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Background: Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown 
etiology with a poor prognosis, characterized by a lack of effective diagnostic 
and therapeutic interventions. The role of immunity in the pathogenesis of IPF 
is significant, yet remains inadequately understood. This study aimed to identify 
potential key genes in IPF and their relationship with immune cells by integrated 
bioinformatics analysis and verify by in vivo and in vitro experiments.

Methods: Gene microarray data were obtained from the Gene Expression 
Omnibus (GEO) for differential expression analysis. The differentially expressed 
genes (DEGs) were identified and subjected to functional enrichment analysis. 
By utilizing a combination of three machine learning algorithms, specific genes 
associated with idiopathic pulmonary fibrosis (IPF) were pinpointed. Then 
their diagnostic significance and potential co-regulators were elucidated. 
We further analyzed the correlation between key genes and immune infiltrating 
cells via single-sample gene set enrichment analysis (ssGSEA). Subsequently, 
a single-cell RNA sequencing data (scRNA-seq) was used to explore which 
cell types expressed key genes in IPF samples. Finally, a series of in vivo and 
in vitro experiments were conducted to validate the expression of candidate 
genes by western blot (WB), quantitative real-time PCR (qRT-PCR), and 
immunohistochemistry (IHC) analysis.

Results: A total of 647 DEGs of IPF were identified based on two datasets, including 
225 downregulated genes and 422 upregulated genes. They are closely related 
to biological functions such as cell migration, structural organization, immune 
cell chemotaxis, and extracellular matrix. CFH and FHL2 were identified as key 
genes with diagnostic accuracy for IPF by three machine learning algorithms. 
Analysis using ssGSEA revealed a significant association of both CFH and FHL2 
with diverse immune cells, such as B cells and NK cells. Further scRNA-seq 
analysis indicated CFH and FHL2 were specifically upregulated in human IPF 
tissues, which was confirmed by in vitro and in vivo experiments.

Conclusion: In this study, CFH and FHL2 have been identified as novel potential 
biomarkers for IPF, with potential diagnostic utility in future clinical applications. 
Subsequent investigations into the functions of these genes in IPF and their 
interactions with immune cells may enhance comprehension of the disease’s 
pathogenesis and facilitate the identification of therapeutic targets.
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1 Introduction

IPF is a chronic progressive lung disease distinguished by the 
excessive accumulation of mesenchymal cells and extracellular matrix, 
resulting in an irreversible decline in lung function (1). Predominantly 
affecting individuals in middle to older age groups, the incidence rate 
of IPF is steadily rising by 11% annually (2). Due to the insidious onset 
of IPF, the difficulty of imaging and histology to distinguish IPF from 
other usual interstitial lung diseases (ILDs), and the absence of reliable 
laboratory tests contribute to delayed diagnoses in most patients, 
typically occurring during the intermediate to advanced disease stages 
(1, 3). Because of delayed diagnosis and limited treatment options, 
individuals with IPF experience a median survival time of 2 to 5 years, 
with a five-year survival rate of 30%, which is inferior to that of many 
malignancies (4, 5).

At present, the pathogenesis of IPF is not fully understood, and it is 
mainly related to repetitive damage and repair dysregulation of alveolar 
epithelial cells. Epithelial apoptosis and impaired function of progenitors 
(AT2 cells) lead to the inability to complete the normal re-epithelialization 
process, induce fibroblasts to proliferate and transform into 
myofibroblasts. These activated myofibroblasts then deposit extracellular 
matrix (ECM) components, such as collagen, and exert contractile forces 
to facilitate wound healing (6). Scar foci formation triggers restrictive 
ventilation disorders and gas exchange disorders, ultimately leading to 
respiratory failure and death (7). Studies have found that immunity and 
inflammation are closely related to IPF, in which both innate and 
adaptive immunity are activated (8). In IPF, the damaged pulmonary 
epithelial cells released chemokines and cytokines, which leads to the 
recruitment and activation of innate immune cells such as neutrophils 
and macrophages, further activate the adaptive immune system (B cells 
and T cells) (9). Single-cell analysis showed that increased alveolar 
macrophages, dendritic cells (DCs), and memory T cells were present in 
IPF lungs and had possessed an activation profile indicating increased 
IFN-γ signaling and upregulation of adaptive immunity (10). 
Multicellular interactions between the activated innate and adaptive 
immune cells and lung fibroblasts may be crucial for the pathologic 
mechanisms of IPF and need further, which required further research.

Currently, there is a lack of effective treatments for IPF. Only two 
recommended drugs (nintedanib and pirfenidone) that have been 
approved for IPF but can only delay the decline in lung function and 
cannot stop the progression of the disease (11, 12). Numerous clinical 
trials investigating the efficacy of anti-inflammatory drugs for IPF 
have yielded unfavorable outcomes, including potential harm to 
patients (13, 14).

