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Precision medicine, characterized by the personalized integration of a patient’s

genetic blueprint and clinical history, represents a dynamic paradigm in

healthcare evolution. The emerging field of personalized anesthesia is at the

intersection of genetics and anesthesiology, where anesthetic care will be

tailored to an individual’s genetic make-up, comorbidities and patient-specific

factors. Genomics and biomarkers can provide more accurate anesthetic

protocols, while artificial intelligence can simplify anesthetic procedures

and reduce anesthetic risks, and real-time monitoring tools can improve

perioperative safety and efficacy. The aim of this paper is to present and

summarize the applications of these related fields in anesthesiology by reviewing

them, exploring the potential of advanced technologies in the implementation

and development of personalized anesthesia, realizing the future integration

of new technologies into clinical practice, and promoting multidisciplinary

collaboration between anesthesiology and disciplines such as genomics and

artificial intelligence.

KEYWORDS

personalized anesthesia, precision medicine, pharmacogenomics, biomarkers,
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1 Introduction

Precision medicine, a paradigm that individualizes healthcare by integrating a patient’s
genetic blueprint and clinical history (1), is a rapidly evolving field that has demonstrated
its potential across a broad range of biomedical areas and addressed significant
public health challenges (2). This approach is particularly paramount in the realm of
anesthetic management for enhancing patient safety and optimizing therapeutic efficacy.
Additionally, individualized medicine plays a crucial role within precision medicine (3).
Traditional anesthetic protocols, while effective for the majority, often overlook the vast
inter-individual variability in drug responses and procedural risks. These differences can
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lead to unpredictable responses or toxic effects in some individuals
or subgroups, ultimately impacting patient outcomes (4).

Personalized medicine opens up new horizons in the field
(5). The advent of personalized anesthesia heralds a shift toward
a nuanced framework where anesthetic regimens are sculpted
around the patient’s genetic predispositions, existing comorbidities,
and specific physiological parameters. This granular customization
aims to mitigate perioperative complications, fine-tune pain
management, bolster enhanced recovery after surgery (ERAS)
protocols, and enhance patient satisfaction.

Recent strides in genomic sequencing, biomarker
identification, and innovations in monitoring modalities have
been pivotal in catapulting personalized anesthesia from
conceptualization to clinical practice. Pharmacogenomics,
which focuses on identifying genetic variations that affect
the pharmacodynamics and pharmacokinetics of drugs,
has shed light on genetic polymorphisms that modulate
anesthetic sensitivity and susceptibility to complications,
playing an important role in personalized medicine (6).
Concurrently, the emergence of novel biomarkers and cutting-edge
monitoring technology has refined the predictive accuracy of
anesthetic outcomes, facilitating more strategic intraoperative
planning.

This study searched the PubMed database using “personalized
anesthesia,” “pharmacogenomics,” “biomarkers,” “machine
learning,” and “artificial intelligence” as search terms for articles
published between 2000 and 2024. The articles retrieved
included clinical trials, randomized controlled trials, and
reviews. These articles were then categorized according to
the content of their abstracts. This review elucidates the
intricacies of personalized anesthesia within the framework
of precision medicine, emphasizing the influence of genetic
variables, comorbid conditions, and individual patient factors
on anesthetic administration. It canvasses the burgeoning
domain of pharmacogenomics, explores the trajectory of
biomarker and monitoring technology development, and
scrutinizes the impediments and prospective evolution
of personalized anesthesia. Furthermore, it considers the
growing impact of artificial intelligence (AI) and machine
learning as pivotal tools in the evolution of anesthetic
precision.

2 Genetic factors

Pharmacogenomics (PGx) is the discipline of predicting drug
efficacy and toxicity at the genetic level (7), dedicated to elucidating
the genetic variations that underlie the pharmacodynamics and
pharmacokinetics of legacy drugs. This knowledge can guide
the clinical selection of optimal therapeutic agents at the most
appropriate dosage, improving drug efficacy, reducing or avoiding
adverse effects, enhancing prognosis, and saving healthcare costs
(8). This emerging field has evolved from merely identifying
gene-drug pairs to realizing their clinical applications (9). Recent
studies support the premise that adverse drug reactions (ADRs)
can be prevented through PGx testing, highlighting this approach’s
potential to improve drug safety and optimize therapeutic efficacy
(10, 11). Figure 1 illustrates the relationship between genetic factors
and the effects of anesthesia.

2.1 CYP450

Cytochrome P450 (CYP) is a collection of structurally
and functionally related isoenzymes belonging to the group
of B cytochromes. This group includes flavoprotein (NADPH
cytochrome C reductase), hemoglobin (P450), and phospholipids
(phosphatidylcholine). These enzymes are found mainly in the
liver (4), but also in the lungs, kidneys, brain, and, to a lesser
extent, in the gastrointestinal tract, skin, and placental tissue.
CYP proteins, particularly those of the CYP1, CYP2, and CYP3
families, are major contributors to drug metabolism in humans
(12). Their function and expression are regulated by variables such
as sex, age, and disease state (13). CYP450 is the first step in the
metabolism of almost 80% of drugs (14). Table 1 summarizes the
genotypes discussed in this chapter and their impact on drugs used
in anesthetic practice.

