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Neurodegenerative disorders such as Alzheimer’s Disease (AD) and Mild 
Cognitive Impairment (MCI) significantly impact brain function and cognition. 
Advanced neuroimaging techniques, particularly Magnetic Resonance Imaging 
(MRI), play a crucial role in diagnosing these conditions by detecting structural 
abnormalities. This study leverages the ADNI and OASIS datasets, renowned for 
their extensive MRI data, to develop effective models for detecting AD and MCI. 
The research conducted three sets of tests, comparing multiple groups: multi-
class classification (AD vs. Cognitively Normal (CN) vs. MCI), binary classification 
(AD vs. CN, and MCI vs. CN), to evaluate the performance of models trained 
on ADNI and OASIS datasets. Key preprocessing techniques such as Gaussian 
filtering, contrast enhancement, and resizing were applied to both datasets. 
Additionally, skull stripping using U-Net was utilized to extract features by 
removing the skull. Several prominent deep learning architectures including 
DenseNet-201, EfficientNet-B0, ResNet-50, ResNet-101, and ResNet-152 were 
investigated to identify subtle patterns associated with AD and MCI. Transfer 
learning techniques were employed to enhance model performance, leveraging 
pre-trained datasets for improved Alzheimer’s MCI detection. ResNet-101 
exhibited superior performance compared to other models, achieving 98.21% 
accuracy on the ADNI dataset and 97.45% accuracy on the OASIS dataset in multi-
class classification tasks encompassing AD, CN, and MCI. It also performed well 
in binary classification tasks distinguishing AD from CN. ResNet-152 excelled 
particularly in binary classification between MCI and CN on the OASIS dataset. 
These findings underscore the utility of deep learning models in accurately 
identifying and distinguishing neurodegenerative diseases, showcasing their 
potential for enhancing clinical diagnosis and treatment monitoring.
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1 Introduction

Neurodegenerative illnesses like AD affect brain cognitive 
function. It is one of the most common cause of Dementia. The exact 
cause of disease is still not fully discovered and so the cure. It is 
believe that it happens due to a combination of genetic, environmental, 
and lifestyle factors. The protein accumulation in the brain which is 
Amyloid Plaques is the main cause. The plaques accumulates between 
the neurons because of which the death of neuron starts. 
Inflammation in the brain and oxidative damage to neurons are also 
believed to play roles in the development and progression of 
Alzheimer’s disease. These processes can further contribute to 
neuronal dysfunction and death. These disorders cause problems with 
brain function and impair cognition (1). Progressive decline in 
cognitive function, including memory loss and diminished cognitive 
ability, characterizes AD, the most prevalent form of dementia. 
Conversely, MCI is a transitional stage between typical cognitive 
aging and AD, distinguished by observable deterioration in cognitive 
functions that do not significantly impede routine tasks (2). These 
conditions impose a burden on healthcare organizations as well as 
society at large, in addition to endangering the health and safety of 
those affected.

The efficient detection of AD and MCI has become a crucial area 
of interest in medical research. The progress in neuroimaging 
methods, including magnetic resonance imaging (MRI), has improved 
the ability to diagnose these conditions. MRI scans are used to 
diagnose Alzheimer’s and MCI by examining structural abnormalities, 
which often require advanced image processing to increase clarity and 
extract relevant features (3).

The ADNI (4) and OASIS (5) datasets are renowned for their 
efficacy in diagnosing Alzheimer’s and MCI, both used in this analysis 
and recognized for their vast human macroscopic MRI data. These 
datasets cover healthy and AD/MCI patients. MRI images from both 
datasets are used to identify anatomical changes connected to 
neurodegenerative illnesses, such as brain volume and cortical 
thickness (4, 5).

Multiple methods are utilized to preprocess MRI data to increase 
AD and MCI diagnosis accuracy and comprehension. A Gaussian 
filter reduces noise and decreases artifacts and electrical noise to 
improve visual clarity (6), contrast-limited responsive Histogram 
Equalization (CLAHE) enhances contrast, the image is resized to 
224×224 pixels for consistency (7), and CNN model compatibility and 
intensity levels are normalized across scans (8). Skull stripping 
eliminates non-brain tissues to focus further investigations on the 
importance of brain regions, and then Tissue segmentation segments 
the brain into gray matter, white matter, and cerebrospinal fluid, 
providing more precise data for study (9). In ADNI additional 
preprocessing, we  performed skull stripping using U-Net (10) to 
remove the cranium. The brain is cut cross-sectionally along three 
axes—axial, coronal, and sagittal. The slices are evaluated for quality, 
and three are selected to show the most essential MRI imaging areas 
while reducing noise (9, 11, 12).

Many research’s have been working in the area however the work 
done so far has limitation that this paper is trying to address. The work 
done by researcher’s is focused on one dataset, where as we have used 
the multiclass dataset for the research. The improvised preprocessing 
model that can work on MRI from different datasets and the 
prediction model provides the consistency accuracy while predicting.

This investigation offers several substantial improvements to the 
existing Research on the identification of Alzheimer’s and MCI:

 • To extract and preprocess the renowned datasets, ADNI and 
OASIS, from the neuroimaging discipline for the investigation.

 • To propose a framework model for early detection of AD using 
different deep learning techniques such as DenseNet-201, 
EfficientNet-B0, ResNet-50, ResNet-101, and ResNet-152 for the 
classification of MCI detection

 • To evaluate and analyze the performance of prominent deep 
learning using performance metrics for making 
recommendations in healthcare organizations.

The complexity of MRI images for AD and MCI identification 
highlights cutting-edge deep learning processes. This work contributes 
to neuroimaging studies and AD/MCI diagnosis as the 
discipline progresses.

The paper not only addresses binary classification but also 
emphasizes multiclass classification. The predictive model extends 
beyond determining whether a subject has AD or not; it also predicts 
the stage of the disease, such as AD, CN, or MCI.

In binary classification, the model’s output provides a 
straightforward yes or no answer regarding the presence of AD or 
another condition. However, in multiclass classification, the model 
distinguishes between different stages of the disease, offering a more 
nuanced understanding of the individual’s cognitive health status. This 
approach is crucial for clinical applications as it allows healthcare 
providers to not only diagnose the presence of AD but also to 
categorize the severity or progression of the disease. Such detailed 
predictions can significantly aid in early intervention, personalized 
treatment planning, and monitoring of disease progression over time.

The paper is structured around the materials and methods 
outlined in Section 3, encompassing preprocessing techniques, 
transfer learning, and notable CNN architectures. Section 4 presents 
the dataset details and outcomes of the proposed approach. Lastly, 
Section 5 encapsulates the conclusion and outlines future avenues for 
the model’s development.

2 Literature review

The analysis of the research done so far is represented in 
this section.

Modern deep-learning architectures are used to identify subtle 
patterns from the datasets to create powerful AD and MCI detection 
applications/models. These architectures ensure and advance 
neurodegenerative condition research. Most prominent advanced 
deep-learning architectures such as DenseNet-201 (13), 
EfficientNet-B0 (14), ResNet-50, ResNet-101, and ResNet-152 (15) 
have been investigated to develop efficient models for detecting 
Alzheimer’s and MCI. The architectures often extract detailed patterns 
from complicated datasets and are used with transfer learning.

