
TYPE Review

PUBLISHED 04 June 2024

DOI 10.3389/fmed.2024.1410668

OPEN ACCESS

EDITED BY

Gian Paolo Caviglia,

University of Turin, Italy

REVIEWED BY

Kyle Poulsen,

University of Texas Health Science Center at

Houston, United States

Aaron Balasingam Koenig,

INOVA Health System, United States

Antonella Mosca,

Bambino Gesù Children’s Hospital

(IRCCS), Italy

Miriam Longo,

IRCCS Ca ’Granda Foundation Maggiore

Policlinico Hospital, Italy

*CORRESPONDENCE

Xiaoming Fan

fanxiaom1987@163.com

†These authors have contributed equally to

this work

RECEIVED 07 April 2024

ACCEPTED 20 May 2024

PUBLISHED 04 June 2024

CITATION

Ma Y, Wang J, Xiao W and Fan X (2024) A

review of MASLD-related hepatocellular

carcinoma: progress in pathogenesis, early

detection, and therapeutic interventions.

Front. Med. 11:1410668.

doi: 10.3389/fmed.2024.1410668

COPYRIGHT

© 2024 Ma, Wang, Xiao and Fan. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

A review of MASLD-related
hepatocellular carcinoma:
progress in pathogenesis, early
detection, and therapeutic
interventions

Yang Ma1†, Jinguo Wang2†, Wenping Xiao1 and Xiaoming Fan1*

1Department of Human Anatomy, School of Basic Medicine, Guilin Medical University, Guilin, China,
2School of Public Health, Guilin Medical University, Guilin, China

The incidence of metabolic dysfunction-associated steatotic liver disease

(MASLD) is continuously rising, evolving into a global health challenge.

Concurrently, cases of hepatocellular carcinoma (HCC) associated with MASLD

are also on the increase. Although traditional risk factors such as age, gender,

and metabolic factors play significant roles in the development of HCC, it

cannot be overlooked that MASLD, triggered by changes in modern lifestyle

and dietary habits, may also exacerbate the risk of HCC, and this phenomenon

is common even among non-obese individuals. Regrettably, MASLD often

fails to receive timely diagnosis, resulting in a limited number of patients

receiving HCC surveillance. Moreover, there is currently a lack of clear definition

for the target population for surveillance beyond patients with cirrhosis.

Consequently, MASLD-related HCC is often detected at a late stage, precluding

the optimal timing for curative treatment. However, our understanding of the

pathogenesis and progression of HCC remains limited. Therefore, this paper

reviews relevant literature from recent years, delving into multiple dimensions

such as pathogenesis, surveillance and diagnosis, prevention, and treatment,

aiming to provide new ideas and directions for the prevention and treatment

of MASLD-related HCC.

KEYWORDS

metabolic dysfunction-associated steatotic liver disease, hepatocellular carcinoma,

inflammatory response, oxidative stress, the intestinal microbiome

1 Introduction

Primary hepatic carcinoma ranks as the sixth most common cancer and the third
leading cause of cancer deaths globally. Hepatocellular carcinoma (HCC) accounts for
75%−85% of these cases. In 2020, ∼900,000 new cases of primary liver cancer were
reported worldwide, leading to 830,000 deaths, indicating a close proximity between the
incidence and mortality rates (1). Multiple risk factors contribute to HCC, including viral
hepatitis, aflatoxin exposure, exposure to certain chemicals, and metabolic dysfunction-
associated steatotic liver disease (MASLD) (2). In the past, viral hepatitis was the
primary risk factor for HCC. However, with improvements in lifestyle and living
conditions, the prevalence of MASLD has been increasing, posing a significant global
public health challenge (3). Concurrently, the incidence of MASLD-related HCC is
also on the rise. Although the incidence of MASLD-related HCC is lower compared
to other causes such as hepatitis B-related HCC, the prevalence of MASLD surpasses
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that of other liver diseases. Furthermore, MASLD-related HCC is
often diagnosed at an advanced stage, making curative treatment
unfeasible (4). Therefore, there is an urgent need to raise global
awareness and conduct thorough research on the underlying
mechanisms to mitigate the impending burden of MASLD-
related HCC.

2 Epidemiological investigation and
association analysis of MASLD
and HCC

The worldwide occurrence and frequency of MASLD are
rapidly on the rise, with a global estimation of ∼25% for its
prevalence (5). Notably, the majority of metabolic dysfunction-
associated steatohepatitis (MASH) cases are expected to increase
by 56% between 2016 and 2030 in China, France, Germany, Italy,
Japan, Spain, the United Kingdom, and the U.S. (6). MASLD is
characterized as a clinicopathological syndrome marked by hepatic
steatosis, associated with factors such as insulin resistance (IR) (7),
autophagy (8), and gut microbiota (9), and obesity (10). These
factors collectively contribute to chronic inflammation, altered lipid
metabolism, and ultimately, the promotion of HCC development.
Given that primary liver cancer ranks as the sixth most common
cancer and the third leading cause of cancer death worldwide
(11), these findings highlight the substantial risk of liver cancer.
Studies suggest that the incidence of MASLD-related HCC may
increase alongside modern living standards and lifestyle changes.
For instance, 35% of the U.S. population was obese in 2012, with
projections estimating that 48.9% will be obese by 2030 (12). This
obesity epidemic is likely to parallel an increase in the incidence
of MASLD-related HCC. A similar crisis is unfolding in China,
where the prevalence of MASLD is expected to rise in tandem
with the obesity and diabetes epidemics. Although most patients
with MASLD present with simple steatosis without advanced liver
disease, a subset of these patients may progress to MASH, leading
to cirrhosis and HCC. From 2016 to 2030, an 82% increase in HCC
incidence is projected for China (6). Additionally, a significant
proportion ofMASLD patients without cirrhosis may developHCC
(13), underscoring the importance of further examining the link
between cirrhotic MASLD, non-cirrhotic MASLD, and HCC in
our discussion.

2.1 The association between MASLD and
HCC in cirrhosis

It is now widely recognized that cirrhosis serves as a critical
risk factor for the emergence of HCC in MASLD patients, with
an annual incidence rate of 10.6 per 1,000 person-years among
those with cirrhosis caused by MASH (14). The primary cause
of MASLD is overnutrition, resulting in the enlargement of fat
deposits and ectopic fat accumulation (15). In this scenario,
the infiltration of macrophages into visceral adipose tissue
compartments gives rise to a proinflammatory state, promotes
insulin resistance, and imbalances in lipid metabolism, leading
to the formation of lipotoxic lipids. These lipids contribute

to cellular stress, including oxidative stress and endoplasmic
reticulum stress, and trigger inflammasome activation, apoptotic
cell death, inflammatory stimulation, tissue regeneration, and
fibrosis, ultimately leading to cirrhosis (16). Notably, the large
vesicular steatosis observed in hepatocytes disappears in advanced
cirrhosis, and the underlying mechanism for this fat disappearance
remains under investigation (17). A prevailing hypothesis suggests
that the physiological characteristics of cirrhosis may either directly
or indirectly affect the ability of hepatocytes to uptake triglycerides,
resulting in abnormalities in the flow of fat-forming molecules
to the subendothelial hepatocytes, thus impacting hepatocyte
permeability (18). Nevertheless, the precise mechanisms linking
MASLD and HCC in the context of cirrhosis remain elusive and
require further intensive investigation.