Inhalational anesthetics are among the most commonly used
general anesthetic agents in clinical anesthesia and have general
anesthetic, analgesic, sedative, and amnestic effects. Between 20 and
50% of halothane, 2% of sevoflurane, less than 1% of isoflurane, and
0.1% of desflurane are biotransformed in the liver (15). Metabolism
occurs in the liver and kidney via microsomal CYP2E1. Inhalational
anesthetics enter the body and, due to their high lipophilicity, are
rapidly absorbed into the circulation and distributed to the tissues;
they are almost exclusively eliminated by the lungs. Therefore,
their effects do not depend on common polymorphisms in genes
encoding metabolic enzymes or drug transporter proteins (16, 17).
Hepatotoxicity of halothane has been frequently reported (18).
Hepatotoxicity of desflurane, sevoflurane, and isoflurane has also
been occasionally reported (19, 20).

Propofol is the most commonly used parenteral anesthetic with
sedative-hypnotic, anxiolytic, anticonvulsant, anti-inflammatory,
antiemetic, antioxidant, and possibly neuroprotective effects.
Differential responses to propofol may be due to polymorphisms
in the gene encoding the metabolic enzyme CYP2B6 (7). Up to
70% of propofol binds to glucuronide via UGT1A9, while the
remaining 30% of the drug is first hydroxylated via CYP2B6
(17). Iohom et al. (21) found that interpatient variability in
response was associated with the presence of CYP2B6 variants
(R487C, K262R, and Q172), but GABRE variants (mRNA358G/T,
20118C/T, 20326C/T, and 20502A/T) were not statistically
significantly associated.

Ketamine, a potent analgesic, increases heart rate, blood
pressure, and cardiac output. It acts mainly at NMDA receptors
as a non-competitive blocker. Ketamine is metabolized primarily
by two cytochrome P450 enzymes, CYP2B6 and CYP3A4, and is
subsequently glucuronidated and excreted by the kidneys (22, 23).
Li et al. (24) found that the CYP2B6∗6 allele was associated with a
significant reduction in steady-state ketamine plasma clearance in
chronic pain patients.

Midazolam, a common benzodiazepine sedative-hypnotic,
exhibits sedative-hypnotic, anxiolytic, anticonvulsant,
myorelaxant, and amnesic properties. It is primarily metabolized
by CYP3A4 and CYP3A5, and its metabolites bind to glucuronide
(25). The CYP3A4∗22 variant is associated with reduced enzyme
function (26). POR is an important component of the CYP enzyme
system, and POR28 is a common variant. One study found a 45%
lower metabolism of midazolam in patients with the POR∗28
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FIGURE 1

Genetic factors influence the effect of anesthesia.

variant compared to those with the POR∗1/∗1 genotype among
CYP3A5 expressors (27).

Opioids, the most commonly used analgesics, are metabolized
by CYP2B6, CYP2D6, CYP3A4, and CYP3A5. Tramadol is
metabolized in the liver by CYP2D6 into its pharmacologically
active metabolite, O-desmethyltramadol. Fentanyl is metabolized
in the liver by CYP3A4 and CYP3A5 into desmethylfentanyl.
CYP3A5∗1 is the only functional allele known to enhance fentanyl
metabolism (16). Codeine is metabolized in the liver into morphine
by CYP2D6, and patients with poor CYP2D6 metabolism
exhibit very low morphine plasma concentrations after codeine
administration (28). The majority of oxycodone is metabolized
by CYP3A4 into its inactive metabolite, noroxycodone, while a
minority is metabolized by CYP2D6 into its active metabolite,
oxymorphone (28, 29). Metabolism varies among CYP2D6
genotypes, and the analgesic effect of oxycodone is diminished in
individuals with poor metabolism compared to those with extensive
metabolism. Alternative medications should not be metabolized by
CYP2D6 and therefore should not contain oxycodone, tramadol, or
codeine, which are metabolized by CYP2D6 (30).

Ondansetron and tropisetron, commonly used to prevent
post-operative nausea and vomiting (PONV), are 5-HT3 receptor
antagonists. Ondansetron is metabolized in the liver by CYP1A2,
CYP2D6, and CYP3A4, while tropisetron is primarily metabolized
by CYP2D6. Ultra-fast CYP2D6 metabolizers of ondansetron
experience a higher incidence of vomiting and reduced antiemetic
efficacy. It is recommended that dosing be consistent for individuals
with moderate and poor CYP2D6 metabolizing phenotypes. For

ultra-fast metabolizers, antiemetics that do not rely on CYP2D6
substrates are advised (31).

2.2 Pseudocholinesterase

Pseudocholinesterase, or butyrylcholinesterase, is an esterase
that is expressed throughout the body and encoded by the
BChE gene on chromosome 3q26 (43). Mutations in this gene
can lead to pseudocholinesterase deficiency, which in turn slows
the metabolism of certain drugs, resulting in delayed metabolic
conditions (44). Changes in pseudocholinesterase activity can cause
prolonged apnea. Among these changes, the A variant (209A > G,
Asp70Gly) and the K variant (1615G > A, Ala539Thr) are the most
common (45). The elimination of ester-type anesthetics such as
bupivacaine and procaine depends on plasma butyrylcholinesterase
activity. Case studies have highlighted the long-term effects of
epidural injections of chloroprocaine in patients with abnormal
pseudocholinesterase activity (46, 47). Additionally, individuals
with this deficiency may experience long-term paralysis after
the administration of succinylcholine due to impaired drug
metabolism (48, 49).

2.3 Receptor polymorphisms

With regard to receptor polymorphisms, opioid and volatile
anesthetic receptors (e.g., mu opioid receptor (OPRM1) and
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TABLE 1 Summary of anesthetic drugs and genotypes affecting their pharmacological effects.