The DenseNet-201 design operates by establishing dense 
connections between each layer and all subsequent layers in a feed-
forward manner to recycle features efficiently. The connection 
mentioned above improves the transmission of features and promotes 
the reuse of features, resulting in more effective use of parameters (13). 
EfficientNet-B0 prioritizes enhancing model efficiency by scaling the 
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network in many dimensions (depth, breadth, and resolution) to 
achieve an optimal trade-off (14). ResNet-50, ResNet-101, and ResNet-
152 belong to the ResNet (Residual Network) family. This network 
family includes skip connections, also known as shortcuts, which 
enable bypassing one or more layers. This technique helps to address 
the vanishing gradient issue and facilitates the training of intense 
networks. These skip connections further enhance the propagation of 
gradients during backpropagation, enabling the model to learn more 
efficiently (15). Each of these designs offers distinct methods for 
extracting features and optimizing parameters, making them suitable 
for various elements of Alzheimer’s MCI detection in MRI datasets.

A 3D-CNN model was trained using ADNI MRI data to distinguish 
AD from CN. An AD brain mask was found using a genetic algorithm-
based Occlusion Map technique, and Backpropagation-based explain 
ability methods. The recommended model had 87% accuracy in 5-fold 
cross-validation, mirroring prior findings, whereas an updated 
3D-CNN model with 29 brain regions achieved a high validation 
accuracy using the lrp_z_plus_fast explain ability technique (16). The 
assessment process exploits shallow CNN architecture on 2D 
T1-weighted MR brain images. This pipeline rapidly and accurately 
identifies normal, MCI, and AD. The technique is labeled MCI 
prodromal AD. They tested it against DenseNet121, ResNet50, and 
EfficientNetB7 (17). A unique ensemble deep-learning AD classification 
technique was developed. Soft-NMS consolidates candidate data and 
improves detection in the Faster R- CNN architecture. Enhanced 
ResNet50 extracts more complicated visual data. For sequence data 
processing, the feature extraction network employed Bi-GRU. Improved 
Faster R–CNN did the classification well (18). Researchers created 
EfficientNetB2 for AD, MCI, and NC. Front-end Global Attention 
Mechanism (GAM) in EfficientNetB2 took crucial features. 
Coordination Attention helped get channel and location data from 
two-dimensional slice data for appropriate diagnosis. Micro-designing 
using the ConvNeXt network reduced model complexity and improved 
categorization. The recommended method outperformed CNNs on 
AD/NC, AD/MCI, and MCI/NC dichotomous data (19). Investigators 
created an integrated automated method for guided machine learning-
driven selection using K-Means++. A sophisticated deep learning 
framework using EfficientNetV2S transfer learning and learned 
features. Trials utilized ADNI and OASIS benchmark datasets. In 
research and validation, the integrated design outperformed all other 
models. Model validation was 20-fold. On the ADNI dataset, CN 
showed 83.64% accuracy against AD, 82.69% against MCI, 71.40% 
against MCI, and 91.54% on the OASIS dataset (20).

3 Materials and methods

The research approach used in this study centers on utilizing the 
ADNI and OASIS datasets, which are well-known for their extensive 
human macroscopic MRI data. These datasets include people who are 
in good health as well as those who have been diagnosed with AD and 
MCI (4, 5).

3.1 Methodology

MRI data is preprocessed using Gaussian filters (6), CLAHE for 
contrast enhancement, standardized image dimensions, and 

normalizing intensity levels (7, 8). U-Net removes the cranium for the 
ADNI dataset, and the brain is sliced along three axes for cross-
sectional slices. These slices undergo a quality evaluation to provide 
the best depiction while minimizing noise and highlighting significant 
regions of MRI imaging (9–13). State-of-the-art deep-learning 
architectures like DenseNet-201, EfficientNet-B0, ResNet-50, ResNet-
101, and ResNet-152 extract intricate patterns from the datasets, 
hence aiding in creating effective models for AD and MCI 
identification. This mechanism guarantees the strength and 
dependability of the analysis performed on the ADNI and OASIS 
datasets, enabling progress in comprehending and identifying 
neurodegenerative disorders (13–15). Figure  1 presents the 
methodology for detecting AD and MCI using ADNI and 
OASIS datasets.

During the implementation the steps followed will be explained 
in the paragraph. The dataset will be provided to preprocessing model. 
The preprocessing model will make sure each image goes through 
Gaussian filter, Clahe and resizing. The ADNI images will go through 
additional two steps which are skull stripping and slicing. Once the 
data is preprocessed the images will be split in training and testing 
data in 80:20 ratio. For the model training the training dataset will 
be provide to the model. In the model image features will be extracted 
through different models and post that it will go through the transfer 
learning models. Once the model is trained the images from the test 
dataset will be provided and the prediction will be done by model. The 
efficacy of the model will be judged on F1 score, accuracy, recall value 
and precision. The model will categorize the images in the three 
buckets as CN, AD & MCI.

3.2 Data preprocessing

The preprocessing approaches explored for identifying AD and 
MCI include noise reduction, CLAHE, Image resizing, and 
normalization. Noise reduction in MRI scans is achieved by using a 
Gaussian filter. This filter effectively reduces noise caused by different 
sources, better depicting the images for analysis. Gaussian filtering 
reduces intensity fluctuations and maintains structural information, 
enhancing MRI data quality (6). CLAHE improves the contrast of 
specific areas by adjusting the intensity levels according to local 
histograms. This leads to a more detailed representation of the 
essential structural features of AD research (7). Resizing an image to 
a defined dimension, such as 224×224 pixels, guarantees consistency 
and compatibility with CNN models. This process maintains the 
structural data of the image for analytical purposes. Normalization is 
a process that makes intensity levels similar across MRI scans. This 
helps in accurate and comparative analysis by guaranteeing that 
intensity distributions are the same (8).

The designated preprocessing techniques enhance the accuracy 
and comprehensibility of MRI data in identifying AD and MCI in 
both the ADNI and OASIS datasets. In addition, some prominent 
steps of preprocessing involved for the ADNI dataset:

Skull Striping: The U-Net architecture has an encoder-decoder 
structure incorporating skip links, similar to ResNets (10). Regarding 
skull stripping, the network takes a 3D MRI image as input and 
produces a binary mask that identifies the brain area. During learning, 
the network can divide the brain into distinct segments by predicting 
which pixels are part of the brain and which are not. The encoder 
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component of the U-Net collects features from the input image at 
various scales, while the decoder component increases the resolution 
of these features to produce a segmentation mask that matches the 
resolution of the input image. Spatial information is using skip links 
that facilitate conserved and accurate localization. The neural network 
is taught using a dataset consisting of MRI images and their matching 
manually generated skull-stripped masks (11). After training, the 
U-Net may automatically perform skull stripping on newly acquired 
MRI images, making it a significant asset in neuroimaging research 
and clinical practice (9, 12).