In summary, IPF remains a fatal disease characterized by a lack of 
timely diagnosis and efficacious treatment modalities. Therefore, this 
article aims to find the biomarkers with significantly altered expression 
levels in IPF patients through bioinformatics analysis, evaluate their 
diagnostic efficacy, and explore the relationship between the key genes 
that may be found and immune cell infiltration, so as to offer novel 
perspectives for the development of targeted immunotherapies for IPF.

2 Materials and methods

2.1 Dataset collection

Data analysis procedures of our study are shown in Figure 1. Gene 
expression profiles of GSE150910 and GSE32537 were downloaded 

from the Gene Expression Omnibus (GEO) database. GSE150910 
dataset includes RNA-sequencing results of 103 IPF lung samples and 
103 unaffected control lung samples. GSE32537 dataset includes 
transcriptional profiles on lung tissue from 119 IPF subjects and 50 
non-diseased controls. The scRNA-seq data, accession number 
GSE132771, was obtained from GEO based on GPL24676 platform. 
We  used sequencing results of three IPF patient lungs and three 
normal human lungs.

2.2 Identification of DEGs

We conducted the differential expression analysis by comparing 
IPF lung samples to normal lung samples in the R computing 
environment using limma package. Genes were regarded as 
differentially expressed with the threshold of FDR-adjusted p-value 
<0.05 and |Log2foldchange (FC)| ≥ 0.585. FDRs were estimated with 
Benjamini-Hochberg procedure. Visualization of DEGs including 
volcano plots, heatmaps for top 50 DEGs, and Venn diagram was 
achieved by using ggplot2 package, Pheatmap package, and 
VennDiagram package in R, respectively.

2.3 Functional enrichment analysis

After identifying the overlapping DEGs between the above two 
datasets, we  performed Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis via the 
clusterProfiler package to determine function and pathway 
enrichment of DEGs. Enrichment is achieved by comparing GO 
terms or pathways present in DEGs using three annotation databases 
of GO terms (BP, Biological Process; CC, Cellular Component; and 
MF, Molecular Function) or KEGG pathway database. The GO 
enrichment was performed for all DEGs together and for up- and 
down-regulated genes separately. Only terms with p-values and 
q-values<0.05 were considered significantly enriched. The results 
were visualized with GOplot R package.

2.4 Machine learning algorithms

In order to reduce the risk of bias, three machine learning 
algorithms were applied in this study to select characteristic genes of 
IPF: RF, Random Forest, LASSO logistic regression, The Least 
Absolute Shrinkage and Selection Operator, and WGCNA, Weighted 
Gene Co-expression Network Analysis. All statistical analyses were 
implemented through the randomForest package, glmnet package, 
and WGCNA package of R software, respectively. The results of the 
three algorithms were intersected by Venn diagrams to finalize the 
possible key genes for further study.

2.5 Diagnostic efficacy assessment

The expression levels of key genes identified were compared 
between the IPF group and the control group in two gene databases 
separately. If the differential expression is significant (p-value <0.05 
and |Log2FC| ≥ 0.585), the diagnostic effectiveness of key genes was 
evaluated by plotting the ROC curve and calculating the AUC via R 

https://doi.org/10.3389/fmed.2024.1363643
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2024.1363643

Frontiers in Medicine 03 frontiersin.org

software pROC package. These genes were considered to be poorly 
diagnostic if the AUC is less than 0.7, moderately diagnostic if 0.7–0.9, 
and well diagnostic if greater than 0.9. In addition, we compared the 
predicted clinical assessment effects of key genes by constructing 
decision curve analysis (DCA).

2.6 Mapping gene regulatory network

Gene expression is subject to multiple regulators. We analyzed 
microRNAs (miRNA), long non-coding RNA (lncRNA), and 
transcription factor (TF) associated with the expression of key genes 
through mirDIP, starbase, and hTFtarget to find regulators that may 
lead to differential expression. The visualization process and the 
search for common regulators between key genes were completed by 
Cytoscape software.

2.7 Immune cell infiltration

First, we  analyzed the intra-group similarity and inter-group 
variability between the IPF group and the control group by principal 
component analysis (PCA) to evaluate the sample data quality. 
ssGSEA was used to calculate the abundance of immune cell infiltrated 

in each sample from GSE150910 and plot heat map. The differences 
in Infiltrated immune cell set and function between the IPF and the 
control group were compared by ssGSEA and box plots were drawn. 
Spearman rank correlation coefficient calculation was used to screen 
infiltrating immune cells closely related to key genes. p < 0.05 was 
considered statistically significant.

