restricted their 
generalization. Recently, an initial attempt has been made to predict 
BCL using a DL model, but it still relied on manual image feature 
extraction (17). In addition, the predictive performance of this DL 
model was inferior than that of the XGBoost model. This indicates 
that while DL has notable advantages in several domains like image, 
language, and audio processing, tree-based ML methods have 
achieved robust predictions more easily than DL for small-scale data 
(17). However, with the rapid advancements in artificial intelligence 
technology, it is currently attractive and of great potentiality in 
developing more accurate and concise DL models by large datasets 
for predicting BCL.

Notably, different types of BCL result in various secondary 
complications. However, there is a lack of studies elaborating 
subtype analysis for BCL, which is one of the chief culprits resulting 
in the gaps between existing prediction models and real clinical 
applications. Drawing on the work of Bermejo et al. (9), we propose 
a modified BCL classification system (types I–IV) based on the 
location of extra-vertebral bone cement. In Bermejo’s system, 
basivertebral vein leakage is bracketed in Type S together with 
segmental vein leakage, and spinal canal leakage is bracketed in Type 
C together with leakage through cortical defect to elsewhere. 
However, from a prognosis point of view, basivertebral vein leakage 
may delay neurological complications despite it is generally safer 
than through cortical defect. Furthermore, paravertebral vein 
leakage (excluding basivertebral vein leakage), has been proven as 
an independent risk factor for pulmonary cement embolism. 
Therefore, it is reasonable to divide basivertebral vein leakage into 
spinal canal leakage, as a serious situation to avoid as much as 
possible. Similarly, Shi et al. developed a nomogram to predict intra-
spinal canal leakage, a type same as Type IV in this study, which 
combined leakage through basivertebral vein with cortical defect 
(24). Leaking into the spinal canal is among the most severe types of 
leakage, potentially causing subsequent nerve compression and even 

disability (28). Consequently, a crucial goal of this modified 
classification system is to maximize the recall of the DL model on 
the premise of the overall accuracy, thereby minimizing the risk of 
mispredictions for spinal canal leakage. This modified classification 
system is expected to make more accurate preoperative predictions 
for BCL, providing further targeted clinical guidance and 
satisfied outcomes.

Overall, our study presents several significant advantages over 
previous predictive models. First, our model directly uses 
preoperative CT and MRI images as inputs. Previous studies have 
emphasized the clinical significance of radiology-related variables 
such as cortical destruction, intervertebral cleft, bone mineral 
density, fracture severity, fracture type, and basivertebral foramen 
sign in BCL prediction (9, 17, 29–31). In particular, Hu et  al. 
determined only preoperative imaging parameters and 
intraoperative cement volume as independent risk factors for BCL 
after analyzing over 20 potential risk factors, including baseline 
characteristics, medical history-, surgery-, and radiology-related 
variables (17). Hence, a purely image-based DL prediction model is 
both adequate and reasonable. The DL model adaptively learns 
feature information from preoperative images without manual 
intervention, which enables seamless integration into current 
clinical workflows (32). Second, BCL is an immediate intraoperative 
complication without being affected by various confounding factors 
during long-term follow-up, improving the credibility and 
interpretability of our predictive model. Third, our model not only 
predicts the occurrence of BCL during PKP, but also enables further 
subtypes of leakage. Such predictive results are instrumental for 
clinicians in developing more thorough and personalized treatment 
plans. Next, our models will be trained on relatively large sample 
size datasets and validated with prospective, multi-center datasets, 
which not only improves the performance of the model, but also 
improves its generalization and applicability across different 
healthcare settings. Moreover, we  will compare the prediction 
capability of our model with that of clinicians to test its reliability 
to further evaluate the performance of the model, which will 
provide a more comprehensive and objective evaluation of the 
model’s performance.

This study has several limitations. First, the training set for the 
model is derived from a single-center retrospective dataset, which 
may introduce selection and subjective bias. Future research should 
use larger, prospective, and multicenter datasets to train and validate 
the model, thereby improving its reliability and generalizability. 
Second, our study solely used preoperative medical imaging data as 
input, omitting surgery-related variables such as surgical access, 
puncture pin location, and cement volume, which have been proven 
to be associated with BCL (9, 17, 29, 31, 33, 34). However, our model 
is designed to serve as a preoperative prediction tool, to conduct 
straightforwardly and easily personalized preoperative risk 
assessment and surgical planning. Finally, as the gold standard for 
BCL assessment remains postoperative CT examination; thus, not all 
patients in this study underwent postoperative CT, which may 
somehow result in inaccuracy of the assessment of BCL.

In conclusion, we will develop a multimodal image analysis model 
based on DL algorithms for predicting intraoperative BCL in PKP. To 
the best of our knowledge, it will be the first study to directly utilize 
preoperative CT and MRI images for BCL subtype prediction. 
Although there are numerous challenges and unresolved issues in the 
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successful development and application of this model, its potential is 
highly promising. This approach facilitates individualized and 
intelligent preoperative assessments for patients with OVCF, providing 
a crucial basis for surgical decision-making. In particular, the model 
can be extended and applied in remote areas where medical resources 
are relatively scarce, so that more patients can benefit from quality 
perioperative evaluation and management strategies. We will continue 
to explore the feasibility and limitations of this model in practical 
clinical applications in future studies, to further improve its accuracy 
and utility.
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