Slicing: After removing the skull, slice the brain along the three 
axes (axial, coronal, and sagittal) to get cross-sectional slices. This 
procedure entails segmenting the three-dimensional (3D) pictures 
into two-dimensional (2D) slices, which record distinct brain 
structure viewpoints. After getting the slices, visually assess their 
quality. Select three slices for a better qualitative representation than 
the rejected ones. This reduces noise and highlights the most essential 
areas of MRI imaging (11).

The images in Figure 2 show cross-sectional views before and after 
skull stripping, demonstrating the effects of the preprocessing method.

3.3 Prominent CNNs

ResNets: Residual Networks (ResNets) utilize shortcut connections 
between layers to facilitate residual learning. The residual learning 
approach entails acquiring knowledge about the residual mapping rather 
than the direct mapping of the input data, thereby enabling the efficient 
training of intense networks. Shortcut connections facilitate the 
propagation of gradients across layers and effectively address the 
disappearing gradients often seen in deep neural networks. ResNet 
comprises numerous residual blocks, including several convolutional 
layers and shortcut connections. This design enables the network to 
capture intricate input data aspects effectively (15).

ResNet can employ shortcut connections, bypassing one or more 
layers. The shortcut connections merely execute identity mapping; the 
results of these connections are aggregated with those of the layered 
layers. When many layers are appended, vanishing gradient issues 
frequently arise, preventing backpropagation from updating the 

weights of the initial layers. The problem might be remedied through 
the incorporation of an identity link. The ResNet architecture 
facilitates the direct propagation of gradients in the opposite direction, 

FIGURE 1

Methodology for the AD and MCI detection.

axial plane slice 

A

B

C
coronal plane slice 

sagittal plane slice 

FIGURE 2

Slices of pre (Left) and post (Right) skull stripping (4). (A): axial plane 
slice, (B): Coronal plane slice, (C): Sagittal plana Slice.
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allowing them to traverse from the later layers to the initial filters via 
an identity link. By incorporating residual learning, the method 
improves the CNN architecture and renders it more applicable to the 
training of deep networks. A plain and simple network with a more 
significant number of layers tends to have more errors, but ResNet, 
which has specific layer configurations such as 50 and 101, has a 
superior capacity to handle deeper networks (15, 21, 22). Figure 3 
presents the concept of shortcut connections.

ResNet familiarizes the conception of residual learning, where the 
layer transforms the input into a layer, and a shortcut connection 
bypasses one or more layers. Equation 1 presents the residual learning 
through Shortcut connection, understanding the basic building blocks 
of ResNets and how they are combined to form the architecture. This 
is expressed mathematically as:

 Output Y F Input X Input X( ) = ( )( ) + ( ) (1)

Here, F(input(X)) represents the transformation performed by 
the layer.

A ResNet block typically consists of two convolutional layers 
followed by a shortcut connection. Let us denote input to the block as 
X, output as Y, and the residual function as F(X) (15). In Equation 2 
the output y is computed as:

 Y F X W Xi= { }( ) +,  (2)

where Wi are the weights of the convolutional layers.
ResNet has several layers, and these basic blocks are stacked 

together. The architecture consists of convolutional layers, batch 
normalization, ReLU activations, and residual blocks.

Let us consider a single convolutional layer within the residual 
function to simplify and derive this equation. Equation 3 calculates 
the output Y1 of the convolutional layer is given by:

 Y W X b1 1 1= ∗ +( )σ  (3)

Here, W1 is the weights, b1 is the bias, σ is the activation function 
(commonly ReLU), and ∗ denotes convolution.

Now, let us consider another convolutional layer with output Y2 
which can be calculated as Equation 4:

 Y W Y b2 2 1 2= ∗ +( )σ  (4)

The residual function F(X) can be represented as the composition 
of these two layers:

 F X W W X b b( ) = ∗ ∗ +( )( ) +( )σ σ2 1 1 2  (5)

Substituting the expression for F(X) of Equation 5 into the 
Equation 1, we get:

 Y W W X b b X= ∗ ∗ +( )( ) +( ) +σ σ2 1 1 2  (6)

Equation 6 represents the forward pass through a single 
residual block.

The beauty of ResNet architecture lies in the ability to learn the 
identity mapping (i.e., Y = X) if needed. If the optimal transformation 
for a block is close to the identity mapping, the weights of the 
convolutional layers can be adjusted to approach the identity function, 
allowing for easier optimization during training (15, 23).

Each ResNet network consists of numerous convolutional layers, 
pooling layers, and fully connected layers with varying output sizes and 
numbers of filters. The advantages include improved accuracy with 
increased depth and overcoming the degradation problem observed in 
shallower networks. The disadvantages may include higher 
computational complexity, as indicated by the increase in floating-point 
operations (FLOPs), which measures the number of floating-point 
operations a neural network performs during inference or training with 
deeper networks (15).

ResNet-50: ResNet-50 uses residual learning to solve the degradation 
issue of deeper neural networks by creating skip connections or shortcuts 
that enable information to move directly across layers. The model 
consists of 50 layers, which include convolutional, pooling, and fully 
linked layers, using residual blocks as the fundamental components. 
Each residual block has many convolutional layers and a shortcut link to 
help the network learn abstract features (15).

ResNet-50 can train deeper networks without the vanishing 
gradient issue, improving performance on complex datasets. ResNet-
50’s skip connections simplify training optimization, speeding 
convergence and improving generalization. ResNet-50 can be helpful 
for image classification and feature extraction because of its novel 
design and efficient training processes (18, 21).

ResNet-101: ResNet-101 is a CNN composed of precisely 101 layers. 
The construction of this architecture utilizes bottleneck blocks, which 
consist of three layers. It entails laying out various convolutional blocks 
with unique weights and additional elements, such as batch 
normalization and ReLU activations. The method employs residual 
learning to tackle degradation issues and enhance accuracy by leveraging 
higher depth. The network incorporates shortcut connections to 
facilitate residual learning, offering the choice between identity mapping 
or projection shortcuts. The model is trained using batch normalization, 

FIGURE 3

Shortcut connection used by ResNet.
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stochastic gradient descent (SGD), weight decay, and dropout. This 
approach achieves high accuracy and successfully addresses 
optimization challenges encountered in regular networks. ResNet-101 
consists of recurring blocks with different filter quantities and other 
properties. The design guarantees that the number of parameters, depth, 
breadth, and computing cost remain identical to those of plain networks 
(15, 24).

ResNet-152: Its 152 layers make ResNet-152 one of the deepest 
convolutional neural networks. Multiple convolutional layers and 
identity mappings in residual blocks enable feature extraction at 
various abstraction levels. Skips in ResNet-152 let information flow 
directly from previous layers to subsequent ones, maintaining gradient 
flow and simplifying training optimization. Deep and skip connections 
improve this architecture’s image recognition performance, including 
accuracy, convergence during training, and the ability to handle 
vanishing gradient issues in deep neural networks (15, 24).

