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Purpose: Quantitative computed tomography (CT) analysis is an important 
method for diagnosis and severity evaluation of lung diseases. However, the 
association between CT-derived biomarkers and chronic obstructive pulmonary 
disease (COPD) exacerbations remains unclear. We  aimed to investigate its 
potential in predicting COPD exacerbations.

Methods: Patients with COPD were consecutively enrolled, and their data 
were analyzed in this retrospective study. Body composition and thoracic 
abnormalities were analyzed from chest CT scans. Logistic regression analysis 
was performed to identify independent risk factors of exacerbation. Based on 
2-year follow-up data, the deep learning system (DLS) was developed to predict 
future exacerbations. Receiver operating characteristic (ROC) curve analysis was 
conducted to assess the diagnostic performance. Finally, the survival analysis 
was performed to further evaluate the potential of the DLS in risk stratification.

Results: A total of 1,150 eligible patients were included and followed up for 
2  years. Multivariate analysis revealed that CT-derived high affected lung 
volume/total lung capacity (ALV/TLC) ratio, high visceral adipose tissue area 
(VAT), and low pectoralis muscle cross-sectional area (CSA) were independent 
risk factors causing COPD exacerbations. The DLS outperformed exacerbation 
history and the BMI, airflow obstruction, dyspnea, and exercise capacity (BODE) 
index, with an area under the ROC (AUC) value of 0.88 (95%CI, 0.82–0.92) in the 
internal cohort and 0.86 (95%CI, 0.81–0.89) in the external cohort. The DeLong 
test revealed significance between this system and conventional scores in the 
test cohorts (p  <  0.05). In the survival analysis, patients with higher risk were 
susceptible to exacerbation events.

Conclusion: The DLS could allow accurate prediction of COPD exacerbations. 
The newly identified CT biomarkers (ALV/TLC ratio, VAT, and pectoralis muscle 
CSA) could potentially enable investigation into underlying mechanisms 
responsible for exacerbations.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a global 
health problem. Acute exacerbations were defined as acute 
worsening of respiratory symptoms associated with lung function 
decline and long-term outcomes (1, 2). COPD exacerbations are 
characterized by an acute deterioration in respiratory symptoms. 
This event requires additional therapy and further increases the 
economic burden on patients (3). COPD exacerbations may 
be attributed to many risk factors, such as respiratory viral infections, 
the exacerbation of other respiratory diseases, and non-respiratory 
diseases (4). Some individuals can progress to respiratory failure, 
requiring intensive care and eventually death, for example, patients 
with certain comorbidities (5). To the best of our knowledge, early-
risk stratification of COPD patients and taking supportive care 
measures are central to avoiding the worst progression and fatal 
outcomes (6). Some risk stratification scores, such as the BMI, 
airflow obstruction, dyspnea, and exercise capacity (BODE) index, 
have been proposed to predict COPD exacerbations in COPD 
patients (7–10). However, these scores have several limitations, such 
as low AUC values (11).

Deep learning (DL) methods are being increasingly integrated 
into scientific discovery (12–14). Nowadays, the DL algorithm plays 
a pivotal role in data mining and analysis of medical imaging. 
Reportedly, the DL algorithm can be used to evaluate the severity of 
emphysema using sequential CT scans (15). Additionally, the DL 
algorithm also performed well in the prediction of hospital 
readmissions and long-term prognosis for COPD (16, 17). Notably, 
these algorithms also showed excellent performance in auxiliary 
diagnosis of infectious diseases, such as sepsis (18). However, studies 
evaluating the capacity of DL techniques in risk stratification of 
COPD patients are limited.

