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Corticosteroid therapy, often in combination with inhibition of the renin-
angiotensin system, is first-line therapy for primary focal and segmental 
glomerulosclerosis (FSGS) with nephrotic-range proteinuria. However, the 
response to treatment is variable, and therefore new approaches to indicate 
the response to therapy are required. Podocyte depletion is a hallmark of 
early FSGS, and here we investigated whether podocyte number, density and/
or size in diagnostic biopsies and/or the degree of glomerulosclerosis could 
indicate the clinical response to first-line therapy. In this retrospective single 
center cohort study, 19 participants (13 responders, 6 non-responders) were 
included. Biopsies obtained at diagnosis were prepared for analysis of podocyte 
number, density and size using design-based stereology. Renal function and 
proteinuria were assessed 6  months after therapy commenced. Responders 
and non-responders had similar levels of proteinuria at the time of biopsy and 
similar kidney function. Patients who did not respond to treatment at 6  months 
had a significantly higher percentage of glomeruli with global sclerosis than 
responders (p  <  0.05) and glomerulosclerotic index (p  <  0.05). Podocyte number 
per glomerulus in responders was 279 (203–507; median, IQR), 50% greater 
than that of non-responders (186, 118–310; p  < 0.05). These findings suggest 
that primary FSGS patients with higher podocyte number per glomerulus and 
less advanced glomerulosclerosis are more likely to respond to first-line therapy 
at 6  months. A podocyte number less than approximately 216 per glomerulus, a 
GSI greater than 1 and percentage global sclerosis greater than approximately 
20% are associated with a lack of response to therapy. Larger, prospective 
studies are warranted to confirm whether these parameters may help inform 
therapeutic decision making at the time of diagnosis of primary FSGS.
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Introduction

Focal segmental glomerulosclerosis (FSGS) is characterized by 
sclerosis in some but not all glomeruli and only in parts of individual 
glomeruli. The incidence of FSGS ranges from 0.2 to 1.8/100,000 
population per year (1), which continues to increase in diverse 
populations (2–5). Primary FSGS refers to an idiopathic form of 
disease where the mechanisms of pathogenesis are poorly understood. 
However, it is generally accepted that podocyte loss is a cause of 
segmental lesion formation, suggesting that podocyte injury is a key 
event in the development of FSGS (6, 7).

Standard first-line therapy for patients with primary FSGS with 
nephrotic-range proteinuria involves corticosteroids, often also 
employed with blockade of the renin angiotensin system (RAS) (8, 9). 
Complete remission is defined as proteinuria ≤0.3 g/24 h, or protein 
to creatinine ratio of <30 mg/mmol, stable serum creatinine and 
serum albumin>35 g/L, whilst partial remission is defined as a > 50% 
reduction in peak proteinuria and/or to sub-nephrotic levels 
(0.3–3.5 g/24 h or 30–350 mg/mmol total protein to creatinine ratio) 
(9–11). Unfortunately, response to first-line therapy is variable and 
unpredictable, with 40–60% of patients failing to achieve remission or 
having relapsing proteinuria (defined as proteinuria >3.5 g/d after 
complete remission was achieved) (8, 12), both of which are largely 
attributed to steroid resistance (13–18). There is therefore significant 
clinical value in developing approaches to indicate the response to 
first-line therapy in primary FSGS, particularly to avoid the severe 
multi-organ side effects of corticosteroids (19–21) in patients who are 
not likely to respond to steroid therapy (22).

Murine and human podocytes express corticosteroid (23–25) and 
angiotensin receptors (26) suggesting that standard first-line therapy 
for primary FSGS may have direct action on podocytes that are 
independent of their systemic effects. In vivo and in vitro studies have 
provided strong evidence that steroids and RAS blockade have direct 
therapeutic effects on podocytes, including enhanced podocyte 
survival, resulting in the preservation of podocyte number (24, 27–
29). Findings from animal studies indicate that the degree of podocyte 
depletion is associated with the degree of resulting pathology (7). 
Taken together, these findings suggest that the degree of podocyte 
depletion at the time of primary FSGS diagnosis may be associated 
with the subsequent response to therapy.

Using diagnostic biopsies from patients with primary FSGS, this 
study aimed to determine if podocyte number, density and/or size and 
indices of glomerulosclerosis can indicate the clinical response to first-
line therapy in patients with primary FSGS. The findings indicate that 
podocyte number per glomerulus as well as the degree of 
glomerulosclerosis at the time of diagnosis may aid in deciding 
therapy regimens.