2.2 The association between non-cirrhotic
MASLD and HCC

In contrast to hepatitis virus-driven HCC, a significant
proportion of patients with MASH develop HCC in the absence
of cirrhosis (19, 20). The exact mechanisms underlying this
phenomenon remain partly unclear but are thought to be related
to pathophysiological changes associated with lipotoxicity, bile acid
(B.A.) signaling, and inflammation (21). It has been shown that
serum B.A. concentrations are elevated in patients with advanced
MASH, and B.A. accumulation can induce parenchymal injury
(22). This, in turn, promotes the progression of MASLD to
HCC. Among patients without cirrhosis who progress to HCC,
the highest risk is observed in males over 65 years old with
a history of smoking, type 2 diabetes, and elevated levels of
alanine aminotransferase (ALT) (23). Furthermore, heightened
levels of ALT and indicators of liver inflammation have been
independently correlated with an increased risk of HCC [hazard
ratio (HR) 6.80, 95% CI: 3.00–15.42; p < 0.001] among individuals
with non-cirrhotic MASLD. This increased risk is attributed to
the influence of a proliferative environment and inflammation
on tumor development (24). This highlights the critical role
of metabolic and inflammatory pathways in the pathogenesis
of HCC in patients without cirrhosis. However, the exploration
of other potential mechanisms remains an essential area for
further research.

3 The mechanisms underlying the
advancement of MASLD to HCC

The progression of MASLD to HCC is facilitated by a range of
mechanisms, as illustrated in Figure 1.

3.1 Insulin resistance

The initiation of MASLD/MASH is marked by the
accumulation of fat in the liver, with IR being the pivotal
pathogenic event leading to hepatic steatosis. Insulin typically
promotes anabolic processes in visceral adipose tissue; however,

Frontiers inMedicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2024.1410668
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ma et al. 10.3389/fmed.2024.1410668

FIGURE 1

The pathogenesis of MASLD-related HCC includes insulin resistance, inflammation, oxidative stress and gut microbiota. The down regulation of

IRS-2 leads to the over expression of SREBP-1 and the up-regulation of DNL, which leads to inflammatory response and oxidative stress. TDCA and

TLCA in intestinal epithelial cells interact with bile acid receptors, resulting in FGF-15 and GLP-1 decline. IRS-2, insulin receptor substrate 2; SREBR-1,

sterol regulatory element-binding protein 1; DNL, de novo lipogenesis; FFAs, free fatty acids; IGF, insulin-like growth factor; ACLY, ATP citrate lyase;

SCD1, stearoyl coenzyme A desaturase-1; TNF-a, tumor necrosis factor alpha; IL-6, Interleukin 6; TDCA, taurodeoxycholic acid; TLCA,

taurolithocholic acid; TCA, taurocholic acid; VDR, vitamin D receptor; PXR, pregnane X receptor; FXR, Farnesoid X nuclear receptor; TGR5,

transmembrane G protein-coupled receptor 5; FGF15, fibroblast growth factor 15; GLP-1, glucagon-like peptide-1.

adipocyte de novo lipogenesis is diminished during insulin
resistance (25). Furthermore, the expression of carbohydrate
response element binding protein beta (ChREBP beta), which
positively regulates de novo lipogenesis, is notably low in the
visceral adipose tissue of individuals with obesity or those with
both obesity and type 2 diabetes. Moreover, the level of ChREBP
beta in visceral adipose tissue is inversely associated with the
severity of hepatic steatosis in these individuals (26). In the context
of IR, the downregulation of insulin receptor substrate 2 (IRS-2)
contributes to the overexpression of sterol regulatory element-
binding protein 1 (SREBP-1) (27). This condition leads to an
upregulation of de novo lipogenesis (DNL), crucial for promoting
lipid storage in the liver. Moreover, β-oxidation of FFAs is inhibited
in states of IR, further exacerbating hepatic lipid accumulation (28).
Insulin and insulin-like growth factor-1 (IGF-1) are growth factors
known to inhibit cell apoptosis. The synthesis and bioactivity of
IGF-1 increase in the presence of IR, and elevated levels of IGF-1

stimulate cell proliferation while inhibiting apoptosis. This effect
significantly elevates the risk of hepatocellular carcinogenesis (29).
Insulin receptor substrate (IRS) molecules, upon binding to insulin
or IGF, activate the phosphatidylinositol 3-kinase (PI3K)/protein
kinase B (AKT) pathway and the mitogen-activated protein kinase
(MAPK) pathway, promoting hepatocarcinogenesis (30). This
intricate interplay of metabolic pathways underscores the complex
relationship between insulin resistance and the progression of
MASLD/MASH to HCC.

3.2 Inflammatory response

The inflammatory response is a critical hallmark of MASLD,
with inflammation being driven by multiple intra- and extrahepatic
factors (31, 32). A high-calorie diet, obesity, certain lifestyles,
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and genetic predispositions all contribute to the risk of
developing MASLD. Hepatocyte overload and an increase in
de novo lipogenesis lead to excessive lipid accumulation within
hepatocytes. This lipid overload induces lipotoxicity, resulting
in endoplasmic reticulum (E.R.) stress, oxidative stress, reactive
oxygen species (ROS) production, and mitochondrial damage.
In response to stress, hepatocytes release pro-inflammatory
mediators and damage-associated molecular patterns (DAMPs),
leading to the activation and infiltration of immune cells,
which further exacerbates hepatocyte damage. Various forms
of cell death, along with hepatocyte senescence, trigger a more
pronounced immune response (33). Bile duct cells may also
contribute to the inflammatory milieu by releasing inflammatory
mediators. Moreover, hepatic inflammation extends to several
extrahepatic systems, including adipose tissue, the intestine, skeletal
muscle, and bone marrow (34). Necroinflammation, hepatocyte
death, and oxidative stress significantly increase the risk of
hepatocarcinogenesis. For instance, oxidative stress in hepatocytes
activates inflammatory pathways, such as those mediated by STAT1
and STAT3, which are known pro-inflammatory transcription
factors. Elevated levels of STAT1 are implicated in inducingMASH-
related inflammation, while high levels of STAT3 independently
drive the development of HCC in mice. This illustrates the intricate
connection between inflammation and carcinogenesis in the
progression from MASH to HCC (35). Such findings highlight the
complex interplay between metabolic dysregulation and immune
responses in the pathogenesis of MASLD and its progression
to HCC.