Drug class Drug Gene Major
variants

Effect on drug
pharmacokinetics/pharmacodynamics and clinical
outcomes

Volatile
anesthetics

Desflurane
Isoflurane
Sevoflurane

CYP2E1 CYP2EI*2

CYP2EI*5 Approximately 70% of patients with halogenated anesthetic
halothane-induced hepatic inflammation patients develop autoantibodies
specifically against CYP2E1 (32)

Intravenous
anesthetics

Propofol CYP2B6 CYP2B6*4 Reduced dose requirements for isoproterenol under general anesthesia in
patients carrying the CYP2B6*6 T allele (33)

CYP2B6*5

CYP2B6*6

CYP2C9 CYP2C9*2
CYP2C9*3

Variants of CYP2C9 (*2, *3) associated with increased risk of hemorrhage
(34, 35)

Ketamine CYP2B6 CYP2B6*1
CYP2B6*6

CYP2B6*6 diplotype may have decreased clearance; Safety: increased risk of
adverse effects

Midazolam CYP3A4 CYP3A4*22 Decreased enzyme activity; increased midazolam plasma concentrations;
increased risk of adverse events (16, 27, 36)

CYP3A5 CYP3A5*1 Increased metabolism of midazolam (17)

Opioid
analgetics

Codeine CYP2D6 CYP2D6*10 As the number of CYP2D6*10 alleles increases, codeine-forming morphine
Cmax and AUC of codeine-forming morphine decreased (37)

Oxycodone CYP2D6*4/*4
CYP2D6*4/*6

Associated with nausea and vomiting following oxycodone administration
(38)

Tramadol CYP2D6 NM
CYP2D6 IM

Associated with enhanced analgesic efficacy of opioids in the treatment of
postoperative pain (39)

hydrocodone CYP2D6*4/*4 Adverse events, including nausea and vomiting, were observed in subjects
with the CYP2D6*4/*4 genotype.
including nausea and vomiting (38)

Fentanyl CYP3A4 CYP3A5 CYP3A4*1G Patients carrying the *1G allele require higher doses of fentanyl to achieve
adequate analgesia (40)

Antiemetics Tropisetron CYP2D6 Ultrarapid
phenotype

Reduced antiemetic effect of ondansetron and tropisetron in postoperative
or chemotherapy-induced nausea and vomiting observed in ultra-rapid
metabolizers of CYP2D6 (41, 42)

Ondansetron CYP1A2 CYP2D6
CYP3A4

gamma-aminobutyric acid type A (GABAA) receptors) have been
shown to result in different patient responses to anesthetics. Opioid
receptors are widely expressed in the central nervous system and
peripheral tissues, and the µ-opioid receptor encoded by OPRM1
is a major binding site for opioids (50). More than 200 variant
alleles of this gene have been identified. Genetic differences arising
from variations in these genes are a major source of variability in
opioid response (51). The OPRM1 118 A > G variant can alter µ-
opioid receptor (MOR) signaling in the brain (52). Studies have
shown that individuals with at least one OPRM1 118G allele have
a blunted response to morphine compared to those with the 118
A/A genotype (53, 54). The OPRM1 A118G polymorphism has also
been associated with post-operative side effects such as vomiting
(55). Additionally, intrathecal fentanyl injections are significantly
more analgesic in women carrying the OPRM1 304G allele (56).

Gamma-aminobutyric acid (GABA) is the major inhibitory
neurotransmitter in the mammalian brain and coordinates
many physiological states, including sleep, anesthesia, and
pain modulation (57). Barbiturates such as isoamylbarbital,
pentobarbital, and secobarbital alter the activity of GABA-A

and glycine receptors, inducing CNS depressant and sedative
effects. Due to their tendency to cause respiratory depression
in preoperative anesthesia, they have been replaced by
benzodiazepines with safer pharmacological profiles (16, 17).

Midazolam and diazepam are orthosteric modulators of the
GABA-A receptor. Choi et al. (58) found that patients with the
AA genotype of GABRA1 (the α-1 subunit of the GABA receptor)
rs4263535 have an increased risk of deep sedation. Malignant
hyperthermia (MH) is a rare autosomal dominant disorder
characterized by sudden onset of muscle spasms, rapid temperature
increase, tachycardia, elevated heart rate, and an increased risk of
heart failure, along with increased oxygen consumption, acidosis,
and myoglobinuria. Mutations in the RYR1 gene, which encodes
the ryanodine receptor on the sarcoplasmic reticulum, are one of
the possible causes (59). Volatile anesthetics and succinylcholine
are the most common triggers of MH in susceptible patients.
Testing all patients suspected of having MH can reduce MH
mortality (60). Anesthetics and their adjuvants are critical in
surgery, and this pharmacogenomic evidence underscores the
potential for genetic analysis to inform anesthetic selection and
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dosing, with the aim of minimizing adverse effects and maximizing
therapeutic outcomes.

Anesthesiologists can use this knowledge to understand
the effects of anesthetics on perioperative disease. Additionally,
opioids, ketamine, and non-steroidal anti-inflammatory drugs are
used in treating chronic cancer pain. Studies have shown that
perioperative administration of opioids that interact with specific
tumor genomes can alter survival outcomes (61). Table 2 lists some
factors associated with anesthesia for certain cancers, although
causality has not been established. These factors could ultimately
influence anesthesia and analgesia in cancer patients by considering
changes in perioperative and pain management interventions for
specific cancer subtypes (62). Incorporating these genetic factors
into clinical practice may help to tailor anesthesia care to match
the genetic makeup of each patient.