2.8 Single-cell RNA sequencing analysis

The barcodes data, gene features data, and gene count matrix data 
of GSE132771 preprocessed by Cellranger (10X Genomics) were 
downloaded from the GEO database. We conducted the differential 
expression analysis by comparing IPF lung samples to normal lung 
samples in the R computing environment using the Seurat V4.1.0 
package. Firstly, cells were subjected to quality control based on the 
following criteria: a gene count per cell >500, a percentage of 
mitochondrial genes <20%, and a red blood cell gene proportion < 3%. 
Then the data were normalized by SCTransform function (15) and 
integrated with reciprocal principal component analysis (rPCA) 
approach (16). Subsequently, PCA, cluster analysis, and Uniform 
Manifold Approximation and Projection (UMAP) were performed 
using the RunPCA, FindClusters, and RunUMAP functions, 
respectively. Additionally, cell annotation was performed using the 

FIGURE 1

Flowchart of the study.
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SingleR V1.4.1 package with the HumanPrimaryCellAtlasData as the 
reference dataset (17).

2.9 Isolation, culture and treatment of 
primary lung fibroblasts

Lung tissue from euthanized post-natal 4 weeks SD rats were 
quickly extracted (trachea and excess tissue removed) and rinsed with 
PBS before being infiltrated in serum-free medium. Then we minced 
lung tissue into 1–3 mm pieces with sterile ophthalmic forceps in a 
dish and transferred pieces to serum-free medium containing Dispase 
II (Sigma-Aldrich, 4,942,078,001), DNase I (Sigma-Aldrich, D5025). 
After incubating at 37°C for 45 min with gentle shaking every 15 min, 
add 10% FBS to stop digestion. Digestion products passing through a 
70 μm filter were centrifuged at 1500 rpm for 5 min. Added Red Cell 
Lysis Buffer (Beyotime, C3702) to resuspend, incubated at room 
temperature for 5 min, and then centrifuged at 1500 rpm for 5 min. 
After resuspending cells with DMEM with 10% FBS (Gibco, 
United States), 100 U/mL of penicillin and 100 μg/mL of streptomycin, 
PLFs were plated at a seeding density of 5 × 105–1 × 106/well with 2 mL 
complete medium in 6-well plate. All steps were performed on ice or 
at 4°C unless stated otherwise. Cells were cultured at 37°C in a 5% 
CO2 incubator with regular feeds and passaged at 80% fusion using 
0.25% of trypsin–EDTA in a 1:3 ratio. PLFs were divided into three 
groups comprising a control group of cells without treatment, a group 
with TGFβ1 10 ng/mL treatment for 48 h, and a group with TGFβ1 
10 ng/mL treatment for 72 h.

2.10 Bleomycin-induced mouse lung 
fibrosis model

10 wild-type SPF-grade male C57BL/6 J mice (6 weeks) were 
purchased from Shanghai Bikai Keyi Biotechnology Co. and randomly 
divided into two groups, a control group (n = 5) and a bleomycin 
group (n = 5). After gas anesthesia, the mice were intratracheally 
injected with normal saline (total volume 50 μL) or 5 mg/kg Bleomycin 
(selleck, S1214). Lung tissue samples from the mice were collected at 
21 days.

2.11 Hematoxylin and eosin, Masson 
staining and immunohistochemistry

H&E staining and Masson staining was performed as previously 
described (18). Briefly, lung specimens were fixed with 4% 
paraformaldehyde for 24 h. Then the samples were dehydrated, 
paraffin embedded and cut into 3 μm sections. Sections were stained 
with hematoxylin and eosin (H&E) and Masson’s trichrome stain to 
assess gross morphology and collagen deposition, respectively. For 
IHC, after dewaxing and hydration, epitope retrieval was performed 
with 10 mM citrate buffer. Then sections were blocked with 1% BSA 
for 1 h at ambient temperature before incubated with primary 
antibody at 4°C overnight. Then the sections were rewarmed for 
45 min on the next day and incubated with secondary antibodies for 
30 min at room temperature (Zsbio, pv8000), followed by detection 
using the DAB detection kit (OriGene Technologies, ZLI-9017). The 

primary antibodies and secondary antibodies used were as follows: 
anti-CFH (Abclonal, A13686; 1:100), anti-FHL (proteintech, 21,619-
1-AP; 1:100) and anti-α-SMA (Abcam, ab7817; 1:100).

2.12 Quantitative real-time PCR

Total RNA was extracted using the RNA extraction Kit (Fastagen, 
220,010). Reverse transcription was performed using cDNA Synthesis 
Kit (Vazyme, R312-01). The reverse transcription conditions were 37°C 
for 15 min and 85°C for 5 s. The RT-PCR were performed using HiScript 
RT superMix for qPCR (Vazyme, R122-01) and the reaction conditions 
were initial denaturation at 95°C for 10 min, followed by 40 cycles of 
95°C for 15 s and 60°C for 45 s. Primers and reagents used were as 
follows: Fhl2(rat), Forward: 5′- TCTGACCCCACAGGTTGCTG-3′; 
Reverse: 5′- TCACAGGTGTTGGCATAGAGC-3′. Cfh(rat), Forward: 
5′- GTGTAAAGCCCCGAAGTCAAC-3′; Reverse: 5′- GGAGGG 
CAGAATCTTTTCTCATT-3′. Acta2 (rat), Forward: 5′- GTGTTCAGA 
GAGGGTGAGCC-3′; Reverse: 5′- TCAGGTTGGTCCTCTGGTCT-3′. 
Gapdh (rat), Forward: 5′- GCATCTTCTTGTGCAGTGCC-3′; Reverse: 
5′- GATGGTGATGGGTTTCCCGT-3′.