Relevant information on body composition and thoracic 
abnormalities can be obtained by quantitative computed tomography 
(CT) analysis (19–21). CT imaging features have been used to 
identify individuals at risk of progressing to COPD (22). Reportedly, 
Moll et al. developed a tool for predicting all-cause mortality based 
on quantitative CT imaging features in patients with COPD (23). 
Shimizu et al. (24) devised a model for predicting a decline in lung 
function and mortality in COPD using the chest inspiratory CT scan. 
Although the clinical potential of CT biomarkers has been explored, 
the role of CT scan-derived indicators in predicting COPD 
exacerbations remained unclear.

Hence, we aimed to assess the added potential of CT biomarkers 
in predicting COPD exacerbations and thus develop and externally 
validate a DL model.

Methods and materials

Study design

In this retrospective study, hospitalized patients with COPD were 
consecutively recruited at Suzhou Ninth People’s Hospital of Soochow 
University between January 2013 and March 2021. The inclusion criteria 
were as follows: (1) age ≥ 18 years old, (2) confirmed by pulmonary 
function tests at the baseline visit (post-bronchodilator FEV1/FVC ratio 
less than 0.7), (3) receiving chest CT scanning on admission, and (4) no 
malignant tumors or autoimmune diseases simultaneously existed. 
Patients with incomplete clinical information, tuberculosis, asthma, and 
a previous history of lung surgery were excluded. The whole study 
cohort was assigned into two groups at random with a ratio of 6:4 (i.e., 
derivation and internal test cohorts for model development and 
validation, respectively). Data from an external cohort were obtained 
from the Suzhou Municipal Hospital. These eligible individuals met the 
same inclusion criteria as the derivation cohort.

We recorded demographics and laboratory tests from the 
electronic medical record, and chest CT scans were obtained from a 
picture archiving and communication system. Patients were regularly 
followed up every 3 months for 2 years.

The ethical guidelines of the 1975 Declaration of Helsinki were 
strictly followed. The review board of both institutions approved our 
study, and informed consent was waived.

Potential predictors

The BODE index is a simple multidimensional grading system for 
assessing the life quality of patients with COPD. This score consists of 
body mass index, airflow obstruction, dyspnea defined by the mMRC 
questionnaire, and exercise capacity index (25, 26). Previous 
exacerbation history was defined that patients had at least one COPD 
exacerbation since the initial diagnosis of COPD (27).

Outcomes

The clinical outcome of this study is a moderate (requiring 
antibiotics and/or glucocorticoids) or severe (hospitalization, ICU 
admission, or death) exacerbation (10).

CT images acquisition

CT scans were performed using a 64-slice spiral CT (SIEMENS 
CT scanner, Erlangen, Germany; Philips CT scanner, Cleveland, 
USA). On admission, all subjects underwent chest CT scans at 120 
kVp tube voltage and 200 mA tube current. Volumetric inspiratory 
and expiratory CT was performed according to a standardized study 
protocol (28). CT images were reconstructed with a 1-mm section 
thickness and were standardized before review and evaluation. More 
information was provided in Supplementary material S1.

Chest CT image analysis

The function status of the whole lung was quantitatively evaluated 
by 3D slicer software (version 5.2.2) (29). Quantitative volumetric 

Abbreviations: COPD, chronic obstructive pulmonary disease; DLS, deep learning 

system; CT, computed tomography; FEV1, forced expiratory volume in 1s; FVC, 

forced vital capacity; FLV, functional lung volume; ALV/TLC, affected lung volume 

/total lung capacity; CSA, cross-sectional area; VAT, visceral adipose tissue area; 

SAT, subcutaneous adipose tissue area; SM, skeletal muscle area; BODE, body 

mass index, airflow obstruction, dyspnea, and exercise capacity index; ROC, 

receiver operating characteristic; AUC, area under of ROC; CI, confidence interval; 

IQR, interquartile range; BMI, body mass index.
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analysis was conducted based on built-in modules, and individual 
volumes were calculated, including emphysema [low-attenuation 
areas (voxels with ≤ −950HU)] (30). Functional lung volume (FLV) 
is defined as the total volume of ventilated lung tissue. Affected lung 
volume (ALV) is calculated as the sum of the volume of infiltrated 
and collapsed lung tissue.