3.3 Oxidative stress

Oxidative stress (O.S.) is defined as a condition where the
production of reactive oxygen species (ROS) by the body surpasses
the detoxification ability of antioxidants. In simpler terms, it
represents a pathological state characterized by an imbalance in
the body’s antioxidant system, leading to increased oxidation (36).
Oxidative stress stands as a pivotal hallmark of MASLD. The
free radicals responsible for inducing O.S. play a crucial role
in the advancement of MASLD, primarily through disrupting
the process of lipid peroxidation via fatty acid mitochondrial
oxidation, alongside instigating the release of cytokines, which
subsequently ignite inflammation (37). Consequently, O.S. inflicts
damage upon hepatocytes. The lipid peroxidation process initiates
when free radical ROS abstract hydrogen atoms from unsaturated
fatty acids, sparking a deleterious chain reaction. This chain
reaction not only leads to the rupture of cell membranes but
also results in the generation of reactive metabolites capable
of causing cellular dysfunction. Furthermore, lipid peroxidation
and its ensuing products stimulate hepatic stellate cells and
promote the upregulation of pro-inflammatory cytokines (38).
Hepatic iron overload is commonly observed in patients with
MASLD. Due to the Fenton reaction catalyzed by iron, highly
reactive hydroxyl radicals are generated from hydrogen peroxide
(39, 40). Excessive hepatic iron can exacerbate oxidative stress
and inflammation, and elevated iron levels can lead to increased
ROS production. The occurrence of ferroptosis largely depends

on the interconnected signals among subcellular organelles such
as mitochondria, lysosomes, and peroxisomes. These organelles
coordinate the regulation of ROS production and lipid oxidation
during ferroptosis (41). Additionally, these processes have the
potential to trigger cellular pathways leading to necrosis and
apoptosis (42), which could culminate in liver fibrosis and,
ultimately, HCC. This intricate cascade underscores the significant
role oxidative stress plays in the progression fromMASLD to more
severe hepatic conditions.

3.4 Gut microbiota

The transport of blood from the gut to the liver, despite
an efficient multi-layered intestinal barrier, is accompanied by
metabolites and products of the intestinal microbiota, a process
often referred to as microbiota-associated molecular patterns
(43). In the liver, Kupffer cells serve as an effective “bacterial
firewall,” averting bacterial infection while maintaining low levels
of inflammation under physiological conditions (44). Additionally,
the expression of specific bile acid synthases is influenced by the
gut microbiota. Among MASLD’s crucial bile acid receptors are
the Farnesoid X nuclear receptor (FXR) and the transmembrane
G protein-coupled receptor 5 (TGR5) (45). FXR has the capability
to bind to ligands and form dimers with the retinoid X receptor,
thereby regulating the transcription of target genes (46). These
target genes encompass a variety of functions, including bile acid
metabolism/transport, lipid metabolism, and glucose metabolism
(47). Emerging studies have shown that gut flora may precipitate
MASLD by modulating bile acid metabolism, thereby playing a
role in the progression from MASLD to HCC (48–50). Increased
intestinal permeability is a characteristic of cirrhosis, which subjects
the liver to a substantial load of bacteria and bacterial components.
Furthermore, within the gut microbiota-bile acid axis, secondary
bile acids can enhance Toll-like receptor 2 (TLR2) expression
on hepatic stellate cells and elevate levels of the TLR2 agonist
lysophosphatidic acid. This, in turn, promotes the secretion of
senescence-associated secretory phenotype (SASP) factors, thereby
accelerating tumor progression (51). Additionally, the metabolism
of bile acids by gut microbiota can influence liver tumor growth
by modulating the hepatic expression of CXCL16, which is
instrumental in recruiting natural killer T (NKT) cells (52). This
intricate interplay between gut microbiota and liver pathology
underscores the complex mechanisms by which gut-liver axis
dysregulation contributes to the pathogenesis and progression of
liver diseases, including MASLD and HCC.

3.5 Genetics and epigenetics

Polygenic risk scores based on genetic background are
becoming fundamental for monitoring MASLD and assessing
clinical risk, particularly for HCC. The PNPLA3, TM6SF2,
and MBOAT7 genes play crucial roles in the development
and progression of MASLD. These genes affect lipid droplet
accumulation, mitochondrial functionality, and metabolic
reprogramming, leading to HCC (53). Epigenetics involves
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alterations in gene expression levels due to changes that do
not affect the DNA sequence itself, primarily through the
regulation of gene transcription or translation processes, thereby
influencing their function and properties. The metabolic ecology
of tumors is intricate, involving reprogramming of metabolism
to re-establish the tumor microenvironment conducive for
survival and proliferation. This reprogramming encompasses
DNA methylation, histone acetylation, and N6-methyladenosine
(m6A) modifications. Among these, epigenetic alterations, such
as mitochondrial DNA (mtDNA) methylation, may occur during
the development of MASLD. Mitochondria serve as both a major
source and target of reactive oxygen species (ROS), with the
mitochondrially encoded NADH dehydrogenase six genes being
a site of mitochondrial methylation in MASLD (54). m6A is
recognized as the most prevalent internal RNA modification
in eukaryotes, playing a pivotal role in lipid metabolism,
hepatocyte inflammation, and the progression of MASLD to liver
tumorigenesis andmetastasis. Excessivem6Amodification can lead
to increased expression of citrate lyase (ACLY) and stearoyl-CoA
desaturase (SCD1). Furthermore, in vitro targeting of METTL3/14
has been shown to elevate the protein levels of ACLY and SCD1,
resulting in increased production of triglycerides and cholesterol
and accumulation of lipid droplets (55). A comparative study
identified that 44 miRNAs were differentially expressed in the liver
of MASLD patients vs. a healthy liver. Notably, research in MASH
consistently observed a downregulation of liver-specific miR-122
and an upregulation of miR-34a (56). These changes in miRNA-
targeted genes play crucial roles in hepatic energy metabolism,
inflammation, cell regeneration, and fibrotic signaling, driving the
progression from MASLD to hepatic fibrosis and subsequently
to HCC (57). This highlights the significant impact of epigenetic
mechanisms in the pathogenesis and progression of liver diseases,
underlining the importance of understanding these processes for
developing targeted therapies. The pathogenesis of MASLD-related
HCC were showed in Table 1.