2.13 Western blot

Samples were lysed with RIPA buffer on ice and centrifuged at 
16000 g for 15 min to extract protein. Protein concentrations were 
measured using the BCA Protein Assay kit (Thermo, 23,227). These 
protein samples were separated by electrophoresis using 8% or 15% 
SDS-PAGE at 100 V for 20 min and 120 V for 100 min. Proteins were 
electrostatically transferred to NC membrane and blocked with 5% 
BSA for 120 min. The primary antibodies were incubated overnight at 
4°C and the secondary antibody for 60 min at room temperature. 
Finally, the labeled protein bands were developed with developing 
solution and scanned. All experiments were repeated three times. The 
antibodies used were as follows: GADPH (Abcam, 16,891; 1:1000), 
anti-CFH (Abclonal, A13686; 1:1000), anti-FHL (proteintech, 21,619-
1-AP; 1:1000) and anti-α-SMA (Abcam, ab7817; 1:1000).

2.14 Statistical analyses

All statistical analyses were performed using GraphPad Prism 8.0. 
A two-tailed unpaired student t-test was used to determine 
significance. One-way analysis of variance (ANOVA) with a 
Bonferroni post-test was used to compare differences among multiple 
groups. p < 0.05 was considered as statistically significant.

3 Results

3.1 Identification of DEGs

Differential expression analysis showed that there were 1950 
differentially expressed genes (DEGs) in the GSE150910, including 
739 genes down-regulated in the IPF group and 1,211 genes 
up-regulated (Figures 2A,D). Meanwhile, there were 1,259 DEGs in 
the GSE32537, consisted of 477 down-regulated genes and 782 

https://doi.org/10.3389/fmed.2024.1363643
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2024.1363643

Frontiers in Medicine 05 frontiersin.org

up-regulated genes (Figures 2B,E). The comparison of gene expression 
between the IPF group and the control group is shown by the volcano 
plot (Figures 2A,B). The top 25 up-regulated genes and the top 25 
down-regulated genes in the GSE150910 or GSE32537 were presented 
in the heat maps, respectively, (Figures 2C,F). The Venn diagrams 
exhibited a total of 225 overlapping down-regulated genes and 422 
overlapping up-regulated genes between the two datasets (Figure 2G).

3.2 Functional enrichment analysis

A biological functional classification of overlapping DEGs was 
performed by GO enrichment analysis. In the BP category, the 

significantly enriched terms included ameboidal-type cell migration, 
cell-substrate adhesion, microtubule-based movement, external 
encapsulating structure organization, extracellular structure 
organization, extracellular matrix organization, tissue migration, 
epithelial cell migration, and cell chemotaxis (Figure 3A). Meanwhile 
the significantly enriched terms in CC contained collagen-containing 
extracellular matrix, cell–cell junction, and external side of plasma 
membrane (Figure 3C). As for MF, the significantly enriched terms 
comprised extracellular matrix structural constituent, 
glycosaminoglycan binding, sulfur compound binding, integrin 
binding, and heparin binding (Figure  3E). Subsequently, GO 
enrichment analysis were conducted on the up-regulated and down-
regulated overlapping DEGs, respectively (Figures 3B,D). Among the 

FIGURE 2

Identification of DEGs between IPF and normal samples. (A,B) Volcano plots of genes in GSE150910 (A) and GSE32537 (B). Red dots represent up-
regulated genes, blue dots represent down-regulated genes, and gray dots represent genes with no significance (|log2FC|  >  0.585 and FDR  <  0.05). 
(C,F) Heatmaps of top 25 up- and down-regulated DEGs in GSE150910 (C) and GSE32537 (F). x-axis represents each sample, and y-axis represents 
each gene. Legend on the top right represents the log fold change of the genes. Red and blue colors represent relative increase or decrease in gene 
expression. (D,E) Number of DEGs in GSE150910 (D) and GSE32537 (E). (G) Venn diagram of DEGs from the two datasets.
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up-regulated DEGs, the predominantly enriched go terms included 
microtubule-based movement, cilium organization, and cilium 
assembly in BP, collagen-containing extracellular matrix, motile cilium, 
and axoneme in CC, and extracellular matrix structural constituent, 
receptor ligand activity, and signaling receptor activator activity in 
MF. In the down-regulated DEGs, the remarkably enriched go terms 
included ameboidal-type cell migration, epithelial cell migration, and 
epithelium migration in BP, external side of plasma membrane, cell–cell 
junction, and cell projection membrane in CC, and GTPase regulator 
activity, nucleoside-triphosphatase regulator activity, and immune 
receptor activity in MF. Then pathway analyses were performed by 
mapping genes to KEGG pathways. The result showed that the most 
abundant pathways included ECM-receptor interaction, cytokine-
cytokine receptor interaction, viral protein interaction with cytokine 
and cytokine receptor, and focal adhesion (Figure 3F).