3 Biomarkers

Biomarkers are not only key indicators of infection and
host response dysregulation but also valuable tools for assessing
treatment responses. They assist clinicians in predicting patient
risks and serve as diagnostic and prognostic tools for clinical
decision-making and risk stratification in clinical trials (72, 73).
Beyond indicating systemic manifestations of infection and organ
dysfunction, biomarkers offer insights into the biological basis
of disease pathogenesis and treatment outcomes (73, 74). The
detection of specific biomarkers during the perioperative period
can enhance understanding of a patient’s condition, guide the
development of tailored anesthetic regimens for various outcomes,
and reduce patient risks while improving prognosis. For example,
specific combinations of protein biomarkers can identify patients

TABLE 2 Summary of drugs and tumor-related factors in anesthesiology.

Drug Tumor-related
proteins, genes,
etc.

Cancer Result

Volatile anesthetics VEGF-A Ovarian cancer Isoflurane, sevoflurane and desflurane significantly increased the expression of
VEGF-A, MMP-11, CXCR2 and TGF-β genes and enhanced the metastatic
potential of ovarian cancer (63)

MMP-11

CXCR2

TGF-β

VEGF Renal cancer Benzonana et al. (64) found that isoflurane affects VEGF and HIF in correlation
with poor prognosis in renal cancer, while renal cancer cells exposed to
isoflurane cultures exhibited greater migration

HIF

CD39 Colorectal cancer Oh et al. (65) found no difference in the expression levels of CD39 and CD73 in
circulating regulatory T cells between propofol and sevoflurane anesthesia
groups during colorectal cancer surgery. Many perioperative factors may
influence perioperative immune status during colorectal cancer surgery, and the
effect of anesthetics may be minimal

Propofol CD73

GABA-A receptor Breast cancer Garib et al. (66) found an increase in the percentage of migrating cells after
exposing breast cancer cells to isoproterenol The group also reported that
isoproterenol increases migration of breast cancer cells through activation of the
g-aminobutyric acid A (GABA-A) receptor

HIF-1α Non-small-cell lung
cancer

Propofol reduces cancer cell invasiveness by decreasing HIF-1α upregulation
(67)

TGF-β-1 Osteosarcoma Propofol reduces sarcoma cell proliferation and invasion and increases apoptosis
by down-regulating transforming growth factor beta-1 (TGF-β-1) (68)

Opioid analgesics CDKN2A Lung adenocarcinoma Next-generation sequencing in a cohort of lung adenocarcinoma patients
undergoing primary tumor resection found that increased intraoperative opioid
dosage was associated with poorer overall survival and that this association was
amplified in patients with mutations in the CDKN2A tumor suppressor gene, the
alterations in the Hippo and Wnt pathways, combined with increased doses of
opioid drugs, are associated with a reduced recurrence rate of tumors (61)

MMR-D Colon
adenocarcinoma

There is an association between higher intraoperative opioid doses and reduced
recurrence rates, which is amplified in patients with specific tumor mutations in
the DNA mismatch repair system (termed MMR trapped or MMR-D). These
dMMR patients are characterized by an activated immune response in the tumor
microenvironment, which can affect prognosis and response to immunotherapy
(69, 70)

Non-steroidal
anti-inflammatory drugs

NRF2 Lung adenocarcinoma Alterations in the nuclear factor erythroid 2-related factor 2 (NRF2) oncogenic
pathway or the MDM2 gene (part of the TP53 oncogenic pathway) may reverse
the association of ketorolac with poorer and improved recurrence-specific
survival (71)MDM2

Frontiers in Medicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2024.1365524
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1365524 May 4, 2024 Time: 13:38 # 6

Zeng et al. 10.3389/fmed.2024.1365524

with adult respiratory distress syndrome (ARDS) who are most
likely to benefit from interventions such as positive end-expiratory
pressure (PEEP) or conservative fluid management strategies
(75, 76).

Postoperative cognitive deficits are primarily categorized
as postoperative delirium (POD) and postoperative cognitive
dysfunction (POCD) (77, 78). Postoperative delirium (POD) is
an acute and transient dysfunction of the central nervous system
(CNS) (79) occurring in 15–53% of elderly patients immediately
after surgery (80). Unlike delirium, POCD is not a clinical diagnosis
but rather a variable operational concept, defined by postoperative
cognitive decline as measured by neuropsychological testing within
the first three months after surgery (80). POD and POCD are closely
associated with neuroinflammation (81) and several biomarkers
can predict or diagnose the occurrence of both (see Table 3). An
increasing number of preclinical studies have shown that general
anesthetics cause long-term cognitive impairment (82). A recent
meta-analysis revealed that the use of midazolam, propofol,
desflurane, and sevoflurane was associated with a higher incidence
of delirium compared to dexmedetomidine (83). The anti-
inflammatory and immunomodulatory effects of dexmedetomidine
have been shown to reduce acute POD (84). Moreover, the use
of benzodiazepines, opioids, antihistamines, and dihydropyridines
has been linked to an increased risk of delirium (85). Several studies
have indicated that isoproterenol, dexmedetomidine, and fentanyl
reduce the risk of cognitive impairment compared to agents like
midazolam, lorazepam, pethidine, and morphine (86). However,
O’Bryan et al. (87) found statistically that the choice of maintenance
anesthetic had little effect on the perioperative inflammatory
response. Instead, individual patient and surgical factors may have
a greater influence on the inflammatory response. The impact of
anesthetic agents on postoperative cognitive impairment warrants
further investigation, and monitoring relevant biomarkers could
aid in risk stratification and improving prognosis.