4 Monitoring the evolution and
diagnosing MASLD-HCC

MASLD represents a potentially severe liver disease, leading
to significant healthcare costs, economic losses, and diminished
health-related quality of life at the societal level (58). MASH, a
severe form ofMASLD, is a leading cause of progression to cirrhosis
and HCC, becoming an increasingly common indication for liver
transplantation (59). Liver cancer ranks as the second leading
cause of life expectancy loss among all cancers worldwide (60),
underscoring the critical need for effective progression monitoring
of MASLD to HCC. However, the surveillance of MASLD-HCC
progression presents challenges. Firstly, the incidence of MASLD-
HCC is lower than that of viral HCC, which impacts the cost-
effectiveness of screening programs (14). Secondly, MASLD is
typically asymptomatic in its early stages, with clinical symptoms
becoming apparent only as the condition progresses to more
severe stages, such as cirrhosis or HCC. Thirdly, the presence
of subcutaneous fat and hepatic steatosis in obese patients can
impede the effectiveness of ultrasound imaging (61). Loomba
et al. (62), after reviewing the available literature, recommended

monitoring patients with advanced liver fibrosis and cirrhosis
associated with MASLD but advised against monitoring MASLD
patients without signs of advanced liver fibrosis. In scenarios
where ultrasound conditions are challenging, CT or MRI scans
are recommended as alternative imaging modalities. Specifically,
non-enhanced MRI is favored over ultrasound for its brief
time requirement, absence of contrast agent need, and superior
sensitivity and specificity (63). The current Japanese guidelines
for MASLD/MASH suggest a two-step risk stratification process,
which includes screening for fibrosis through serum markers
or platelet count, the Fibrosis-4 index, or the MASLD fibrosis
score (64). Depending on the risk of fibrosis, subsequent liver
elastography or biopsy is suggested. The 2024 Chinese Standard for
the Diagnosis and Treatment of Primary Liver Cancer recommends
the combination of ultrasound and serum AFP levels to screen
high-risk groups early. This approach is especially significant
in diagnosing patients with metabolic dysfunction-associated
cirrhosis, facilitating the early detection of high-risk HCC cases
(65). Despite these recommendations, appropriate monitoring
strategies are still lacking, leading to MASLD-HCC often being
diagnosed at a late stage. This situation highlights the urgent need
for improved diagnostic and monitoring approaches to address
this growing public health concern effectively. The references for
diagnosing and monitoring fibrosis in MASLD were presented in
Table 2. The references for diagnosis andmonitoring of HCC at any
stage (Table 3).

5 Treatment of MASLD-HCC

The treatment options for HCC can be broadly categorized
into surgical resection and non-surgical treatments. Liver resection
is the standard treatment modality for HCC patients without
cirrhosis. For cirrhotic patients with HCC who meet the Milan
criteria and are not candidates for primary surgical resection, liver
transplantation (LT) is recommended. However, the availability
of LT is constrained by the scarcity of donor organs. Current
international guidelines advocate for a Barcelona Clinic Liver
Cancer (BCLC)-based treatment algorithm for managing HCC
(84). Despite these established guidelines, the specific impact of
MASLD as an etiology on the outcomes of HCC patients remains
relatively underexplored. However, it is essential to consider
the unique pathophysiological mechanisms underlying MASLD-
related HCCwhen determining treatment strategies. This approach
allows for tailoring interventions according to the mechanism
of disease occurrence, potentially improving patient outcomes by
addressing the distinct characteristics of HCC that arises in the
context of MASLD. Incorporating the understanding of MASLD’s
role in HCC development into treatment planning is crucial for
optimizing therapeutic efficacy and patient care (Figure 2).

5.1 Regulation of lipid metabolism

Prevention and control of liver diseases, including HCC, can
be effectively managed by regulating lipid metabolism. Changes
in lipid metabolism play a significant role in the progression of
many tumor cells by influencing critical cellular processes such
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TABLE 1 The pathogenesis of MASLD-related HCC.

Machine Related molecules or
genes

Role in
pathogenesis

Implication for
MASLD-HCC

Source
magazine

References

IR (insulin resistance) IRS-2, SREBP-1 Promotes lipogenesis Contributes to
hepatocarcinogenesis

Diabetes Care (28)

IGF-1 Stimulates hepatocyte
proliferation

Increases risk of HCC Clinical Endocrinology
and Metabolism

(29)

IRS, IGF Activates PI3K and
MAPK signaling
pathways

Promotes development
of HCC

Journal of Hepatology (30)

OS (oxidative stress) Free radical Causes liver cell injury
and lipid peroxidation

Leads to HCC Nature Immunology (35)

Mitochondrial oxidation

Inflammatory response STAT1, STAT3 Induction of
inflammation in MASH

Augments progression to
HCC

Clinica Chimica Acta (38)

Intestinal flora FXR, TGR5 Regulates bile acid
metabolism and glucose
metabolism

Alters bile acid signaling
contributing to
hepatocarcinogenesis

European Journal of
Pharmacology

(45)

TLR2 Promotes SASP secretion Facilitates inflammation
and tumor progression

Cancer Discovery (51)

CXCL16 Increases NKT cell
recruitment

Regulates liver tumor
growth

Science (52)

Epigenetics m6A, ACLY, SCD, METTL3/14 Alters lipid and glucose
metabolism

Leads to hepatic fibrosis
and potentially HCC

Molecular Therapy (55)

Genetics PNPLA3, TM6SF2, MBOAT7 Lipid droplet
accumulation,
mitochondrial
functionality, and
metabolic
reprogramming

Leads to HCC Cellular and Molecular
Gastroenterology and
Hepatology

(53)

IR, insulin resistance; OS, oxidative stress; IGF-1, insulin-like growth factor 1; PI3K, phosphoinositide 3-kinase; MAPK, mitogen-activated protein kinase; STAT, signal transducer and activator

of transcription; MASH, metabolic dysfunction-associated steatohepatitis; FXR, Farnesoid X receptor; TGR5, G protein-coupled bile acid receptor; SASP, senescence-associated secretory

phenotype; NKT, natural killer T; m6A, N6-methyladenosine; ACLY, ATP citrate lyase; SCD1, stearoyl-CoA desaturase-1.

as growth, proliferation, differentiation, and migration. Agonists
that target the thyroid hormone receptor (THR)-β, predominantly
located in the liver, have been shown to enhance lipophagy,
mitochondrial biogenesis, and mitophagy. This stimulation leads
to increased β-oxidation of fatty acids in the liver, which reduces
the accumulation of lipotoxic lipids (85). Additionally, these
agonists facilitate the uptake of low-density lipoprotein (LDL)
and positively influence lipid profiles. Several natural compounds
have been identified as potent regulators of lipid metabolism,
particularly through their impact on the expression of genes
related to adipogenesis (86). For instance, compounds such as
lignocaine (87), oleanolic acid (88), and oxymatrine (89) have
been shown to regulate glucose homeostasis and lipid synthesis
by decreasing the expression of SREBP-1c, ACC, and FAS.
Furthermore, betaine has demonstrated significant improvements
in hepatic steatosis in C57BL/6J mice by activating AMPK and
downregulating SREBP-1c. Moreover, betaine reduces hepatic
triglyceride accumulation by lowering methylation of the PPARα

promoter and enhancing PPARα expression, offering a promising
approach to mitigating liver disease progression through the
modulation of lipid metabolism (90). In the context of MASLD,
research indicates that metformin modulates the ATP/AMP ratio
to activate AMPK, which in turn regulates lipid metabolism (91).
In HepG2 cells exposed to palmitate, metformin orchestrates the

regulation of caspase-3, eukaryotic initiation factor-2a (eIF2a),
and insulin receptor substrate-1 (IRS-1), thereby mitigating
endoplasmic reticulum (ER) stress (92). These findings highlight
the therapeutic potential of targeting lipid metabolism pathways in
the prevention and management of liver diseases, including HCC,
through natural compounds.