DenseNet-201: The Dense Convolutional Network (DenseNet) is 
characterized by a dense connection structure, which enables effective 
feature reuse and rapid model generation. The DenseNet-201 connects 
layers feed forwardly by utilizing feature maps from previous levels as 
inputs and producing feature maps for subsequent layers. The network 
has a total of a(a + 1)/2 direct connections for nodes, i.e., a, which 
successfully alleviates the vanishing-gradient problem, improves 
feature propagation, encourages feature reuse, and decreases 
parameter count. The architecture comprises many compact blocks, 
including convolutional layers alternated with transition layers, which 
reduce dimensionality and regulate the complexity of the model. This 
architectural design facilitates extracting features and propagating 
gradients, effectively tackling the issue of disappearing gradients in 
deep neural networks (13).

The main benefits of this approach are eliminating unnecessary 
features, less computational burden, and increased understanding of 
the model’s behavior due to dense connections. These advantages 
result in enhanced accuracy and efficiency while performing deep-
learning tasks (11).

EfficientNet-B0: EfficientNet-B0 uses compound scaling to adjust 
the network’s depth, breadth, and resolution equally. This leads to the 
creation of smaller and more precise models. The fundamental idea is 
to attain the best possible performance within computing limitations 
by carefully managing the model’s depth, breadth, and resolution. The 
design incorporates inverted bottleneck blocks, squeeze-and-
excitation blocks, and movable inverted bottleneck blocks, which 
optimize the use of parameters and processing resources. 
EfficientNet-B0 demonstrates exceptional performance, increased 
precision, reduced processing requirements, and adaptability, making 
it suitable for resource-limited settings such as mobile devices and 
edge computing (14).

3.4 Transfer learning

Transfer learning is a potent approach in ML that entails adjusting 
a pre-trained model from one task to another associated task, thereby 
capitalizing on the information acquired during the initial training. 
This strategy dramatically enhances the model’s performance while 
decreasing the need for extensive datasets in the target domain (25). 
Transfer learning allows researchers to optimize specific tasks by 
refining pre-existing CNN models such as ResNet-50, ResNet-101, 

ResNet-152, DenseNet-201, and EfficientNet-B0. These models have 
been extensively trained on datasets like ImageNet (11).

Fine-tuning, an essential component of transfer learning, is 
modifying the model’s characteristics to match the patterns and 
correlations of the target problem. For example, ResNet and EfficientNet 
topologies sometimes improve by including extra dense layers, usually 
256 and 128 units. This method allows models to specialize in activities 
beyond their initial training goals. Transfer learning allows models to 
use the information from pre-training on extensive datasets, enabling 
quicker convergence and enhanced generalization when fine-tuned on 
particular datasets. This strategy simplifies the process of developing 
models and improves performance in different applications (25, 26). The 
demonstration of the employment of transfer learning on ResNet-101 is 
presented in Figure 4, which removes the top layer and adds a new layer.

4 Results and discussion

The experiment was conducted utilizing a system including 
quadruple NVIDIA RTX A6000 GPUs, each equipped with 32 GB of 
memory, resulting in a combined processing capability of 194.8 
TFLOPS. The system also included 64 GB of RAM and an AMD EPYC 
7232P Octa Core CPU.

4.1 Dataset

The ADNI and OASIS datasets comprise human macroscopic MRI 
data, encompassing both individuals in good health and those who 
have received a diagnosis of Alzheimer’s and MCI disease. The ADNI 
and OASIS datasets employed in the investigation, renowned for their 
unrestricted access, provide researchers with invaluable resources for 
examining the human brain’s structural characteristics via MRI 
imaging. These datasets enable inquiries into both typical brain 
anatomy and pathological alterations that are linked to Alzheimer’s 
and MCI disease. The robust prediction model can be integrated with 
the MRI system so that it act as a helpful resource to the doctors.

ADNI: The ADNI dataset, a vast resource for AD progression 
research, uses MRI images to reveal deep brain anatomy. The ADNI 
longitudinal study uses MRI, PET, and other biological markers to 
identify biomarkers for early detection and tracking of AD. It allows 
in-depth analysis of brain area using bottom-to-top brain scanning 
axial visuals, with T1-weighted images improving anatomical 
structure analysis and problem detection. The ADNI incorporates 
several methods for participant and phantom scans. Participants 
undergo scanning utilizing a variety of sequences, including axial T2 
STAR, axial 3D PASL, accelerated sagittal MPRAGE, sagittal 3D 
FLAIR, axial DTI, field mapping, axial rsfMRI with eyes open, and 
HighResHippocampus. The specific sequences may differ depending 
on the scanner’s manufacturer, for example, GE Systems for axial DTI 
scans and Philips Systems for resting-state fMRI and axial T2-FLAIR 
scans. This overview offers essential information on the imaging 
procedures and sequences used in the ADNI dataset. The dataset 
includes MRI scans from over 1,200 participants, each having multiple 
scans over time (4).

The age cohort-specific Alzheimer’s disease progression analysis 
is possible from 20 to 90. Further processing involved extracting 2D 
slices from the original T1-weighted MRI scans and a processed 
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collection after skull stripping. The distribution of these slices across 
different anatomical planes was recorded as follows and given in 
Tables 1, 2.

This breakdown provides detailed insight into the composition 
of the dataset, which is crucial for understanding the distribution of 
data for training and testing purposes across different classes and 
anatomical planes (4). When working with MRI images many 
computational complexity’s need to be considered like image size and 
resolutions. Data augmentation need to be applied so that model has 
good number of images for the training. The preprocessing and 
feature extraction should be robust so that noise can be handled. 
Optimizing these factors is crucial for achieving efficient and effective 
analysis of MRI data in medical applications.

This investigation focused on three classes: CN, AD, and MCI, 
which had corresponding MRI scan counts of 159, 123, and 100, 
respectively. The dataset was partitioned into training and testing sets 
to facilitate deep learning tasks, wherein training comprised 80% of 
the data and testing included 20%. The CN group allocated 127 scans 
for training and 32 scans for testing, whereas the AD group utilized 
99 scans for training and 24 scans for testing. For assessment 
purposes, there are 20 scans for testing of the MCI and 80 scans 
for training.

OASIS: The OASIS dataset is accessible to the public for 
investigation. It comprises cross-sectional MRI data from 416 people 
aged 18 to 96 years. Among these individuals, 100 have been 
diagnosed with AD at a very low to moderate stage. The dataset 
comprises T1-weighted MRI images for each participant, enabling a 

broad spectrum of analytical methodologies. The dataset has 
undergone de-identification, meticulous quality screening, and post-
processing to provide standardized anatomical measurements. The 
inclusion of measures such as estimated total intracranial volume 
(eTIV) and normalized whole-brain volume (nWBV) offers valuable 
insights into the structural changes in the brain associated with aging 
and AD (5, 27). Table  3 shows the train-test (80–20%) split and 
quantity of MRI images for AD, MCI, and CN.