3.3 Feature selection

Three machine learning algorithms were combined to analyze the 
data from GSE150910 and screen for key genes by taking their 
intersections. 38 genes were identified by RF algorithm (Figures 4A,B) 
and 30 genes were screened out by LASSO regression algorithm 
(Figures 4C,D). In the WGCNA analysis, the network was constructed 
with 9 as the soft threshold based on the scale-free topology model fit 
index and the mean connectivity (Figures 4E,F). We identified 10 
modules that were significantly co-expressed (Figure 4G) and explored 
the correlation between each module and IPF through a heat map 
(Figure 4H). The result showed that the MEdarkmagenta module had 
the highest positive correlation with IPF, so we further screened 38 
genes that were highly correlated with IPF from the MEdarkmagenta 
module (Figure 4I). The Venn diagram showed that CFH and FHL2 

FIGURE 3

Functional enrichment analysis of DEGs. (A,C,E) GO analysis of DEGs. Bubble charts indicate enriched GO terms associated with DEGs in IPF sorted by: 
BP (A), CC (C), and MF (E). x-axis represents gene ratios, and y-axis represents GO terms. Circle size represents gene count and color represents 
adjusted p-value. (B,D) Chord plots demonstrate enriched GO terms of up-regulated DEGs (B) and down-regulated DEGs (D). The colored squares 
next to each gene indicate the logFC values shown in the legend on the top right. Each DEG is connected to their respective GO terms by ribbons, and 
the color of the GO term corresponds to the ribbon. (F) KEGG pathway enrichment analysis of DEGs. The outside ring shows the expression levels 
(logFC) of each gene in KEGG pathway. Red dots represent up-regulated DEGs, and blue dots represent down-regulated DEGs. The inside ring is a bar 
plot, with the height indicating the significance of the pathway enrichment and color indicating z-score shown in the legend on the right.
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FIGURE 4

Identification of key genes via three machine-learning algorithms. (A,B) Key genes selection via RF algorithm. Distribution of out-of-bag (OOB) error 
rate at various values of trees (A). Variable importance assessed in terms of the mean decrease Gini is computed using the OOB error (B). A higher 
mean decrease in Gini coefficient indicates higher variable importance. (C,D) Key genes selection via LASSO algorithm. LASSO coefficient profile of 29 
genes, different colors represent different genes (C). Selection of the optimal parameter (lambda) in the LASSO model, and generation of a coefficient 

(Continued)
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were the overlapping key genes screened by three algorithms 
ultimately (Figure 4J).

3.4 Diagnostic value of key genes

By comparing the expression levels of CFH and FHL2 between the 
IPF group and the control group in the GSE150910 and GSE32537 
datasets, the significant high expression of the two key genes in the 
disease group was verified (p < 0.01) (Figures 5A–D). The ROC curves 
indicated that both CFH and FHL2 exhibited strong diagnostic 
capabilities, with CFH achieving an AUC of 0.951 or 0.960, and FHL2 
an AUC of 0.955 or 0.872 (Figures 5E,F). In the DCA curves, the net 
benefit of CFH method or FHL2 method was higher than that of the 
two extreme curves (all treatment or no treatment) within a large risk 
threshold range, which meant the two diagnostic methods had good 
clinical utility (Figures 5G,H).

3.5 Gene regulatory network

By integrating lncRNA/miRNA/TF that interacts with two key 
genes, we constructed a gene multifactor regulatory network. In this 
network, CFH was regulated by a total of 18 miRNAs and 7 TFs, while 

FHL2 was regulated by 98 miRNAs, 2 lncRNAs and 34 TFs. Notably, 
the regulatory network revealed the presence of TFs that co-regulate 
two key genes, including RAD21, LMNB1, FOXA2, FOXA1, SPI1, and 
CTCF (Figure 6).