5.2 Modulating the inflammatory response

Inflammation plays a critical role in MASH and is considered a
key factor in the progression from MASH to HCC. Consequently,
anti-inflammatory strategies may serve as vital components in the
treatment of both MASH and MASH-related HCC. Recent data
suggest that targeting anti-inflammatory and regressive pathways
shows promise for treating MASH. Evidence from patients with
chronic liver diseases and murine model studies have conclusively
demonstrated that fibrosis, even at advanced stages, can regress
following the elimination of the underlying cause (93, 94).
The activation of Mucosal-Associated Invariant T (MAIT) cells
and the subsequent phenotypic shift of liver macrophages are
marked pathological features of liver fibrosis, which can be
targeted through anti-fibrogenic therapy (95). Specifically, the
role of Kupffer cells (K.C.s) and infiltrating macrophages in
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TABLE 2 Diagnosis and monitoring of fibrosis in MASLD.

Instrument/indicator Sensitivity Specificity Monitoring results References

FIB-4 Threshold= 2.67, sensitivity
= 26.6%
Threshold= 3.25, sensitivity
= 96.5

Threshold= 2.67, specificity
= 31.8%
Threshold= 3.25, specificity
= 96.0%

Higher fibrosis stages show improved
diagnostic accuracy

(66–69)

NFS Threshold= 2.0, sensitivity=
76%
Threshold= 1.445, sensitivity
= 61%

Threshold= 2.0, specificity=
72%
Threshold= 1.445, specificity
= 70%

As above (66–68, 70)

APRI Threshold= 1.0, sensitivity=
50%
Threshold= 1.5, sensitivity
= 84%

Threshold= 1.0, specificity=
18.3%
Threshold= 1.5, specificity
= 96.1%

As above (66–68, 71)

MRI 79.1% 27.9% MRI shows significantly higher accuracy
compared to ultrasound

(63, 72, 73)

TVS 77.1% 25.0% As above (63, 72)

ELF Threshold= 9.8, sensitivity=
70%
Threshold= 10.5, sensitivity
= 67%

Threshold= 9.8, specificity=
64%
Threshold= 10.5, specificity
= 78%

Clinically significant fibrosis (stage 2 or
higher), advanced fibrosis (stage 3 or higher),
and cirrhosis (stage 4) each had values of 0.8
or greater.

(74, 75)

Pro-C3 Threshold= 20.1, sensitivity
= 46.7%
Threshold= 25, sensitivity
= 42.5%

Threshold= 12.8, specificity
= 36.3%
Threshold= 13.6, specificity
= 34.6%

As above (75, 76)

NIS4 Threshold= 0.8, sensitivity=
46.2%
Threshold= 0.9, sensitivity
= 37%

Threshold= 0.3, specificity=
57.8%
Threshold= 0.5, specificity
= 46%

NIS4 has met the established criteria for
further qualification efforts, applicable to
diagnostic enrichment for MASH, high MAS,
and at-risk MASH.

(75)

FAST Threshold= 0.35, sensitivity
= 89%
Threshold= 0.67, sensitivity
= 49%

Threshold= 0.35, specificity
= 64%
Threshold= 0.67, specificity
= 92%

FAST is used for non-invasive identification
in patients at risk of progressive MASH
during clinical trials or treatment.

(77)

MAST Threshold= 0.165, sensitivity
= 90%
Threshold= 0.242, sensitivity
= 75%

Threshold= 0.165, specificity
= 72.2%
Threshold= 0.242, specificity
= 90%

The MAST score is an accurate MRI-based
serum score that excels in non-invasively
identifying patients at high risk of fibrotic
MASH, surpassing previous scores.

(78)

FIB-4, FIBROSIS-4 Index; NFS, MAFLD fibrosis score; APRI, AST to Platelet Ratio Index; MRI, magnetic resonance imaging; TVS, transient elastography; ELF, enhanced liver fibrosis; Pro-C3,

procollagen III N-terminal peptide; FAST, FibroScan-AST score; MAST, MRI-based.

mediating local liver inflammation repair is noteworthy (96).
Within the liver microenvironment, K.C.s can be categorized
into two primary phenotypes: pro-inflammatory M1 macrophages
and anti-inflammatory M2 macrophages. Upon cessation of liver
injury, hepatic macrophages transition into Ly6c2-low restorative
macrophages, characterized by the expression of regenerative
growth factors and the secretion of anti-inflammatory cytokines.
These cytokines may promote the apoptosis and extracellular
matrix degradation of activated hepatic stellate cells (HSCs), thus
facilitating the resolution of inflammation (97). FGF21 inhibits
hepatic lipid influx and accumulation through combined endocrine
and autocrine signaling pathways, thereby preventing Kupffer cell
activation and reducing the presence of lipid-associated and scar-
associated macrophages to suppress fibrogenesis (98). The timely
and appropriate modulation of macrophage phenotype is essential
for successfully resolving inflammation and fostering liver tissue
repair. Moreover, there is a notable link between anti-inflammatory
approaches and antioxidants, suggesting that antioxidant treatment
can also be beneficial. For example, rhodopsin has been shown
to inhibit LPS-induced expression of pro-inflammatory cytokines

in macrophages, reducing inflammatory cell infiltration and
ameliorating liver function. Additionally, flavonoids have been
found to significantly mitigate inflammation and thereby prevent
hyperlipidemia and liver injury. This is achieved by enhancing
antioxidant enzyme activity and inhibiting the secretion of
inflammatory cytokines (TNF-α, IL-1, IL-6) in high fructose-
induced obesity mice (99). These findings underscore the potential
of integrating anti-inflammatory and antioxidant therapies in
managing MASH and preventing its progression to HCC.

5.3 Reducing the progression of liver
fibrosis

Fibrosis is a critical and often inevitable process in the
progression of MASLD to HCC, with longitudinal studies
highlighting an elevated risk of HCC and mortality in
MASLD/MASH patients with severe liver fibrosis compared
to those with milder forms of liver fibrosis (100). Although the
progression from MASH to HCC does not invariably require
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TABLE 3 Diagnosis and monitoring of HCC at any stage.