4.2 Performance metrics

Performance metrics quantify deep learning model performance. 
Many performance indicators include accuracy, precision, recall, and 
F1 score. Accuracy is the ratio of real positives and negatives to data 
points. Predicting the majority class may give the model high 
accuracy with imbalanced datasets, which may be misleading. The F1 
score is a metric that combines recall and precision (26). On these 
metrics, precision, and recall calculations are predicated. Recall is the 
percentage of positive instances from the overall count of positive 
cases. At the same time, precision denotes the ratio of accurate 
optimistic predictions to the overall count of positive predictions. 
Incorporating false positives and false negatives, the F1 score is an 
exceptionally effective metric for assessing the performance of 
datasets containing unbalanced classes (28).

The specified CNN model employs the following Hyperparameters:
Although RMSprop is renowned for its capability to modify 

learning rates and manage sparse gradients, a learning rate of 0.02 
may be excessively high and could be improved. The detection of AD 
and MCI are examples of multi-class classification tasks amenable to 
categorical cross-entropy. The batch size 64 frequently balances 
model stability and computational efficiency. Although 50 training 
epochs are a reasonable starting point, the validation loss must 
be closely monitored to prevent overfitting, and early halting should 
be considered.

FIGURE 4

Transfer learning with ResNet-101.

TABLE 1 ADNI axial and coronal planes slices (4).

Class Train Test Total

AD 4,980 1,244 6,224

MCI 4,162 1,040 5,202

CN 6,605 1,651 8,256
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TABLE 4 AD vs. CN vs. MCI (multi-class classification).

CNN Accuracy Precision Recall F1 Score

A O A O A O A O

ResNet-50 83.45 80.12 82.56 79.34 82.34 80.45 82.65 80.23

ResNet-101 98.21 97.45 94.67 93.12 94.89 93.67 94.78 93.45

ResNet-152 97.89 96.91 92.01 90.89 91.78 91.45 91.89 91.23

DenseNet-201 78.23 76.56 78.45 76.34 77.89 76.78 78.01 76.45

EfficientNet-B0 89.67 88.56 89.23 88.45 89.45 88.67 89.34 88.56

4.3 Analysis

This investigation included three types of classification: first, 
multi-class classification in the AD vs. CN vs. MCI classes. The second 
is the Binary classification of AD and CN, and the third is MCI and 
CN. Comparing the predicted and observed labels yielded the 
accuracy of classification.

4.3.1 Multi-class classification (AD vs. CN vs. MCI)
Table 4 compares employed CNNs onto the specified two datasets 

in the investigation of multi-class classification, i.e., AD, MCI, and 
CN. The outcomes presented in Table  4 demonstrate the model’s 
remarkable capacity to differentiate between cases of AD and MCI. The 
experimental results for the three-class classification experiment 
revealed that models become increasingly proficient in handling multi-
class problems, as evidenced by their superior performance.

Quantification was performed on three cerebral components—
white matter, gray matter, and cerebrospinal fluid—as part of the 
assessment of malady severity. The findings presented in Table  5 
illustrate that the group comparing AD to CN to MCI attained 
exceptional levels of ResNet-101 Accuracy, Precision, Recall, and F1 
Score. The findings show significant variations in performance across 
the CNN models in the multi-class classification test for AD, CN, and 
MCI. ResNet-101 scored the maximum accuracy and F1 score across 
both datasets, 98.21 and 94.78% for ADNI and 97.45 and 93.45% for 
OASIS, respectively, proving its ability to discriminate between the 
classes. ResNet-152 followed closely, achieving 97.89% accuracy for 
ADNI and 96.91% for OASIS. EfficientNet-B0, despite performing 
satisfactorily and scoring 89.67% for ADNI and 88.56% for OASIS. The 
F1 scores, which consider both accuracy and recall, reflected the 
patterns found in the individual measures, with ResNet-101 getting 

the most significant F1 scores for both datasets, followed by ResNet-
152 and EfficientNet-B0. These findings indicate that ResNet-101 is 
the best model for this multi-class classification job, followed by 
ResNet-152, with EfficientNet-B0 trailing behind in performance. 
ResNet-101 has the highest accuracy level, meaning it can correctly 
put cases into each class. ResNet-152 and EfficientNet-B0 have lower 
accuracy measurements and fewer correct results. ResNet-101 did 
better than the others in memory to catch more true positives. ResNet-
152 and EfficientNet-B0 had lower scores, which means they missed 
more false positives. Figure 5 illustrates the confusion matrix of the 
ResNet-101.

4.3.2 Binary classification (AD vs. CN)
The outcomes of the binary classification test, distinguishing 

between AD and CN individuals, demonstrate diverse degrees of 
performance and are presented in Table 6. The AD versus CN group 
exhibited the subsequent categorization for the assessment primarily 
because of notable disparities in brain tissue region. The AD versus 
MCI group indices showed a reasonably high value but somewhat 
lower than the AD versus CN group. This observation aligns with 
predictions since MCI is pathologically more similar to AD than 
CN. Consequently, distinguishing between MCI and AD may 
be slightly more challenging. The findings indicated that the ResNet-
101 model attained a notable level of accuracy in accurately 
categorizing the AD. The approach had a 92.34% accuracy in 
differentiating normal controls from AD patients. Again, ResNet-152 
closely follows as the second-highest achiever, exhibiting robust 
performance across all criteria. DenseNet-201 has commendable 
performance but could be a lot better than ResNet-152. Conversely, 
EfficientNet-B0 has the least favorable performance compared to the 
other models. Figure 6 illustrates the confusion matrix of the ResNet-
101 with the ADNI dataset.

4.3.3 Binary classification (MCI vs. CN)
The outcomes of the binary classification of MCI and CN 

individuals demonstrate diverse degrees of performance and are 
presented in Table 7. In the endeavor of classifying MCI from CN, the 
efficacy of CNN models varied across metrics and datasets. ResNet-
152 demonstrated the most exceptional overall performance among 
the assessed models, attaining an accuracy of 90.11% on the OASIS 
dataset and 89.56% on the ADNI dataset. Furthermore, the model 
exhibited high precision, recall, and F1 Score values across both 
datasets, signifying its resilient capability to differentiate between cases 
of MCI and CN. ResNet-101 demonstrated commendable 
performance. According to these findings, deeper CNN architectures, 
namely ResNet-152 and ResNet-101, exhibit notable efficacy in 

TABLE 2 ADNI sagittal planes slices (4).

Class Train Test Total

AD 4,644 1,160 5,804

MCI 3,522 1,200 4,402

CN 3,912 978 4,890

TABLE 3 OASIS class wise instances (27).

Class Train Test Total

AD 390 98 488

MCI 4,800 1,200 6,000

CN 4,800 1,200 6,000
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distinguishing between MCI and CN. Figure 7 illustrates the confusion 
matrix of the ResNet-152 with the OASIS dataset.

The investigation found that ResNet-101 is best performed in the 
multi-classification and binary classification for the ADNI dataset; it 
is also well achieved with the OASIS dataset. The ResNet-101 model’s 
accuracy and loss were used to track and assess the training and 
validation process and presented through Figure  8. ResNet-101’s 
multi-class classification performance improves with time, as shown 
in Figures 8A,B, by showing training and validation accuracy and loss 
throughout epochs.