3.6 Assessment of immune cell infiltration

The existing literature suggested that immunity is closely related 
to IPF, so we further explored the relationship between immune cell 
infiltration and two key genes. First, we confirmed by PCA that the 
samples in the IPF group and the control group from the GSE150910 
dataset were well separated (Figure 7A). Then heatmap of infiltrating 
immune cells in GSE150910 was achieved (Figure  7B). Next, 
we compared the composition of 23 types of infiltrated immune cells 
between the IPF group and the control group. Box plot displayed that 
the IPF group had a higher proportion of activated B cell, immature 
B cell, and CD56bright NK cell (all p < 0.01), and a lower proportion 
of mast cell, monocyte, neutrophil, γδT cell, Tfh, Th17, and Th2 (all 
p < 0.001) (Figure 7C). By comparing the immune function score, it 
was found that APC co-stimulation, DC, macrophage, mast cell, B cell, 
Th, Tfh, Th1, and T cell co-stimulation was increased and aDC, pDC, 
neutrophil, NK cell, APC co-inhibition, cytolytic activity, Th2, and 
type1 IFN response was decreased in the IPF group (all p < 0.001) 

profile plot (D). (E–I) Key genes selection via WGCNA algorithm. Network topology analysis of various soft-threshold powers (E,F). Horizontal axis 
represents soft threshold power, and vertical axis represents scale free topology model fit index (E) or mean connectivity (F). Clustering dendrogram of 
DEGs related to IPF (G), with dissimilarity based on topological overlap, together with assigned module colors. Module-trait associations (H). Each row 
corresponds to a module, and each column corresponds to a trait. Each cell contains corresponding correlation and p-value. The table is color-coded 
by correlation according to the color legend. Gene significance for IPF in the MEdarkmagenta module (I). One dot represents one gene in the module. 
Venn diagram shows the intersection of key genes obtained by three indicated algorithms (J).

FIGURE 4 (Continued)

FIGURE 5

the expression levels of CFH and FHL2 in two datasets. (A–D) Box plots of the expression of CFH and FHL2 between IPF and normal samples in 
GSE150910 (A,B) and GSE32537 (C,D). (E,F) The ROC curves of CFH and FHL2 in GSE150910 (E) and GSE32537 (F). (G,H) The decision curves of CFH 
and FHL2 in GSE150910 (G) and GSE32537 (H). CFH, complement factor H; FHL2, four and a half LIM domains 2.
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(Figure 7D). The correlation analysis between genes and immune cells 
demonstrated that both FHL2 and CFH were positively correlated 
with activated B cell, CD56bright NK cell, CD56dim NK cell and Treg, 
and negatively correlated with mast cell, monocyte, and Th17. 
Furthermore, FHL2 displayed a positive correlation with immature 
DC and a negative correlation with γδT cell and Th2 (all p < 0.01) 
(Figure 7E).

3.7 Single cell gene expression

We have more precisely localized the cell populations expressing 
CFH and FHL2 mRNA in IPF by single cell analysis. After a series of 
pre-processing of the data from the GSE132771, we  performed a 
cluster analysis of the cells based on the similarity of the gene 
expression profile (Figures  8A,B). Among the 10 cell identities 
identified by clustering, the proportions of B cells, fibroblasts and 
endothelial cells in the IPF group were significantly increased, while 
epithelial cells, macrophages, neutrophils and NK cells were 
significantly decreased (Figure 8C). The expression levels of CFH and 
FHL2 in the IPF group were significantly upregulated in fibroblasts 
marked by ACTA2 and COL1A1, confirming that the two key genes 
obtained in this study are closely related to fibrosis induced by 
fibroblasts (p < 2^10–16) (Figures 8D,E).

3.8 Evaluation of CFH and FHL2 expression 
in vivo and in vitro

To verify the reliability of the results of bioinformatics analysis in 
IPF, we firstly established a IPF mouse model by bleomycin. H&E and 

Masson staining showed that 21 days after bleomycin administration, 
there was a significant increase in the deposition of collagen. Also, the 
expression of a widely accepted markers of fibroblast, α-smooth 
muscle actin (α-SMA) had a significant increase, as well as that of 
CFH and FHL2 (Figure 9A). WB analysis also showed that the content 
of α-SMA, CFH and FHL2 in the bleomycin-treated group increased 
compared with these in the control group (Figure 9B). Furthermore, 
we  investigated whether CFH and FHL2 was involved in TGFβ1-
induced fibroblasts activation. PLFs were treated with TGFβ1 (10 ng/
mL) or PBS as control. And TGFβ1 treatment increased the expression 
of α-SMA, CFH and FHL2 both by WB analysis and qRT-PCR 
(Figures 9C,D). Collectively, these data indicated that CFH and FHL2 
are involved in the pulmonary fibrosis and activation of fibroblasts 
induced by bleomycin and TGFβ1, respectively.