Next, the body composition of all subjects was evaluated using 
Slice-O-Matic (TomoVision, Magog, Canada, version 5.0) software (31). 
An axial CT slice at the level of the T4 was selected to measure the total 
cross-sectional area (CSA) of the pectoralis major and minor muscles. 
According to the predefined HU threshold, at the level of L1, visceral 
adipose tissue area (VATA, −150 to −50 HU), subcutaneous adipose 
tissue area (SATA, −190 to −30 HU), and skeletal muscle area (SM, −29 
to 150 HU) were calculated (32, 33). Two clinicians (5- and 8-years of 
experience in radiology, respectively) independently reviewed and 
measured all CT indicators when blind to clinical information.

Model construction and evaluation

This model for predicting COPD exacerbations was developed using 
the entire derivation dataset. Artificial neural network (ANN), as one of 
the deep learning algorithms, was introduced for predicting exacerbations 
in this study. For optimizing the architecture and parameters of models, 
we got the best parameter combinations of each model using the cross-
validated grid-search (5-fold) method with software (Python, version 
3.6.2; scikit-learn package, version 0.24). The final models were 
determined for further evaluation based on the best parameters and 
selected variables. Internal and external test datasets were used to evaluate 
the predictive performance of this system. According to the first quartile 
(25%) and the third quartile (75%) of probabilities from this system, the 
cohort was divided into low-, medium-, and high-risk groups. More 
information was provided in Supplementary material S2.

Statistical analysis

Continuous data were shown as the median ± interquartile range 
(IQR) and compared using the Mann–Whitney U-test or Student’s t-test 
as appropriate. Categorical data were compared using the chi-squared test.

Parameters with a possibility threshold of <0.05 based on univariate 
logistic regression analysis were included in the multivariate logistic 
regression model for identifying independent predictors associated with 
COPD exacerbations. We adopted the Spearman correlation coefficient 
(Rho) to evaluate correlations between independent predictors.

The ROC analysis was performed to evaluate the predictive 
performance. We compared the differences between ROC curves 
using the DeLong test. The Kaplan–Meier method and the log-rank 
test were used to estimate survival without exacerbations.

IBM SPSS version 26.0 was used for data analysis. p < 0.05 were 
considered statistically significant.

Results

Patient characteristics

A total of 1,150 eligible patients were enrolled, and the flowchart 
of the study design is shown in Figure 1. The derivation cohort for 

model development consisted of 519 patients, and the remaining 
patients were assigned to internal (n = 346) and external test cohorts 
(n = 285).

In the derivation cohort, the median age and body mass index 
(BMI) were 62 (IQR, 10.5) years and 23.6 (IQR, 4.8), respectively. 
Patients with ≥2 comorbidities accounted for 71.8%. During a 2-year 
follow-up, 90 patients (17.3%) suffered from ≥1 exacerbation. 
Furthermore, we retrospectively enrolled 50 sex- and age-matched 
healthy controls in this study. The baseline clinical characteristics are 
summarized in Table 1 and Supplementary Table S1.

Identification of independent risk factors

In the derivation cohort, the univariate logistic regression analysis 
revealed that ≥2 comorbidities, history of exacerbation, BODE index, 
post-bronchodilator FEV1% pred, and several CT-derived parameters 
were associated with exacerbation events (Table 2). In the multivariate 
analysis, history of exacerbation (OR, 1.32), BODE index (OR, 1.17), 
ALV/TLC ratio (OR, 1.61), VAT (OR, 1.18), and pectoralis muscle 
CSA (OR, 0.95) were associated significantly with exacerbation events 
(Table 2). A correlation map among different predictors is shown in 
Supplementary Figure S1 (see Table 3).