The training and validation accuracy consistently rises, while the 
training and validation loss consistently decreases, indicating that the 
model successfully integrates information from the training data.

4.4 Ablation study

The present investigation leverages the ADNI and OASIS 
datasets, which include comprehensive human macroscopic MRI 
data on healthy people and Alzheimer’s MCI patients. The ADNI 
dataset uses U-Net to remove the skull and brain, slicing along three 
axes for cross-sectional slices. These slices are quality-checked to 
minimize noise and highlight important MRI imaging areas. 
Prominent deep learning architectures like DenseNet-201, 
EfficientNet-B0, ResNet-50, ResNet-101, and ResNet-152 extract 
complex patterns to identify AD and MCI. The approach allows 
reliable ADNI and OASIS dataset processing, improving 
neurodegenerative condition comprehension and detection. The 
research examined how preprocessing techniques, deep learning 
architectures, and transfer learning methodologies affect the 
performance of models and compared their effectiveness. While 
Gaussian filters are frequently employed to reduce image noise, they 
might not be  the most optimal approach to accentuate critical 
features in MRI data, especially when identifying Alzheimer’s and 
MCI. However, transfer learning is a highly effective method in deep 
learning, the results obtained from fine-tuning with specified 

pre-trained models and their effectiveness. While these models have 
been extensively trained on datasets like ImageNet, the performance 
of the transfer learning approach may have needed to be improved. 
The research examined the effects of incorporating dense layers of 
256 and 128 units into each specified deep learning architecture after 
transfer learning from ImageNet-trained models to the ADNI and 
OASIS datasets. By comparing the efficacy of each architecture with 
and without additional layers, the research seeks to identify the 

TABLE 5 Hyperparameters.

Sr No Parameter Value

1 Optimizer RMSprop

2 Learning Rate 0.02

3 Loss Function Categorical Cross-Entropy

4 Batch Size 64

5 Number of Epoch 20

TABLE 6 AD vs. CN (binary classification).

CNN Accuracy Precision Recall F1 Score

A O A O A O A O

ResNet-50 87.45 85.32 86.78 88.23 86.23 89.45 86.78 87.89

ResNet-101 92.34 90.12 90.02 92.89 90.01 91.34 90.17 91.89

ResNet-152 89.67 88.23 88.78 90.45 88.34 91.23 88.78 89.67

DenseNet-201 85.67 84.12 84.78 86.23 84.45 87.12 84.78 85.67

EfficientNet-B0 78.23 77.45 77.78 79.56 77.89 80.12 77.78 78.23

Predicted

AD CN MCI

AD 2277 127 2

CN 94 1824 2

MCI 1 135 2494

FIGURE 5

Confusion matrix of the ResNet-101 with ADNI dataset.

Predicted

AD CN

AD 2227 179

CN 191 2439

FIGURE 6

Confusion matrix of the ResNet-101 with ADNI dataset.

Predicted

AD CN

AD 1033 167

CN 168 1032

FIGURE 7

Confusion matrix of the ResNet-101 with OASIS dataset.
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TABLE 7 MCI vs. CN (binary classification).

CNN Accuracy Precision Recall F1 Score

A O A O A O A O

ResNet-50 75.23 69.45 80.34 74.56 75.34 68.23 78.45 71.23

ResNet-101 86.57 79.45 92.34 85.23 86.87 78.99 88.76 81.23

ResNet-152 89.56 90.11 93.12 86.12 87.34 79.45 89.23 82.34

DenseNet-201 84.32 77.89 90.45 82.67 84.45 76.78 87.34 79.56

EfficientNet-B0 82.45 76.23 89.12 81.34 82.56 74.93 85.12 78.32

A, ADNI; O, OASIS.

structure that positively influences the distinction between CN, AD, 
and MCI groups the most. It can be deduced from the analysis that 
ResNet-101 exhibited the highest performance among the CNNs, 
with ResNet-152 following suit, whereas EfficientNet-B0 
demonstrated the lowest performance. Across both datasets, ResNet-
101 consistently attained the highest accuracy and F1 score, 
showcasing its efficacy in identifying AD and MCI. In the same way 
that ResNet-101 outperformed ResNet-152, albeit marginally, 

EfficientNet-B0 demonstrated subpar performance, suggesting 
limitations in its ability to classify data, particularly when coupled 
with transfer learning and preprocessing utilizing Gaussian filters.

Table  8 depicts an empirical comparison of AD and MCI 
identification using prominent deep-learning architectures, showing 
that our investigation achieved the maximum efficacy on both datasets.

The analysis of deep learning architectures shows differing degrees 
of performance across various deep learning models. Table 8 presents the 
number of classes, the deep learning architecture used, and the attained 
accuracy. EfficientNet-B2 and 3D-CNN both demonstrated excellent 
accuracy in binary classification tests, suggesting their usefulness in the 
task. DenseNet demonstrated superior performance in a multi-class 
classification job with three classes, highlighting its resilience in 
addressing intricate classification challenges compared to other models. 
ResNet-18 obtained lower accuracy in a different multi-class classification 
scenario, indicating its shortcomings in hard classification tasks 
compared to other models. While in our investigation, the employed 
ResNet-101 obtained the highest accuracy in the multi-class classification 
challenge, showcasing enhanced performance. The findings emphasize 
the significance of choosing a suitable deep learning architecture 
according to the particular classification problem and the intricacy of the 
dataset. The research highlights the subtle variations in performance 
across different deep learning architectures, stressing the need to make 
well-informed choices to enhance model performance for specific tasks.

5 Conclusion

The investigation highlights the crucial use of modern 
neuroimaging and deep learning approaches in diagnosing and 
comprehending neurodegenerative disorders like Alzheimer’s and 

FIGURE 8

ResNet-101 training and validation accuracy (A) and training and 
validation loss (B) on multiclass classification.

TABLE 8 Comparative analysis.

# Classes Deep learning architecture Acc. 
(%)

Ref.

2 3D-CNN 93.00 (16)

2 EfficientNet-B2 93.30 (19)

3
ResNet18, AlexNet, SqueezeNet, 

VGG16, InceptionV3 & DenseNet

82.53 (21)

2 DenseNet 96.51 (30)

3 ResNet-18 69.10 (31)

3 VGG-16 & 19 95.35 (32)

3
DenseNet-201, EfficientNet-B0, 

ResNet-50, ResNet-101, and ResNet-152

98.21 Our
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MCI. The extraction of valuable insights from complicated brain 
imaging using employed datasets ADNI and OASIS, which provide 
comprehensive MRI data, and implementation of advanced 
preprocessing techniques like skull stripping and segmentation 
on ADNI.