4 Discussion

Given that the underlying pathogenesis is not fully understood 
and the safe and effective therapeutic approaches remain elusive, 
currently there is an unmet clinical need for patients with IPF. In this 
study, we investigated the characteristics of the gene transcriptome in 
IPF patients compared to healthy individuals through comprehensive 
bioinformatics analysis, and identified a total of 422 up-regulated 
DEGs and 225 down-regulated DEGs. Functional enrichment analysis 
of overlapping DEGs revealed an enrichment of terms related to cell 
migration, structural organization, immune cell chemotaxis, 
extracellular matrix, etc., which is consistent with the existing 
literature. Notably, we  further reduced the number of markers by 
taking the intersection of DEGs screened by the three machine 
learning algorithms, improving the specificity and sensitivity of the 

FIGURE 6

The multifactor regulatory network based on CFH and FHL2.
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FIGURE 7

Assessment of immune cell infiltration and its relationship to key genes in IPF. (A) Principal component analysis (PCA) cluster plot of gene expression 
profile between IPF and normal samples in GSE150910. (B) Heatmap of infiltrating immune cells in GSE150910. x-axis represents each sample, and 

(Continued)
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features of IPF. Through this process, CFH and FHL2 were eventually 
identified as key genes with significantly altered expression in the 
disease, and their accurate and safe diagnostic efficacy was confirmed 
by ROC curves and DCA, which was further supported by both in 
vivo and in vitro models.

Actin alpha 2, smooth muscle (ACTA2) encodes one of six 
different actin proteins (19). Collagen type I alpha 1 chain (COL1A1) 
encodes the pro-alpha1 chains of type I collagen whose triple helix 
comprises two alpha1 chains and one alpha2 chain (20). These two 
genes, ACTA2 and COL1A1, are currently considered to be the main 
markers of pathological fibrosis in IPF (21). However, their 
diagnostic specificity is limited due to the potential expression of 
these molecules in normal cells such as smooth muscle cells and 
pericytes, in addition to pathogenic fibroblasts that overproduce 
extracellular matrix (22). While in this study, the results of single-
cell analysis revealed that the upregulation of CFH and FHL2 in the 
IPF group was predominantly localized in fibroblasts, suggesting 
that these two molecules may be able to serve as precise indicators 
of IPF fibroblast foci in IPF.

The human CFH gene is located on chromosome 1q32 within 
the RCA (complement activation regulation) gene cluster and 
encodes a 155 kDa glycoprotein called complement factor H (23). 
CFH protein consists of 20 short consensus repeats (SCRs) and is 
mainly synthesized by the liver before being secreted into the 
plasma. In addition to hepatic production, various cell types 
including myofibroblasts, peripheral blood lymphocytes, RPE 
cells, glomerular mesangial cells, and podocytes have been shown 
to express CFH extrahepatically, potentially contributing to 
localized concentration increases (24). CFH is an important 
negative regulator of complement alternative pathway (AP) 
through three distinct mechanisms: competitive binding to C3b 
with factor B to inhibit the formation of C3 convertase, 
displacement of C3b from the formed C3 convertase to accelerate 
the decay of complement activators, and functioning as a cofactor 
of factor I to facilitate the degradation and inactivation of C3b. 
Additionally, CFH binds autologous cells by interacting with sialic 
acid and heparin-like glycosaminoglycan polyanions on the 
surface of host cells, thereby shielding them from damage. The 
deficiency of CFH has been shown to be associated with a variety 
of diseases, such as membranoproliferative glomerulonephritis, 
atypical hemolytic uremic syndrome (aHUs), age-related macular 
degeneration (AMD), etc. (25–27). However, the relationship 
between CFH and IPF has not yet been reported. In this study, 
CFH was found to be highly expressed in lung fibroblasts from 
IPF samples by single-cell analysis and confirmed by experiments. 
Whether the change in the expression level of CFH is the result of 
inflammatory regulation disorder or a way for fibroblasts to 
protect themselves from immune damage needs to be  further  
explored.

The FHL2 gene encodes a member of the four-and-a-half-LIM-
only protein family, characterized by two highly conserved zinc finger 

domains, each with four cysteines bound to a zinc atom, which 
regulate transcription factor activity and cytoskeletal proteins. Due to 
its structural properties, FHL2 interacts with a wide range of proteins 
and participates in a variety of cellular processes, such as 
transcriptional regulation, cell differentiation, proliferation, migration, 
apoptosis, and signal transduction (28). Normally, FHL2 is only highly 
expressed in cardiac tissue, but as an early-response gene protein, 
FHL2 expression is upregulated during tissue remodeling. For 
example, FHL2 is difficult to detect in normal skin, but its expression 
is significantly increased during the repair process after skin injury, 
especially in the migration and proliferation phases. Notably, FHL2 is 
predominantly expressed in myofibroblasts during this period, 
indicating a close association with its functional role. It stimulates 
fibroblast migration in a RAC-dependent manner, regulates matrix 
assembly, and acts as a transcriptional cofactor to support the 
expression of α-SMA and ECM proteins (29–33). Consequently, 
elevated levels of FHL2 may be implicated in the excessive wound 
healing and tissue remodeling observed in patients with IPF. Several 
studies have indicated that increased FHL2 expression could 
potentially serve as a distinguishing factor between individuals with 
IPF and healthy controls (34). The expression level of FHL2 was 
significantly and negatively correlated with percent diffusing capacity 
of the lungs for carbon monoxide (%DLCO), suggesting a potential 
role for FHL2 in stratifying patients based on disease severity (35). 
Experiments have shown that FHL2 inhibitors can significantly delay 
the progression of pulmonary fibrosis (36). Nevertheless, the 
relationship between FHL2 and immune dysregulation in IPF disease 
states has not been reported.