Predictive performance of the DLS

The DLS was developed for predicting at least one exacerbation 
episode in 2 years, based on clinical data (history of exacerbation and 
BODE index) and CT-derived radiomic parameters (ALV/TLC ratio, 
VAT, and pectoralis muscle CSA). Compared with the history of 
exacerbations and BODE index, this system showed the best predictive 
performance with an AUC of 0.90 (95% CI, 0.86–0.94) in the 
derivation cohort, 0.88 (95%CI, 0.82–0.92) in the internal cohort, and 
0.86 (95%CI, 0.81–0.89) in the external cohort (Figures  2A–C,  
Table 3). The AUC values of the DLS in derivation and test cohorts 
were significantly higher than the history of exacerbations and BODE 
index using the DeLong test (p < 0.05).

Patients were stratified by probabilities from the DLS in the 
derivation cohort. In the survival analysis, patients with a higher risk 
were prone to pulmonary exacerbations (p < 0.05) (Figures 2D–F).

Risk stratification of subgroups

To evaluate the ability of the DLS to reclassify the risk of COPD 
patients, the survival analysis was performed in certain patient 
subgroups (Figure 3). Additional discrimination of the DLS for COPD 
exacerbations was determined, such as in patients with a BODE 
index of ≥5.

Discussion

In the present study, the multivariate analysis revealed that 
CT-derived high ALV/TLC, high VAT CSA, and low pectoralis muscle 
CSA were independent risk factors causing COPD exacerbations. 
Remarkably, the DLS was developed and validated to identify 
individuals at risk of COPD exacerbations during 2-year follow-ups 
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based on clinical data and CT-derived biomarkers. This system 
significantly outperformed conventional scores (exacerbation history 
and BODE index), with an AUC value of 0.88. Furthermore, this tool 
showed potential for stratifying patients by the probability of 
exacerbations and offered evidence to make individual care plans.

Recently, multiple studies reported that CT scan-derived body 
composition parameters (muscle and adipose tissue mass and 
distribution) were correlated with adverse clinical outcomes such as 
lung cancer death, adverse cardiovascular events, and fragility fractures 
(34, 35). Our study showed a close correlation between high VAT and 
future COPD exacerbations. Obesity, and abdominal VAT, in 
particular, is an important and distinguishing characteristic in COPD 
patients, and that may be due to adipose tissue function alteration 
(36–38). In addition, pectoralis muscle CSA could be used to evaluate 
the clinically relevant muscle mass (39). Generally, low muscle mass 
represents a decrease in the reserve of multiple physiological systems 
(40). This could lead to worst outcomes, including COPD 

exacerbations. Moreover, high ALV/TLC was found to be significantly 
linked to COPD exacerbations. This may be attributed to inflammatory 
cell infiltration and the collapse of lung tissue structure (41).

To the best of our knowledge, a history of exacerbation and the 
BODE index were widely used indicators for predicting COPD (10, 
42, 43). However, exacerbation history has some limitations, such as 
inherent recall bias and unexplained underlying mechanisms. These 
affect the application of this predictor in patients without exacerbation 
history. Similarly, the BODE index consists of four variables, including 
the variable exercise capacity, and its predictive performance is 
unsatisfactory. The DLS in our study might serve a pivotal role in 
overcoming these limitations.

Furthermore, our data demonstrated that patients with higher 
risk stratified by the DLS were susceptible to the exacerbations of 
COPD. Clinicians can identify high-risk patients using the DLS, 
thereby making adequate antimicrobial therapy. Low-risk 
individuals only receive a standard of care. This might guard against 

FIGURE 1

Flow diagram of the study population and model development.
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the over-medicalization. In addition, certain patient subgroups may 
benefit from this risk assessment tool, such as those with no 
exacerbation history/BODE<5, yet high risk identified by the DLS.