The U-Net architecture performed skull stripping on MRI 
images, successfully eliminating non-brain tissues. Specific deep 
learning models, such as DenseNet-201, EfficientNet-B0, ResNet-50, 
ResNet-101, and ResNet-152, were assessed for their ability to detect 
AD and MCI. Transfer learning is a powerful method for improving 
models, especially in situations with little datasets. Performance 
research shows that ResNet-101 regularly outperforms other models, 
followed closely by ResNet-152 with the datasets. ResNet-101 stands 
out as the best performer, attaining the most significant Accuracy 
levels and F1 Score on both datasets. This demonstrates its ability to 
effectively differentiate between people with AD, MCI, and CN 
instances, highlighting its resilience. ResNet-152 performed most in 
distinguishing between MCI and CN instances in a binary 
classification exercise with the OASIS dataset. The findings indicated 
that the CNN models performed well in this multi-class (29) and 
binary classification.

The study yielded promising results, yet several constraints and 
areas for future research remain to be addressed. Variations in model 
performance could stem from dataset characteristics and preprocessing 
methods. Further exploration of diverse preprocessing techniques and 
datasets is crucial to achieving a more comprehensive evaluation of 
model efficacy. While the research focused on a limited range of deep 
learning architectures, investigating additional structures and ensemble 
techniques may further enhance performance. Moreover, delving into 
model architecture choices and identifying biomarkers specific to 
Alzheimer’s and MCI could deepen our understanding of the underlying 
mechanisms of these disorders. Integrating clinical data with 
neuroimaging holds potential to improve diagnostic accuracy and 
prognostic predictions for Alzheimer’s and MCI. Future studies could 
benefit from combining these complementary sources of information 
to develop more robust and reliable predictive models. In the future 
research the research should focus on incorporating multimodality 
images like PET Scan with MRI for the more precise prediction and 
should try to use generative AI models on generating future brain 
images and use if for prediction.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

PP: Conceptualization, Data curation, Formal analysis, Investigation, 
Methodology, Software, Validation, Visualization, Writing – original draft, 
Writing – review & editing. JP: Project administration, Supervision, Writing 
– review & editing. SA: Methodology, Validation, Writing – review & 
editing. AV: Formal analysis, Visualization, Writing – review & editing. BZ: 
Formal analysis, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship and/or publication of this article. This support 
was received by the Researchers Supporting Program at King Saud 
University. Researchers Supporting Project number (RSPD2024R867), 
King Saud University, Riyadh, Saudi Arabia.

Acknowledgments

The authors extend their appreciation to the Researchers Supporting 
Program at King Saud University. Researchers Supporting Project Number 
(RSPD2024R867), King Saud University, Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and 
do not necessarily represent those of their affiliated organizations, or those 
of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, 
is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2024.1445325/
full#supplementary-material

References
 1. What is mild cognitive impairment? Available at: https://www.nia.nih.gov/health/

memory-loss-and-forgetfulness/what-mild-cognitive-impairment. November 22, 2023.

 2. Angelucci F, Spalletta G, Iulio F, Ciaramella A, Salani F, Varsi A, et al. Alzheimers 
disease (AD) and mild cognitive impairment (MCI) patients are characterized by 
increased BDNF serum levels. Curr Alzheimer Res. (2010) 7:15–20. doi: 
10.2174/156720510790274473

 3. Kulasiri D, Aberathne I, Samarasinghe S. Detection of Alzheimer’s disease onset 
using MRI and PET neuroimaging: longitudinal data analysis and machine learning. 
Neural Regen Res. (2023) 18:2134–40. doi: 10.4103/1673-5374.367840

 4. ADNI. Alzheimer’s Disease Neuroimaging Initiative. Available at: https://adni.loni.
usc.edu/. February 20, 2023.

 5. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open 
access series of imaging studies (OASIS): cross-sectional MRI data in young, middle 
aged, nondemented, and demented older adults. J Cogn Neurosci. (2007) 19:1498–507. 
doi: 10.1162/jocn.2007.19.9.1498

 6. Cadena L, Zotin A, Cadena F, Espinosa N. Noise removal of the x-ray medical 
image using fast spatial filters and GPU. Applications of Digital Image Processing XLI. 
(2018). doi: 10.1117/12.2319327

https://doi.org/10.3389/fmed.2024.1445325
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2024.1445325/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2024.1445325/full#supplementary-material
https://www.nia.nih.gov/health/memory-loss-and-forgetfulness/what-mild-cognitive-impairment
https://www.nia.nih.gov/health/memory-loss-and-forgetfulness/what-mild-cognitive-impairment
https://doi.org/10.2174/156720510790274473
https://doi.org/10.4103/1673-5374.367840
https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
https://doi.org/10.1162/jocn.2007.19.9.1498
https://doi.org/10.1117/12.2319327


Pandey et al. 10.3389/fmed.2024.1445325

Frontiers in Medicine 12 frontiersin.org

 7. Kumar S., Kumar H. PneuML: a novel sequential convolutional neural network-
based x-ray diagnostic system for pneumonia in contrast to machine learning and pre-
trained networks. Available at: https://www.scientificbulletin.upb.ro/rev_docs_arhiva/
rez1f3_911998.pdf, (accessed on 2024/01/11).

 8. Pei X, Zhao YH, Chen L, Guo Q, Duan Z, Pan Y, et al. Robustness of machine 
learning to color, size change, normalization, and image enhancement on micrograph 
datasets with large sample differences. Mater Des. (2023) 232:112086. doi: 10.1016/j.
matdes.2023.112086

 9. Rempe M, Mentzel F, Pomykala KL, Haubold J, Nensa F, Kroeninger K, et al. 
K-strip: a novel segmentation algorithm in k-space for the application of skull stripping. 
Comput Methods Prog Biomed. (2024) 243:107912. doi: 10.1016/j.cmpb.2023.107912

 10. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical 
image segmentation In: N Navab, J Hornegger, W Wells and A Frangi, editors. Medical 
image computing and computer-assisted intervention – MICCAI 2015. MICCAI 2015. 
Lecture notes in computer science, vol. 9351. Cham: Springer (2015)

 11. Stoleru GI, Iftene A. Transfer learning for Alzheimer’s disease diagnosis from MRI 
slices: a comparative study of deep learning models. Procedia Comp Sci. (2023) 
225:2614–23. doi: 10.1016/j.procs.2023.10.253

 12. Hoopes A, Mora JS, Dalca AV, Fischl B, Hoffmann M. SynthStrip: skull-stripping for 
any brain image. NeuroImage. (2022) 260:119474. doi: 10.1016/j.neuroimage.2022.119474

 13. Huang G., Liu Z., Weinberger K.Q. Densely connected convolutional networks. 
Available at: https://arxiv.org/abs/1608.06993v5. January 28 2018.

 14. Tan M. EfficientNet: Rethinking Model Scaling for Convolutional Neural 
Networks. doi: 10.48550/arXiv.1905.11946

 15. He K., Zhang X., Ren S., Sun J.. Deep residual learning for image recognition. 
Available at: https://arxiv.org/abs/1512.03385v1.