The relationship between IPF and immunity or inflammation is 
currently unclear. Some views suggest that aberrant immune 
activation plays a role in the development of IPF, while others argue 
that inflammation is a secondary characteristic of the disease, as 
evidenced by the limited efficacy of anti-inflammatory treatments in 
clinical trials. In this study, many DEGs in IPF samples were found to 
be  associated with the chemotaxis and migration of a variety of 
immune cells as well as with the activity of immune receptors by 
functional enrichment analysis, confirming the close relationship 
between IPF and immunity. Further analysis showed that FHL2 and 
CFH were significantly positively correlated with B cells, and B cells 
were significantly enriched in IPF lung samples, suggesting a potential 
role for these genes in regulating B cell function in IPF. Previous 
studies have suggested that the binding of CFH and/or its related 
proteins to B lymphocytes may influence the migration of these cells 
and their role in adaptive immunity, further supporting the findings 
of this study (24, 37–39). Regarding FHL2, it is involved in the 
regulation of immune cell infiltration through direct interaction with 
various integrins, particularly the B2 subunit of the CD11a-d and 
CD18 integrin heterodimer receptor on immune cells. Additionally, 
FHL2 may indirectly influence immune cell attraction by modulating 
the expression of pro-inflammatory or anti-inflammatory 
cytokines (40).

y-axis represents each cell types. Legend on the top right represents the log fold change of cell counts. Red and blue colors represent high and low 
cell counts. (C,D) Box plots of the proportion of 23 types of immune cells (C) and 29 types of immune functions (D) between IPF and normal samples. 
*p  <  0.05, **p  <  0.01, ***p  <  0.001. (E) Correlations between CFH, FHL2, and infiltrating immune cells. Each cell is color-coded for logFC value of the 
correlation according to legend on the right, and significance is indicated.

FIGURE 7 (Continued)
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FIGURE 8

Single-cell RNA sequencing analysis. (A) Preprocessed single-cell data of GSE132771. (B) UMAP visualization of clustering revealing 10 cell clusters. 
(C) Comparison of the proportion of each cell cluster between IPF and normal group. The colors correspond to the cell types shown in the legend on 
the right. (D) Comparison of the expression levels of ACTA2, COL1A1, CFH, and FHL2 in different cell clusters between IPF and normal group. Red dots 
represent cells expressing the gene noted above. Shades of color correspond to the expression level shown in the legend on the right. (E) Violin plots 
compare the expression of CFH and FHL2 in different cell clusters between IPF and normal group with p value indicated above. CFH, complement 
factor H; FHL2, four and a half LIM domains 2; UMAP, Uniform Manifold Approximation and Projection.

This study also has some limitations. Firstly, the utilization of 
datasets from a public database without comprehensive clinical 
information hindered the ability to conduct prognostic analyses to 

ascertain the correlation between aberrant alterations in biomarker 
expression and poor patient prognosis. Further clinical studies are 
necessary to validate the diagnostic and stratification efficacy of 
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biomarkers. Furthermore, the molecular mechanism of biomarkers in 
the pathogenesis of IPF and their relationship with immunity have not 
been elucidated. Additional research is required to investigate and 
identify potential therapeutic targets for IPF.

In summary, CFH and FHL2 have been identified as promising 
novel biomarkers for IPF with strong diagnostic capabilities, 
suggesting their potential utility as diagnostic aids in the future. 
Further studies of the role of these two genes in IPF and their 

relationship with immune cells could help to understand the 
pathogenesis of IPF and provide potential therapeutic targets.
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The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 

FIGURE 9

Expression of CFH and FHL2 in mouse and cellular IPF models. (A) HE and MASSON staining and immunohistochemical staining for α-SMA, CFH, and 
FHL2 in lung tissues of mice in control and bleomycin-induced groups. (B) Protein levels of α-SMA, CFH, and FHL2 in lung tissues of mice in control 
and bleomycin-induced groups assessed by Western blot. (C) Protein levels of α-SMA, CFH, and FHL2 in PLFs with or without TGF-β stimulation 
assessed by Western blot. (D) mRNA levels of Acta2, Cfh, and Fhl2 in PLFs with or without TGF-β stimulation assessed by qPCR. CFH, complement 
factor H; FHL2, four and a half LIM domains 2; α-SMA, alpha-smooth muscle actin; ACTA2, actin alpha 2, smooth muscle; PLFs, primary lung 
fibroblasts; TGFβ, transforming growth factor-β.
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number(s) can be found below: https://www.ncbi.nlm.nih.gov/geo/, 
GSE150910 https://www.ncbi.nlm.nih.gov/geo/, GSE32537 https://
www.ncbi.nlm.nih.gov/geo/, GSE132771.
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