Instrument/indicator Sensitivity Specificity Monitoring results References

AFP Threshold= 10, sensitivity=
68.8%

Threshold= 10, specificity=
88.1%

AFP has emerged as the most commonly
used marker for diagnosing HCC

(79)

AFP-L3 Threshold= 10, sensitivity=
64.2%

Threshold= 10, specificity=
91.5%

Even in the early stages of HCC, particularly
when the tumor is supplied by the hepatic
artery, malignant liver cells produce AFP-L3,
a highly specific marker for HCC

(79, 80)

PIVKA-II Threshold= 7.5, sensitivity=
57.2%

Threshold= 7.5, specificity=
95%

It is an abnormal prothrombin resulting from
disrupted vitamin K metabolism in liver cells

(79)

GPC-3 Threshold= 272.5, sensitivity
= 75

Threshold= 272.5, specificity
= 81.8

The expression of GPC-3 continued to
increase as HCC progressed

(81)

AFU Threshold= 25, sensitivity=
87.5

Threshold= 25, specificity=
98.0

The dynamic curve of serum AFU activity is
extremely significant for assessing the
treatment effects of liver cancer, estimating
prognosis, and predicting recurrence

(82)

GP73 Threshold= 78.1, sensitivity
= 73.4

Threshold= 78.1, specificity
= 80.0

The expression level of GP73 in primary
HCC was found to be positively correlated
with the degree of tumor differentiation

(83)

MRI 79.1% 27.9% MRI shows significantly higher accuracy
compared to ultrasound

(63, 72, 73)

AFP, alpha fetoprotein; AFP-L3, Lens culinaris-agglutinin-reactive fraction of AFP; AFU, Alpha-L-fucosidase; GP73, Golgi glycoprotein 73; GPC-3, glypican-3; PIVKA-II, protein induced by

vitamin K absence or antagonist-II, PIVKA-II is also known as DCP.

FIGURE 2

Treatment of MASLD-related HCC includes the following aspects: regulation of lipid metabolism, improvement of inflammatory response, mitigation

of liver fibrosis, and intestinal microbia-related therapy. Glucose homeostasis and lipid synthesis were regulated by down-regulating SREBP-1C and

ACC. Ly6c2 low-expressing restorative macrophages express regenerative growth factors and secrete anti-inflammatory cytokines. These cytokines

may promote the apoptosis of activated hepatic stellate cells (HSCs) and the degradation of the extracellular matrix, thereby facilitating the resolution

of inflammation. A dual C-C chemokine receptor type 2 and 5 antagonists significantly improved liver fibrosis, and antibiotics and pasteurization are

used to regulate gut microbiota.

liver fibrosis, the onset of excessive fibrosis almost certainly leads
to irreversible liver damage. Thus, preventing and controlling
the development of liver fibrosis is of paramount importance.
Cysteine aspartate protease has been identified as a protease linked
to hepatic apoptosis and inflammation. However, treatments
with pan-cysteine protease inhibitors have not shown efficacy in

improving fibrosis or in the regression of MASH (101). In the
2-year phase IIb CENTAUR trial, a dual C-C chemokine receptor
type 2 and 5 antagonists demonstrated a fibrosis improvement of
≥1 stage without worsening. Interestingly, a significant proportion
(60%) of patients who showed a fibrosis response after 1 year
of treatment compared with placebo maintained this fibrosis
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reduction into the second year. Despite these promising results,
the long-term effects of this treatment on fibrosis remain to be fully
elucidated (102). Treatment may exert a protective effect against
fibrosis by reducing the expression of fibrosis markers in mice with
steatosis induced by a combination of a high-fat diet (HFD) and
carbon tetrachloride (CCl4). This emerging evidence underscores
the potential of novel therapeutic agents in mitigating fibrosis
and highlights the necessity for continued research into effective
treatments for liver fibrosis in the context of MASLD and MASH.

5.4 Gut microbiota interventions

The critical role of gut microbiota in the pathogenesis of
MASH and its progression to hepatocellular carcinoma (MASH-
HCC) has been increasingly recognized, prompting investigations
into various therapeutic approaches. These include the use of
antibiotics such as rivastigmine, probiotics, farnesoid X receptor
(FXR) agonists, Toll-like receptor (TLR) antagonists, and inhibitors
of bacterial metabolites (103). Furthermore, recent studies have
explored the gut microbiome’s potential role in modulating
responses to immune checkpoint inhibitor therapy, highlighting
a novel area of therapeutic intervention. An intriguing outcome
emerged from a clinical trial involving overweight or obese insulin-
resistant participants. The daily administration of pasteurized
bacteria over 3 months was found to be safe, well-tolerated, and
resulted in improved insulin sensitivity and lipid profiles among
the treated patients. While this study did not directly demonstrate
a clinical benefit in reducing HCC risk, the approach suggests
a possible efficacy in lowering HCC risk among patients with
MASLD (104). This finding introduces a promising avenue for
leveraging gut microbiota modulation to enhance metabolic health
and potentially reduce cancer risk. Additionally, a pioneering
clinical trial that combines vancomycin therapy with immune
checkpoint blockade has been initiated at the National Cancer
Institute (NCT03785210). This trial aims to investigate whether the
integration of checkpoint inhibition with selective manipulation of
themicrobiota yields benefits for patients withHCC (105). Immune
checkpoint inhibitors, which target immunomodulatory molecules
(or their ligands) on T cell surfaces to amplify antitumor immune
responses, have gained approval for treating HCC (106). This
innovative approach underscores the intersection of microbiome
science and immunotherapy in crafting novel treatment strategies
for HCC, marking a significant step forward in our understanding
and management of this complex disease.

5.5 Metabolic pathway interventions

There is an acknowledged link between metabolic disorders
and HCC. This recognition has spurred interest in therapeutic
approaches that target metabolic pathways as potential strategies
for HCC treatment. It has been proposed that type 2 diabetes
and hypertension, hyperlipidemia, obesity, indicated by body
mass index (BMI), are key contributors to severe liver disease
(107). Consequently, approaches focusing on insulin resistance and
diabetes may be effective in mitigating metabolic imbalances in