 16. Shojaei S, Saniee Abadeh M, Momeni Z. An evolutionary explainable deep 
learning approach for Alzheimer’s MRI classification. Expert Syst Appl. (2023) 
220:119709. doi: 10.1016/j.eswa.2023.119709

 17. EL-Geneedy M, Moustafa HE-D, Khalifa F, Khater H, AbdElhalim E. An MRI-
based deep learning approach for accurate detection of Alzheimer’s disease. Alex Eng J. 
(2023) 63:211–21. doi: 10.1016/j.aej.2022.07.062

 18. Chen Y, Wang L, Ding B, Shi J, Wen T, Huang J, et al. Automated Alzheimer’s 
disease classification using deep learning models with soft-NMS and improved ResNet50 
integration. J Radiat Res Appl Sci. (2024) 17:100782. doi: 10.1016/j.jrras.2023.100782

 19. Li H, Tan Y, Miao J, Liang P, Gong J, He H, et al. Attention-based and micro 
designed EfficientNetB2 for diagnosis of Alzheimer’s disease. Biomed Signal Process 
Control. (2023) 82:104571. doi: 10.1016/j.bspc.2023.104571

 20. Inan MSK, Sworna NS, Islam AKMM, Islam S, Alom Z, Azim MA, et al. A slice 
selection guided deep integrated pipeline for Alzheimer’s prediction from structural 

brain MRI. Biomed Signal Process Control. (2024) 89:105773. doi: 10.1016/j.
bspc.2023.105773

 21. Odusami M, Maskeliūnas R, Damaševičius R, Krilavičius T. Analysis of features of 
Alzheimer’s disease: detection of early stage from functional brain changes in magnetic 
resonance images using a Finetuned ResNet18 network. Diagnostics. (2021) 11:1071. 
doi: 10.3390/diagnostics11061071

 22. Nguyen D, Nguyen H, Ong H, Le H, Ha H, Duc NT, et al. Ensemble learning 
using traditional machine learning and deep neural network for diagnosis of 
Alzheimer’s disease. IBRO Neurosci Reports. (2022) 13:255–63. doi: 10.1016/j.
ibneur.2022.08.010

 23. Ioffe S. Batch Normalization: Accelerating Deep Network Training by Reducing 
Internal Covariate Shift. doi: 10.48550/arXiv.1502.03167

 24. Yaseliani M, Ijadi Maghsoodi A, Hassannayebi E, Aickelin U. Diagnostic clinical 
decision support based on deep learning and knowledge-based systems for psoriasis: 
from diagnosis to treatment options. Comput Ind Eng. (2024) 187:109754. doi: 10.1016/j.
cie.2023.109754

 25. Iman M, Arabnia HR, Rasheed K. A review of deep transfer learning and recent 
advancements. Secur Technol Des. (2023) 11:40. doi: 10.3390/technologies11020040

 26. Kumar S, Kumar H. Classification of COVID-19 X-ray images using transfer 
learning with visual geometrical groups and novel sequential convolutional neural 
networks. MethodsX. (2023) 11:102295. doi: 10.1016/j.mex.2023.102295

 27. OASIS. Alzheimer’s detection. Available at: https://www.kaggle.com/datasets/
ninadaithal/imagesoasis.

 28. Kumar S, Kumar H, Kumar G, Singh SP, Bijalwan A, Diwakar M. A methodical 
exploration of imaging modalities from dataset to detection through machine learning 
paradigms in prominent lung disease diagnosis: a review. BMC Med Imaging. (2024) 
24:30. doi: 10.1186/s12880-024-01192-w

 29. Pruthviraja D, Nagaraju SC, Mudligiriyappa N, Raisinghani MS, Khan SB, 
Alkhaldi NA, et al. Detection of Alzheimer’s disease based on cloud-based deep learning 
paradigm. Diagnostics. (2023) 13:2687. doi: 10.3390/diagnostics13162687

 30. Saleh AW, Gupta G, Khan SB, Alkhaldi NA, Verma A. An Alzheimer’s disease 
classification model using transfer learning Densenet with embedded healthcare 
decision support system. Decision Analytics J. (2023) 9:100348. doi: 10.1016/j.
dajour.2023.100348

 31. Oktavian M.W. Classification of Alzheimer’s Disease Using the Convolutional 
Neural Network (CNN) with Transfer Learning and Weighted Loss. doi: 10.48550/
arXiv.2207.01584

 32. Suk H-I, Lee S-W, Shen D. Hierarchical feature representation and multimodal 
fusion with deep learning for AD/MCI diagnosis. NeuroImage. (2014) 101:569–82. doi: 
10.1016/j.neuroimage.2014.06.077

https://doi.org/10.3389/fmed.2024.1445325
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.scientificbulletin.upb.ro/rev_docs_arhiva/rez1f3_911998.pdf
https://www.scientificbulletin.upb.ro/rev_docs_arhiva/rez1f3_911998.pdf
https://doi.org/10.1016/j.matdes.2023.112086
https://doi.org/10.1016/j.matdes.2023.112086
https://doi.org/10.1016/j.cmpb.2023.107912
https://doi.org/10.1016/j.procs.2023.10.253
https://doi.org/10.1016/j.neuroimage.2022.119474
https://arxiv.org/abs/1608.06993v5
https://doi.org/10.48550/arXiv.1905.11946
https://arxiv.org/abs/1512.03385v1
https://doi.org/10.1016/j.eswa.2023.119709
https://doi.org/10.1016/j.aej.2022.07.062
https://doi.org/10.1016/j.jrras.2023.100782
https://doi.org/10.1016/j.bspc.2023.104571
https://doi.org/10.1016/j.bspc.2023.105773
https://doi.org/10.1016/j.bspc.2023.105773
https://doi.org/10.3390/diagnostics11061071
https://doi.org/10.1016/j.ibneur.2022.08.010
https://doi.org/10.1016/j.ibneur.2022.08.010
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.1016/j.cie.2023.109754
https://doi.org/10.1016/j.cie.2023.109754
https://doi.org/10.3390/technologies11020040
https://doi.org/10.1016/j.mex.2023.102295
https://www.kaggle.com/datasets/ninadaithal/imagesoasis
https://www.kaggle.com/datasets/ninadaithal/imagesoasis
https://doi.org/10.1186/s12880-024-01192-w
https://doi.org/10.3390/diagnostics13162687
https://doi.org/10.1016/j.dajour.2023.100348
https://doi.org/10.1016/j.dajour.2023.100348
https://doi.org/10.48550/arXiv.2207.01584
https://doi.org/10.48550/arXiv.2207.01584
https://doi.org/10.1016/j.neuroimage.2014.06.077

	Enhancing healthcare recommendation: transfer learning in deep convolutional neural networks for Alzheimer disease detection
	1 Introduction
	2 Literature review
	3 Materials and methods
	3.1 Methodology
	3.2 Data preprocessing
	3.3 Prominent CNNs
	3.4 Transfer learning

	4 Results and discussion
	4.1 Dataset
	4.2 Performance metrics
	4.3 Analysis
	4.3.1 Multi-class classification (AD vs. CN vs. MCI)
	4.3.2 Binary classification (AD vs. CN)
	4.3.3 Binary classification (MCI vs. CN)
	4.4 Ablation study

	5 Conclusion

	References