4 The role of artificial intelligence
(AI) and machine learning in
personalized anesthesia

Artificial Intelligence (AI), which analyzes and classifies
complex patterns and large amounts of data, is increasingly being
recognized in healthcare for its ability to analyze complex datasets,
simulate human cognitive learning, and incrementally improve its
performance. Its applications range from virtual patient assistance
to medical imaging and diagnostic support. Machine learning, a
subset of artificial intelligence, has demonstrated the capability to
assimilate clinical data to guide decision-making (101). In other
clinical settings, image analysis is an area where AI approaches
hold great promise (102). The wider application of AI in endoscopy
could improve benign adenoma detection rates and reduce both
the costs and risks of unnecessary polypectomies (103). AI-assisted
image analysis aimed at improving disease risk prediction and
diagnosis could detect cancer metastases (104), diabetic retinopathy
(105), and identify benign melanomas (106). AI-based image
analysis has also become part of direct-to-consumer diagnostic
tools for anemia (107). In an attempt to automate the classification
of pediatric pneumonia based on lung ultrasound patterns, neural

TABLE 3 POD/POCD-related biomarkers.

Biomarker Biomarker
function

Result

IL-1β IL-6
TNF-α

Inflammatory Surgery and anesthesia can induce
upregulation of levels of CNS
inflammatory factors such as IL-1β, IL-6
and TNF-α, causing central inflammation
and consequently POCD (88)

IgM Inflammatory Low levels of IgM in the preoperative
period may be one of the predictive
markers of POCD, and increasing IgM
levels or reducing the endotoxic
inflammatory response improves
cognitive dysfunction after cardiac
surgery (89)

β-amyloid(Aβ) Metabolite Excessive deposition of Aβ is also an
important mechanism for cognitive
decline, and Aβ production and
deposition can trigger POCD (90–92)

HMGB1 Inflammatory When inflammation occurs, high
expression of HMGB1 is observed in and
around the hippocampus of the brain of
experimental animals. Peripheral
inflammatory signals were altered by
elevated HMGB1 expression, which
further caused CNS dysfunction and
affected postoperative cognitive functions
(93–95)

S-100β Calcium-
binding
protein

S-100β protein is relevant in predicting
POCD, and overexpression of S-100β

protein further deteriorates the
neuroinflammatory response and
neuronal function (88)

MMP9 Inflammatory Patients with POCD have elevated levels
of the plasma inflammatory marker
MMP9, and its correlation with POCD
needs to be further investigated as a
potential POCD-related biomarker (96)

NfL Neuronal
axonal damage

POD is associated with neuronal axonal
damage, and increased NfL predicts POD,
supporting that NfL can be used as a
biomarker for POD (97, 98)

CRP Inflammatory CRP is one of the markers of central
inflammation; however, there are
limitations in using CRP as a marker of
cognitive function due to its low disease
specificity

Tau Axon protein Plasma Tau protein was significantly
correlated with the incidence as well as
the severity of POD (99)

pNF-H Neuronal
cytoskeletal
proteins

Serum pNF-H, a new central damage
marker highly correlated with POD, may
reflect the occurrence and severity of
POD (100)

POD, postoperative delirium; POCD, postoperative cognitive dysfunction; CNS, the
diagnosis of central nervous system; IL-6, interleukin-6; IL-1β, interleukin 1β; TNF-α,
tumor necrosis factor-α; IgM, immunoglobulin M; β-amyloid, amyloid β-protein, Aβ;
HMGB1, high mobility group box-1 protein; S-100β, the soluble protein-100β; MMP9,
matrix metalloprotease 9; NfL, neurofilament light chain; CRP, C-reactive protein; Tau, tau
protein; pNF-H, phosphorylated neurofilament heavy chain.

network algorithms were able to correctly identify pneumonic
infiltrates in healthy lungs with over 90% sensitivity and 100%
specificity (108).
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The emergence of diagnostic decision support tools has brought
about a paradigm shift in anesthesia practice, combining human
expertise with the computational power of artificial intelligence
(AI) and machine learning (ML) (109). Decision aids aim to
prepare individuals for decision-making by providing accurate
and balanced information about treatment options and outcomes,
helping them make specific and considered choices about their
treatment (110). These aids have shown effectiveness in helping
patients recognize the value sensitivity of decisions, guiding
them to consider benefits and harms, improving patient-provider
communication, and providing guidance throughout the decision-
making process (110). Additionally, decision aids assist patients
in making informed healthcare decisions by offering detailed
information about treatment options and outcomes (110, 111).
AI is utilized for evidence-based clinical decision support (112),
detecting adverse events, and using electronic health record
(EHR) data to predict patients at risk of readmission (113). By
accessing EHR data, AI has demonstrated potential to surpass
physicians in diagnostic accuracy (114–117). Algorithms that
combine imaging and EHR data with relevant medical records can
predict malignancy on biopsy and differentiate between normal
and abnormal screening results, significantly reducing missed
breast cancer diagnoses (118). AI-enabled clinical decision support
systems can reduce diagnostic errors, enhance decision support
intelligence, and assist clinicians with EHR data extraction and
documentation tasks. Moreover, Banegas et al. (119) found that the
use of decision aids reduced decisional conflict and aided women at
high risk for breast cancer in deciding whether to take prophylactic
tamoxifen or raloxifene to reduce cancer risk.