HCC. Contemporary antidiabetic medications that also promote
weight loss could help alleviate HCC symptoms. Notable among
these medications are the agonists of glucagon-like peptide-1
(GLP-1), which enhance insulin secretion in response to glucose
levels (108). Metformin, an oral antidiabetic drug, is the preferred
treatment for type 2 diabetes due to its high efficacy and low
cost (109). It reduces the risk of HCC in patients with diabetes-
related chronic liver disease by inhibiting the progression of HCC.
Dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), another class
of oral antidiabetic drugs based on incretin hormones, have been
shown to decrease the risk of HCC in patients with type 2 diabetes
and chronic HCV infection (110). Other therapeutic targets of
interest are FGF19 and FGF21, which have garnered attention
for their hepatoprotective properties and beneficial effects on
inflammation and fibrosis, making them promising candidates
for drug development. The FGF21 analog, pegbelfermin, has
demonstrated favorable metabolic effects and reduced liver fat
content in MASH patients after 16 weeks of treatment (111).
Similarly, the FGF19 analog, NGM282, appears to be highly
effective in reducing hepatic steatosis (112). In HCC, mutations
within the C-terminal domains of specific receptor tyrosine kinases
lead to their persistent activation. Inhibiting this phosphorylation
has dual benefits: it suppresses tumor growth and inhibits
angiogenesis in HCC. Tyrosine kinase inhibitors (TKIs), which
serve as multi-kinase inhibitors, are primarily used in treatment
to target key receptors such as VEGF, PDGF, RAF, FGF, KIT, and
RET (113). A vital pathophysiological approach includes using
TKIs to curb both angiogenesis in the tumor’s microenvironment
and the proliferation of cells (113, 114). The main receptors
affected in angiogenesis signaling by these inhibitors include VEGF,
PDGF, and FGF receptors (115). Peroxisome proliferator-activated
receptors (PPARs) are crucial regulators of metabolism and
inflammation. In various independent experimental mousemodels,
the pan-PPAR agonist lanifibranor has shown improvements across
multiple facets of MASLD (116). In a phase 2b trial involving
MASH patients, a 1,200mg dose of lanifibranor significantly
outperformed a placebo, as evidenced by at least a two-point
reduction in the SAF-A score and a notably higher percentage
of patients who did not experience worsening of fibrosis (117).
Exploring metabolic pathways in the management of HCC has
highlighted the substantial potential for therapeutic interventions.
Focusing on antidiabetic drugs and agents targeting specific
metabolic receptors presents a promising approach to reducing
both the incidence and severity of HCC (Table 4). Further
clinical trials and research are required to fully understand the
effectiveness and safety of these treatment methods across various
patient populations.

6 Preventing the occurrence of
MASLD-HCC

Implementing healthy lifestyle changes, encompassing both
diet and physical activity, is recognized as the most effective
and cost-effective strategy for managing MASLD. This approach
is pivotal not only in correcting MASLD but also in delaying
its progression to HCC. Moreover, these lifestyle modifications
play a crucial role in addressing other complications associated
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TABLE 4 Potential of metabolic pathway interventions in HCC related drug research.

Therapeutic approach Drug class/type Mechanism References

Antidiabetic medications GLP-1 agonists Enhance insulin secretion in response to glucose (108)

Metformin Inhibits progression of HCC in diabetes-related liver disease (109)

DPP-4 inhibitors Based on incretin hormones, reduce HCC risk in diabetic
patients with chronic HCV infection

(110)

FGF analogs FGF21 analog (Pegbelfermin) Favorable metabolic effects, reduces liver fat (111)

FGF19 analog (NGM282) Reduces hepatic steatosis (112)

Tyrosine kinase inhibitors TKIs (multiple kinds) Inhibit key receptors like VEGF, PDGF, RAF, FGF, KIT, and
RET

(113–115)

PPAR agonists Lanifibranor Pan-PPAR agonist, improves multiple facets of MASLD (116, 117)

GLP-1 agonists, glucagon-like peptide-1 receptor agonist; DPP-4 inhibitors, dipeptidyl peptidase 4 inhibitors; FGF, fibroblast growth factor.

with metabolic syndrome, such as hypertension, insulin resistance,
and cardiovascular risk. Additionally, adopting a healthier lifestyle
can mitigate the risk of obesity-related cancers. This holistic
approach underscores the significance of lifestyle interventions
in the comprehensive management of MASLD and its associated
comorbidities, highlighting the interconnectedness of liver health
with overall metabolic and cardiovascular wellbeing. Through the
promotion of dietary improvements and increased physical activity,
individuals can significantly enhance their health outcomes,
thereby reducing the burden of MASLD and preventing its
progression to more severe liver diseases and other metabolic
conditions (Table 5; Figure 3).

6.1 Daily dietary routine

The cornerstone of dietary intervention for managing MASLD
focuses on controlling dietary caloric intake and modifying the
dietary structure. Consumption of a high-fat diet has been linked to
significant activation of Akt and increased mTOR phosphorylation,
leading to a marked reduction in lipid autophagy. This adverse
effect, however, can be mitigated through the adoption of a
low-calorie diet (118). Implementing a low-carbohydrate, high-
protein diet may further enhance hepatic steatosis management
by modifying the gut microbiota, elevating serum folate levels,
and reducing inflammatory markers. Such dietary adjustments
underscore the importance of a holistic approach to MASLD
management, targeting both hepatic and metabolic pathways.
Moreover, cardiovascular events represent the primary cause of
mortality among individuals with MASLD. A low-carbohydrate,
high-fat (LCHF) diet may not only facilitate the reversal of
MASLD (121) but also improve the prognosis of MASLD
patients by modifying risk factors associated with cardiovascular
events. These modifications include improvements in total serum
cholesterol and high-density lipoprotein levels (119, 120). This
dual benefit highlights the critical role of dietary management
in addressing the multifaceted challenges posed by MASLD,
emphasizing the potential for dietary interventions to concurrently
tackle liver health and cardiovascular risk. Through strategic
dietary changes, individuals can significantly impact their health
outcomes, underlining the importance of diet in the comprehensive
management of MASLD and its associated comorbidities.

6.2 Physical activity

Oxidative stress, triggered by reactive oxygen species, alongside
inflammation, plays a crucial role in hepatocellular damage among
patients withMASLD. Exercise emerges as a potent intervention for
MASLD by enhancing the expression of antioxidant enzymes and
anti-inflammatory mediators. Notably, exercise has been shown to
exert a beneficial effect on MASLD (125), underlining the intrinsic
value of physical activity in liver health management. Furthermore,
exercise contributes to reducing the risk of HCC. This protective
effect is thought to be mediated through several mechanisms,
including the improvement of mitochondrial function (exemplified
by enhanced mitochondrial biosynthesis and autophagy) reduction
of MASLD/MASH activity, and modulation of oncogenic signaling
pathways (122). The link between regular physical activity and
a decreased risk of HCC was substantiated by findings from the
European Prospective Investigation into Cancer and Nutrition
(EPIC) study, which revealed that individuals engaging in at least
2 h of vigorous exercise weekly had a reduced HCC risk (123). This
association was further supported by a meta-analysis of prospective
studies, demonstrating a significantly lower risk of HCC in
individuals with high levels of physical activity compared to those
with low activity levels (124). Given these insights, it is advised for
patients who experience improvements in fatty liver conditions due
to exercise to commit to at least 12 weeks of moderate-intensity
physical activity. Following this period, it becomes particularly
insightful to assess the extent of hepatic steatosis, highlighting
the importance of sustained exercise regimens in the effective
management of MASLD and the prevention of its progression
to more severe liver conditions like HCC. This recommendation
underscores the critical role of exercise not only as a therapeutic
strategy for MASLD but also as a preventive measure against its
progression to HCC.