However, our study has some limitations. First, this study is a 
retrospective study, and the generalizability should be validated in a large 
external dataset. Second, the analysis of CT scan-derived parameters 

TABLE 1 (Continued)

PLR score 138(75) 144(67) 129(84)

NLR score 2.7(1.9) 2.5(1.8) 2.6(2.1)

SII score 514.2(450.2) 498.4(397.1) 586(597.3)

aQuantitative values are median (IQR).
bCategorical variables are n (%). Comorbidities include hypertension, diabetes, 
cardiovascular diseases (including coronary heart disease and rheumatic heart disease), 
cerebrovascular diseases (including cerebral infarction and cerebral thrombosis), pulmonary 
diseases (including chronic bronchitis and interstitial pneumonia), and chronic renal 
failure.BMI, body mass index; BODE, body mass index, airflow obstruction, dyspnea, and 
exercise capacity index; GOLD, Global Initiative for Chronic Obstructive Lung Disease; 
FEV1, forced expiratory volume in 1 s. FVC, forced vital capacity; LAA950, low-attenuation 
area (voxels with ≤ −950HU); TLC, total lung capacity; VAT, visceral adipose tissue area; 
CSA, cross-sectional area; SAT, subcutaneous adipose tissue area; SM, skeletal muscle area; 
INR, international normalized ratio; PLT, platelet count; ALB, albumin; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; Cr, creatinine. PLR, 
platelet to lymphocyte ratio; NLR, Neutrophil to lymphocyte ratio; SII, systemic immune-
inflammation index.

TABLE 2 Univariate and multivariate logistic analyses to identify 
predictors of COPD exacerbations in the derivation cohort.

Variable Univariate 
analysis

Multivariate 
analysis

Odds 
ratio

p-value Odds 
ratio

p-value

≥2 comorbidities 1.23 0.043

History of exacerbation 1.29 0.030 1.26 0.027

BODE index 1.23 0.021 1.29 0.013

Post-bronchodilator 

FEV1% pred

0.93 <0.001

CT-derived parameters

  Functional lung volume/

TLC

0.92 0.014

  Affected lung volume /

TLC

1.52 0.009 1.66 <0.001

  VAT 1.14 0.018 1.37 0.002

  SM 0.891 0.038

  Pectoralis muscle CSA 0.96 0.007 0.85 <0.001

Laboratory tests

  White blood cell count 1.06 0.041

  Neutrophil count 1.22 0.015

  Lymphocyte count 1.18 0.024

  PLR score 1.09 0.032

  NLR score 1.21 0.018

COPD, chronic obstructive pulmonary disease; BMI, body mass index; BODE, body mass 
index, airflow obstruction, dyspnea, and exercise capacity index; FEV1, forced expiratory 
volume in 1 s. FVC, forced vital capacity; LAA950, low-attenuation area (voxels 
with ≤ −950HU); TLC, total lung capacity; VAT, visceral adipose tissue area; SAT, 
subcutaneous adipose tissue area; SM, skeletal muscle area; CSA, cross-sectional area.

TABLE 1 Baseline characteristics.

Variable Derivation 
cohort 

(n =  519)

Internal 
cohort 

(n =  346)

External 
cohort 

(n =  285)

Age, ya 62 (10.5) 59(12) 65(16)

Male, sexb 347(66.9) 215(62.1) 192(67.4)

BMI, kg/m2a 23.6 (4.8) 22.9 (4.2) 22.5(3.9)

No. of comorbiditiesb

0–1 146(28.2) 113(32.7) 99(34.7)

≥2 373(71.8) 233(67.3) 184(65.3)

SpO2 at admission%a 95.3(2.3) 96.3(2.7) 97.8(1.9)

Current smokersb 162(31.2) 93(26.9) 32.6(93)

Brinkman index>400b 127(24.5) 67(19.3) 71(24.9)

Severe exacerbation historyb 101(19.5) 59(17.1) 53(18.6)

BODE indexa 2(2) 1.5(2) 2(2)

GOLD gradeb

0 178(40.7) 138(40) 112(39.3)