The development of artificial intelligence in all aspects of
anesthesia has brought significant benefits, including airway
management, ultrasound-guided interventions, intelligent drug
infusion systems, accurate intraoperative monitoring, and
perioperative risk assessment (120). A randomized trial evaluating
the performance of an automated inspired oxygen concentration
(FiO2 closed-loop system) using a narrower SpO2 target range
found that the time spent within the clinically determined alarm
limit (86–94%) was as good as with two wider target ranges (121).
In an attempt to automate the classification of pediatric pneumonia
based on lung ultrasound patterns, a neural network algorithm was
able to correctly identify pneumonic infiltrates in healthy lungs
with over 90% sensitivity and 100% specificity (108).

In genetic diagnostics, particularly for rare genetic diseases,
clinicians face the daunting task of distinguishing disease-causing
variants from millions of benign variants (122). Advances in
artificial intelligence are transforming healthcare (123). and are
expected to address bottlenecks in diagnosing rare genetic diseases
through electronic clinical decision support systems (eCDSS) (124–
128). A well-integrated CDSS linked to an electronic health record
(EHR) can simplify data analysis and eliminate the need for
redundant data entry.

Clinical validation and implementation of enhanced decision
support tools are still in their infancy compared to other
functionalities, and there is ample room for research on artificial
intelligence and automation in anesthesia. The introduction of
artificial intelligence and machine learning in medicine has already
helped healthcare professionals improve the quality of care they
provide and is expected to continue to do so in the near future
and beyond. As these technologies advance, they offer a pathway

for a more predictive and personalized approach to anesthesia,
highlighting the need for anesthetists to become proficient in these
digital tools to enhance patient care.

5 Artificial intelligence and real-time
tools

5.1 Monitoring technologies: enhancing
perioperative safety and efficacy

Advancements in monitoring technologies have significantly
augmented the anesthesiologist’s ability to individualize patient
care and optimize perioperative outcomes. Techniques such as
electroencephalography (EEG) for assessing the depth of anesthesia
and near-infrared spectroscopy (NIRS) for cerebral oximetry are at
the forefront of these advancements.

The cerebral oxygen index (COx), correlating local brain
tissue oximetry (StO2) derived from NIRS with mean arterial
pressure (MAP), has become a pivotal tool in monitoring cerebral
oxygenation. Tissue ischemia, hypoxia, hyperoxia, and hyperoxic
reperfusion enhance the production of reactive oxygen species,
thereby inducing oxidative damage (129–131). Such intraoperative
oxidative stress has been implicated in postoperative cerebral
and renal injuries (132). Cerebral oximetry, a non-invasive and
user-friendly technique, allows for the real-time estimation of
cerebral oxygen saturation (133). Recent findings by Lopez et al.
(134) suggest that traditional practices of over-oxygenation during
surgery, commonly believed to be protective, may in fact be
deleterious to cerebral tissues.

Near-infrared spectroscopy has proven to be a reliable
surrogate for cerebral blood flow, offering earlier warnings of
compromised perfusion compared to traditional indicators of
cerebral ischemia (135). Painful stimuli received by the CNS
produce nociception (136). Localized cortical activation in adults
not only results in nociceptive sensations but also causes an increase
in local blood flow to the activated area (137) which significantly
exceeds the oxygen demand of the brain tissue, ultimately leading to
an increase in the oxygen content of hemoglobin. Functional near-
infrared spectroscopic imaging, equivalent to magnetic resonance
in assessing brain function, utilizes the distinct optical properties
of hemoglobin to non-invasively quantify changes in cortical
hemodynamics (138). Thanaboriboon et al. (138) demonstrated an
increased risk of cerebral de-oxygenation events (CDEs) during
shoulder arthroscopy in the beach chair position. The risk of
CDE is high, and factors that may affect cerebral perfusion and
oxygenation should be carefully monitored. Additionally, a study
using near-infrared spectroscopy during shoulder arthroscopy in
the beach chair position found that CDEs were more likely to
occur (139).

Electroencephalography, historically used for diagnosing
neurological diseases, now plays a critical role in monitoring
the depth of anesthesia (140, 141). Frontal cortex EEG signals
exhibit characteristic responses to anesthetic agents, leading to
the development of various devices since the 1990s that utilize
these EEG frequency domain transformations (142). Monitoring
the depth of anesthesia (DoA) via EEG remains a challenge for
anesthesiologists, especially in the elderly, due to age-related
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decreases in brain activity (143, 144), complicating the distinction
between awake and anesthetized states in individual patients.

5.2 Enhancing anesthetic precision with
AI-integrated monitoring technologies

The integration of artificial intelligence (AI) with monitoring
technologies marks a significant advancement in anesthesiology,
leveraging AI’s formidable data processing and self-learning
capabilities. By statistically analyzing the continuous data streams
from anesthesia machines and monitors, AI can harmonize with
technologies like electroencephalography (EEG) and near-infrared
spectroscopy (NIRS), providing real-time feedback on anesthetic
depth to optimize patient care.