6.3 Medications

Pharmacological prevention emerges as a viable option when
lifestyle interventions fail to yield desired outcomes, with several
drugs demonstrating the ability to modulate risk factors and
carcinogenic pathways associated with MASLD/MASH-induced
HCC. A notable national registry study in Sweden provided
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TABLE 5 Prevention of the progression of MASLD-HCC.

Category Intervention E�ect References

Daily dietary routine Low-calorie diet Reverses lipid autophagy (118)

Attenuates hepatic steatosis

Low-carb, high-protein diet Improves hepatic steatosis (118)

Modifies gut microbiota

Elevates serum folate levels

Reduces inflammatory markers

LCHF Reverses MASLD (119–121)

Improves prognosis by modifying cardiovascular risk factors
such as total serum cholesterol and HDL levels

Physical activity Exercise Enhances expression of antioxidant enzymes and
anti-inflammatory mediators

(122–125)

Vigorous exercise Improves mitochondrial function

Reduces MASLD/MASH activity

Modulates oncogenic signaling pathways

Reduces risk of HCC

Medications Aspirin Reduces risk of HCC without increasing GI bleeding (126–128)

Inhibits MASH and fibrosis through selective COX-2
inhibition

Pioglitazone Decreases HCC incidence (129–131)

Activates PPAR-γ

Iinhibits hepatic stellate cell activation

Iinfluences lipocalin levels

Lipophilic statins Inhibits MYC, Akt, and NF-κB pathways (132, 133)

Reduces pro-inflammatory and pro-fibrogenic cytokines
production

Impairs tumor cell growth and invasion

HDL, high-density lipoprotein; GI, gastrointestinal; COX-2, cyclooxygenase-2; PPAR-γ, peroxisome proliferator-activated receptor gamma; MYC, MYC oncogene family; Akt, protein kinase B;

NF-κB, nuclear factor kappa B; LCHF, low-carbohydrate high-fat diet.

evidence that regular intake of aspirin at doses below 160 mg/day
for a duration of at least 5 years significantly reduced the risk
of HCC without escalating the risk of gastrointestinal bleeding
(126). Further, in a cohort of 361 patients with biopsy-proven
MASLD, daily aspirin administration was significantly associated
with a reduced odds ratio (OR) for MASH and fibrosis. This
protective effect of aspirin against MASH and fibrosis is thought
to be mediated through selective inhibition of cyclooxygenase-
2 (127). Based on a systematic review and meta-analysis by
Abdelmalak et al., the use of aspirin in patients without cirrhosis is
associated with an∼30% reduction in the risk of HCC. However, in
patients with cirrhosis, this protective effect did not reach statistical
significance (adjusted HR 0.96, 95% CI 0.84–1.09). Furthermore,
the study also noted an increased risk of bleeding associated with
aspirin use (adjusted HR 1.11, 95% CI 1.02–1.22) (128). Given
the inherently higher risk of bleeding in cirrhotic patients, this
risk may be more pronounced. Therefore, the pharmacological
prevention of HCC should be carefully case-selected, particularly
considering the stage of liver disease and the individual bleeding
risk, to ensure an optimal risk-benefit ratio. Pioglitazone, an

activator of the peroxisome proliferator-activated receptor-gamma
(PPAR-γ), renowned for its insulin-sensitizing properties, has been
observed to decrease the incidence of HCC in both a hospital-
based case-control study and a population-based cohort study
(129). The anticancer effects of pioglitazone are postulated to
arise from the inhibition of hepatic stellate cell activation, as
suggested by in vitro studies (130). Moreover, pioglitazone has
shown to positively influence lipocalin levels, which is linked to
the prevention of carcinogenesis (131). Lipophilic statins, known
for their higher lipid solubility and membrane permeability, enable
them to exert cholesterol-dependent effects on HCC development
(132). These effects potentially include the inhibition of key
oncogenic pathways such as MYC, protein kinase B (Akt), and NF-
κB, along with a reduction in the production of pro-inflammatory
and pro-fibrogenic cytokines such as interleukin-6, tumor necrosis
factor-alpha, and transforming growth factor-beta1. Furthermore,
simvastatin has been documented to impair tumor cell growth and
disrupt the adhesion of tumor cells to endothelial cell monolayers,
consequently hindering tumor cell invasion (133). Especially for
patients with decompensated cirrhosis and liver failure, considering
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FIGURE 3

Prevention of the progression of MASLD-HCC should be carried out from the following three aspects: including diet, exercise and drugs. In terms of

diet, low calorie diet can reduce the production of fat; Low carbohydrate and high protein diets reduce inflammation by improving microbiota and

thereby serum folate levels, and the LCHF diet can reverse MASLD. Exercise can up-regulate antioxidant enzymes and anti-inflammatory mediators,

improve mitochondrial protection, and thus reduce the risk of HCC. In terms of drugs, aspirin can selectively inhibit COX-2 and thus reduce liver

fibrosis; pioglitazone can inhibit HSC activation and thus reduce HCC incidence; lipophilic statins can inhibit PKB pathway and reduce IL-6

production. HDL, high-density lipoprotein; GI, gastrointestinal; COX-2, cyclooxygenase-2; PPAR-γ, peroxisome proliferator-activated receptor

gamma; MYC, MYC oncogene family; Akt, protein kinase B; NF-κB, nuclear factor kappa B; LCHF, low-carbohydrate high-fat diet.

the increased risk ofmyopathy side effect, current evidence suggests
that statins should be used cautiously and only at low doses (max.
20mg) to balance therapeutic benefits and potential adverse effects
(134). This array of pharmacological interventions highlights the
nuanced approach required in the management of MASLD/MASH
and the prevention of its progression to HCC, where medication
can play a critical role alongside lifestyle modifications.

7 Progress and prospects

The clinical management of HCC still faces major challenges,
and many unanswered questions remain to be addressed by
the scientific community. In particular, there are challenges and
problems in the area of MASLD-HCC, where some of the
pathogenesis is understood, but much remains to be learned.
Although current treatments can target known mechanisms,
completely halting the pathogenesis through pharmacological
or surgical interventions remains elusive. Consequently, the
emphasis on prevention (particularly through diet and exercise)
is paramount. This review delves into the pathogenesis, diagnosis,
and monitoring of MASLD-HCC, alongside treatment options
and preventative measures. Presently, the underlying mechanisms

of MASLD-HCC are still under investigation, with a notable
deficiency in effective screening tools, preventive measures, and
curative medications. Hence, it is imperative for both patients and
physicians to prioritize themanagement and control of relevant risk
factors in clinical practice. Such diligence is essential to offer precise
medication guidance and support patients in achieving a more
favorable prognosis. Emphasizing preventative strategies, including
lifestyle modifications, can play a crucial role in mitigating the risk
of MASLD progressing to HCC. This approach underscores the
need for continued research and development in the field, aiming
to enhance our understanding, refine diagnostic tools, and discover
more effective treatments for this complex disease.
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