1 37(11) 51(14.7) 35(12.3)

2 62(33.1) 108(31.2) 105(36.8)

3 106(11.2) 34(9.8) 21(7.4)

4 18(4) 15(4.3) 12(4.2)

Post-bronchodilator FEV1% 

preda

70.5 (17.7) 73.6 (20.1) 65(23.2)

FEV1/FVC ratioa 55.3 (16·8) 59.8 (21) 49.8(18.9)

CT-derived lung-related parametersa

LAA950, % 11.2(10.2) 13.7(11.6) 16.3(9.6)

Functional lung volume/

TLC

62.1(21.3) 65.3(18.5) 70.3(15.7)

Affected lung volume /TLC 43(16.9) 37.8(19.3) 46.2(15.1)

Body composition analysis

VAT, cm2 117.9(89.1) 113.2(92.7) 122.3(81.6)

SAT, cm2 101.2(97.8) 106.9(105.5) 94(94.4)

SM, cm2 97.4(36.3) 92.9(42.7) 89.1(38.8)

Pectoralis muscle, cm2 37.2(13.3) 36.4(12.2) 42.5(10.3)

Laboratory testsa

White blood cell count, 

109/L

7.6(2.1) 7.9(2.3) 7.3(1.9)

Neutrophil count, 109/L 4.9(1.8) 5.1(2.3) 4.8(2.5)

Lymphocyte count, 109/L 2.1(0.9) 1.9(0.7) 2.2(1.1)

Hemoglobin, g/L 135(23) 131(26) 124(31)

INR 0.98(0.1) 0.99(0.09) 1(0.11)

PLT, 109/L 226(82) 236(91) 219(93)

ALB, g/L 37.1(6.6) 35.2(9.3) 36(9.8)

ALT, U/L 17(7) 18(8) 15(10)

AST, U/L 12(7) 16(12) 17(11)

TBIL, μmol/L 11.8(5.1) 10.4(5.4) 12.5 (6.2)

Cr, μmol/L 64(25) 62(27) 71(32)

(Continued)
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FIGURE 2

Discriminative performance of the deep learning system (DLS) for predicting future severe acute COPD exacerbations. (A–C) The red curve represents 
DLS, the blue curve represents exacerbation history, and the purple curve represents the BODE index. The DeLong test was used to compare ROC 
curves, and AUCs were higher for the DLS than exacerbation history and the BODE index (DeLong test p  <  0.05 for all). Survival analysis without 
exacerbation (D–F) all patients were stratified according to prediction possibility from the DLS. The Kaplan–Meier method and log-rank test were used 
to estimate the survival without exacerbations. Patients at high risk were prone to exacerbation (p  <  0.05 for all). The red curve represents patients at 
low risk, the blue curve represents patients at medium risk, and the gray curve represents patients at high risk.

requires experienced clinicians, and it might affect the practical use of 
the DLS in the clinic. A fully automated tool should be devised for image 
analysis. Third, the underlying relationship between these CT 
biomarkers and future exacerbations requires further investigation. 
Finally, although respiratory questionnaires for clinical symptom 
evaluation have some limitations, the potential value of these scores in 
predicting COPD exacerbations should be investigated in future studies.

Conclusion

High VAT, low pectoralis muscle CSA, and high ALV/TLC were 
independent risk factors of COPD exacerbations. We developed and 
externally validated the DLS to identify individuals at risk for future 
exacerbations. This system is expected to improve healthcare quality 
and reduce medical costs.
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FIGURE 3

Survival curves stratified by the deep learning system in the derivation cohort. (A) without exacerbation history; (B) with exacerbation history; (C) BODE 
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represents patients at high risk. The Kaplan–Meier method and the log-rank test were used to estimate survival without exacerbations. The results 
revealed that patients at high risk were prone to exacerbation in all subgroups (p  <  0.05 for all).
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