Machine learning models, built upon AI foundations, have
demonstrated their utility in perioperative anesthesia management.
These models enhance the interpretation of EEG signals, facilitating
nuanced analyzes of complex data streams for depth of anesthesia
(DoA) monitoring. Studies have highlighted the efficacy of
direct EEG signal analysis through AI and spectral analysis
(120). Park et al. (145) developed a DoA system utilizing real-
time EEG and deep neural network algorithms that surpass
traditional bispectral index (BIS) systems in performance. Gu
et al. (146) devised a monitoring system integrating multi-
electroencephalographic frequencies and entropy features with
neural networks to classify DoA stages with remarkable accuracy.
Ramaswamy et al. (147) extracted EEG spectral features using
clinical trial datasets, logistic regression, support vector machines,
and random forest models, accurately predicting the depth of
sedation in patients. Similarly, Mirsadeghi et al. (148) and Shalbaf
et al. (149) have demonstrated the superior accuracy of machine
learning algorithms over BIS in analyzing EEG features across
various anesthesia depths. AI’s application extends to perioperative
ultrasound, aiding anesthesiologists in swiftly and accurately
interpreting images, enhancing the precision of perioperative
assessments, and streamlining result analysis (148, 149).

The application of artificial intelligence (AI) extends
beyond monitoring anesthesia depth, fundamentally enhancing
perioperative ultrasound imaging. AI’s ability to swiftly and
accurately process ultrasound images promises to revolutionize
anesthesiologists’ workflows by improving the precision of
perioperative diagnostics and reducing the time required for
assessment analysis (120). Hayasaka et al. (150) successfully used
AI to predict difficult intubations, while Hetherington et al.
(151) designed a neural network model that identifies anatomical
landmarks with up to 95% accuracy. AI also assists anesthetists
in analyzing complex ultrasound data; this capability facilitates
the performance of technically demanding procedures, such as
epidural punctures and tube placements, by automatically locating
vertebral bodies and intervertebral spaces. Furthermore, AI aids
in analyzing complex ultrasound data, with machine learning
algorithms now capable of autonomously measuring cardiac
ejection fraction and assessing cardiac function—delivering results
that rival the accuracy of cardiologists and offer greater consistency
than traditional ultrasound evaluations (152).

Moreover, AI’s predictive capabilities extend beyond
diagnostics to the logistical aspects of surgery, including predicting

surgical duration, identifying cancelations in high-risk procedures,
and estimating post-anesthesia care unit stays. These advancements
pave the way for more tailored anesthesia management, catering
to the unique needs of each surgical procedure and patient
profile (153).

6 Comorbidities and patient factors

An individual’s response to anesthesia is significantly
influenced by various comorbidities and patient-specific factors
(see Figure 2).

Age, particularly in the elderly, is an important determinant.
This population has reduced cardiac, pulmonary, and renal reserve
capacities and often exhibits physical and cognitive impairments.
Anesthesia induces a complex physiological response in this
group, which is exacerbated by the age-related decline in renal
clearance. This decline prolongs the elimination half-life of both
hydrophilic and lipophilic drugs, causing pharmacokinetic and
pharmacodynamic changes that ultimately increase susceptibility
to sedation (154). The clearance of benzodiazepines decreases
significantly with age, enhancing their effects and increasing the
risk of sedation-related adverse events (155, 156). Additionally,
interactions between sedatives and centrally acting drugs, including
general anesthetics, often produce synergistic effects (157).

Obesity is a multifactorial state of physiological dysfunction
resulting from a complex interaction of genetic, environmental, and
endocrine factors. It is often associated with comorbidities such as
hypertension, hyperglycemia, hyperlipidemia, cardiac hypertrophy,
and obstructive sleep apnea (OSA). The perioperative period in
obese patients is compromised by an increased risk of pulmonary
complications, typically characterized by altered respiratory
mechanics, including increased respiratory rate, decreased tidal
volume, and increased airway resistance (158, 159). Notably,
obesity is a predictor of difficult airway management and is
significantly correlated with difficult intubation scenarios (160).

This reduction in patients with hepatic dysfunction (especially
those with cirrhosis) may be exacerbated by a lack of compensatory
increase in portal blood flow during anesthesia (161). Drugs
such as etomidate and sodium thiopental are known to reduce
hepatic blood flow, whereas dexmedetomidine and several opioids
(except remifentanil) undergo hepatic biotransformation and
therefore require dose adjustment in the presence of hepatic
insufficiency (162, 163). At the same time, renal disease alters
the pharmacokinetics and pharmacodynamics of anesthetic agents.
Rocuronium bromide and vecuronium bromide depend on renal
excretion for 30% of their elimination and may have a prolonged
duration in the presence of renal insufficiency. In contrast, cis-
atracurium and atracurium, which undergo Hoffman elimination,
are unaffected by renal impairment (164).

Cardiovascular disease poses a major challenge in the
perioperative period, where surgical trauma, anesthesia, and
related factors can induce arrhythmias, myocardial ischemia, and
hemodynamic changes that can seriously affect patient prognosis
(165). Patients with chronic hypertension tend to be more sensitive
to anesthetics and surgical procedures (166).

The choice of anesthetic modalities and anesthetic drugs should
be assessed in light of the patient’s condition and individual
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FIGURE 2

Age and obesity of patients or related complications affect the anesthetic effect.

differences, and a personalized anesthetic plan should be developed
based on the patient’s specific physiological conditions.

7 Challenges and future directions

7.1 Challenges in the implementation of
personalized anesthesia

Despite its promise, personalized anesthesia still faces a
number of significant obstacles. The limited availability and high
cost associated with pharmacogenomic testing pose significant
barriers to its widespread use. In the United States, clinical
pharmacogenomic testing laboratories must be accredited by
organizations such as the College of American Pathologists, and
false positives and false negatives can occur due to potential
errors in the test design itself (167). In addition, results
are not standardized and may vary from lab to lab (168,
169). Second, the translation of pharmacogenomics into clinical
practice requires the availability of high-quality genotyping tests
in a short period of time, and the correct interpretation of
pharmacogenetic test results by clinicians requires an adequate
clinical decision support infrastructure, so it is necessary to
train healthcare professionals (170) and to attempt to apply
artificial intelligence and machine learning to create drug response
prediction models to analyze genomic and other “histologic”
data (171) to allow patients to choose the right drug at

the right dose. As technology advances and costs decrease,
genotyping may become more accessible and practical in routine
anesthesia practice.

7.2 Navigating the pharmacogenomic
landscape in anesthesia

The application of pharmacogenomic testing in clinical
practice is compounded by the complexity of interpreting
genetic data, particularly in the context of polypharmacy. Drug-
drug interactions must be meticulously considered alongside
pharmacogenomic results to accurately predict phenotypic
outcomes (172). For instance, a patient concurrently taking
multiple medications that prolong the QT interval (QTc) may
be predisposed to torsades de pointes, even if pharmacogenomic
testing predicts a normal response. Similarly, pharmacological
agents that act as inhibitors or inducers can significantly alter the
functionality of drug-metabolizing enzymes, thus transforming
the phenotype (172). The integration of pharmacogenomic results
with other clinical factors—such as age, existing comorbidities, and
current medications—is imperative to avoid suboptimal patient
outcomes (173). Any variant of a gene can affect the efficacy and
safety of a drug, and 95.12% of all genes have one or more variants.
Therefore, the detection of variants within key genes is important.
For instance, the presence of 64 variants within the rosuvastatin
gene raises concerns about the impact of these variants, which could
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range from negligible to the induction of severe myopathy, affecting
a significant portion of prescriptions (174).

Given the intricacies of pharmacogenomic data, the
development of intuitive tools and comprehensive guidelines is
essential to aid anesthesiologists in interpreting and applying
genetic information to patient care, thereby facilitating the delivery
of truly personalized anesthetic management.

7.3 Advancing education and training in
anesthesiology

The evolving field of anesthesiology is increasingly
incorporating the principles of genetics, pharmacogenomics and
personalized medicine. To ensure that these advances are translated
into improved patient care, anesthetists need to be educated and
trained in these disciplines, either through books or courses. They
should be able to detect genetic polymorphisms and biomarker
changes and determine individual conditions, as well as be skilled
in the use of EEG, ultrasound and other artificial intelligence
decision support tools. This is not only an extension of existing
knowledge, but also necessary for the modern anesthetist to
deal with the complexity of an individual’s genetic profile when
administering anesthesia.

7.4 Future research directions in
personalized anesthesia

Future research efforts in personalized anesthesia are expected
to refine and expand the scope of patient-specific anesthesia
management. Areas of focus should include:

Genetic and biomarker discovery: The identification of
novel genetic determinants and biomarkers that can reliably
predict an individual’s response to anesthetics and analgesics is
critical. As more and more large biobanks or sample libraries
are linked to genomic data, this provides an opportunity for
future pharmacogenomic studies to query genetic polymorphisms
more easily. In addition, anesthesia-related biomarkers are
under-researched, and a large number of clinical trials are
needed to identify the appropriate markers that can predict
the risk of perioperative complications and allow for pre-
emptive intervention.

Health economics: It is imperative to evaluate the cost-
effectiveness of personalized anesthesia strategies. Research should
aim to delineate the economic benefits, such as reductions
in healthcare costs and improvements in patient outcomes,
attributable to the adoption of personalized approaches.

Technological innovation: The development and rigorous
validation of advanced monitoring technologies are critical. These
innovations should be capable of supporting the customization of
anesthetic management, aligning with the nuances of individual
physiological responses.

Clinical trials: There is a need for extensive, multicenter
clinical trials to conclusively ascertain the efficacy and safety
of personalized anesthesia modalities across diverse patient
demographics and surgical disciplines. Such trials will be
instrumental in establishing evidence-based guidelines and
protocols.

As the field progresses, it is crucial that research in these areas
is conducted with methodological rigor and a multidisciplinary
approach, integrating insights from genomics, pharmacology,
bioinformatics, and clinical anesthesiology.

8 Conclusion

Personalized anesthesia and precision medicine represent
a paradigm shift in the field of anesthesiology, with rapid
advancements heralding a new era of enhanced patient care.
The integration of individual genetic profiles, specific comorbid
conditions, and unique patient characteristics with the burgeoning
fields of pharmacogenomics and biomarker discovery has the
potential to significantly refine anesthetic management. When
coupled with the latest in monitoring technologies, these insights
empower anesthesiologists to customize treatment plans to the
distinct requirements of each patient.

The path toward fully realizing the promise of personalized
anesthesia is lined with challenges, including the need for
widespread education and training in the relevant fields of genetics
and pharmacogenomics, as well as the development of cost-
effective and accessible technologies. Moreover, interdisciplinary
collaboration is vital for advancing research and translating these
innovations into routine clinical practice. As we navigate these
challenges, the collective efforts of anesthesiologists, geneticists,
and other healthcare professionals will be paramount in harnessing
the full potential of personalized anesthesia to optimize patient
outcomes and elevate the standard of care.
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