Materials and methods

Study overview and patient inclusion/
exclusion criteria

A retrospective single center cohort study was undertaken 
between 2018 and 2020 at Monash Medical Centre (MMC), Monash 
Health in Melbourne, Australia. The study protocol was approved 
by the Monash University Human Research Ethics Committee 

(14344). The study used archival kidney biopsy tissue obtained from 
patients who required renal biopsy to confirm diagnosis of primary 
FSGS between 2009 and 2020. While 84 patients were considered 
for the study, 65 patients were excluded as summarized in Figure 1. 
19 patients were included. Patients were considered treatment 
responders (R) if they entered remission as classified by the KDIGO 
guidelines (11), that is when proteinuria was <3.5 g/d (reported or 
calculated), total protein to creatinine ratio < 350 mg/mmol, and 
stable serum creatinine (11). Patients were considered treatment 

FIGURE 1

Flowchart of study design and patient inclusion/exclusion criteria. 84 
patients were initially considered for the study. 65 patients were 
excluded. The remaining 19 patients were grouped into responders 
and non-responders based on their urinary/serum data 6  months 
after commencing treatment.
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non-responders (NR) if they did not satisfy the above criteria. 
Thirteen patients were classified as responders and six were 
classified as non-responders.

All participants provided written informed consent for their 
biopsy specimen to be used for research and access to the following 
clinical data: age at time of biopsy, urinary/serum data at time of 
biopsy, pathology analysis of biopsy, treatment regime initiated, and 
urinary/serum data 6 months after diagnosis.

Diagnosis of primary FSGS

Primary FSGS at MMC is diagnosed by clinical presentation and 
renal biopsy showing segmental increase of the mesangium, segmental 
sclerosis and podocyte foot process effacement with electron 
microscopy. Biopsies were obtained if a patient presented with one, or 
a combination of idiopathic proteinuria (>1.0 g/24 h), abnormal renal 
function (<90 mL/min/1.73 m2) or hematuria. Biopsy tissue was 
divided and fixed in 10% formalin, embedded in paraffin, sectioned 
at 1 μm and stained with hematoxylin and eosin, PAS, silver 
methenamine/Masson trichrome or orcein/Masson trichrome. Finally, 
clinical notes were examined to ensure no causes of secondary FSGS 
were noted at the time of biopsy (30).

Clinical data

Clinical data for patients with biopsy-confirmed primary FSGS 
was collected by accessing pathology results and scanned medical 
records. Information collected included age at time of biopsy, sex, 
ethnicity, urinary/serum data at time of biopsy, descriptive pathology 
analysis of biopsy, treatment regime initiated, and urinary/serum data 
6 months after diagnosis. Self-reported place of birth was used as a 
proxy of ethnicity; where Caucasians were defined as patients born in 
Australia (n = 15) or Greece (n = 1), and Asians were defined as 
patients born in Sri Lanka (n = 1), India (n = 1) or Singapore (n = 1). 
Medical history at time of biopsy was examined for infection, 
malignancy, associated medical issues such as diabetes, and the 
presence of any genetic testing as these are causes of secondary FSGS 
(as above).

Proteinuria
Proteinuria was reported as either 24-h protein excretion, urinary 

total protein relative to creatinine (UTP/Cre), individual urinary total 
protein and creatinine measurements, or albumin relative to creatinine 
(ACR). Proteinuria as 24-h protein excretion is commonly considered 
the gold standard. However, in this retrospective study, 24-h protein 
excretion was not available for three patients at the time of biopsy (2R 
and 1NR), or 12 patients 6 months after treatment commenced (10R 
and 2NR). For the three patients at biopsy and 10 of the 12 patients at 
6 months, individual urinary total protein and creatinine values were 
used to calculate an estimate of protein excretion in grams/day for 
consistency using MediCalc® Medical Calculator System designed by 
ScyMed® (31–33). Individual protein and creatinine values were not 
reported 6 months after treatment commenced in two patients (1R 
and 1NR). Classification of these two patients was based on reported 
ACR [equivalent to <0.5 g/day (34); 1R] or increased serum creatinine 
from baseline (1NR) (11).

Estimated glomerular filtration rate (eGFR)
Various equations were used to calculate eGFR, incorporating 

variables such as serum creatinine, age, weight, race and sex. To 
achieve uniformity, eGFR at time of biopsy was recalculated for all 
patients using the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) equation (35), taking into account reported 
serum creatinine, age and sex as recommended by clinical practice 
guidelines (36, 37). eGFR was also calculated for patients 6 months 
after their treatment was initiated. However, three patients did not 
have serum creatinine measured at 6 months. Each group had one 
patient <18 years of age, which is significant as the current CKD-EPI 
formula cannot be used on pediatric patients (38). Therefore, these 
patients did not have eGFR calculated at time of biopsy or after 
6 months of treatment.

Podocyte immunofluorescent staining and 
imaging

Multiple strategies have been used to estimate podocyte number 
and density with many different marker combinations, including 
transducin-like enhancer of split 4 (TLE4) (39), DACH1 (40), p57 (41) 
and WT1 (42). After testing for different antibody combinations in 
our tissues, we proceeded with DACH1 (to mark podocyte nuclei; 
Figures  2A–C) and Synaptopodin (to mark podocyte cytoplasm; 
Figures 2D–F) and DAPI (to mark all nuclei; Figures 2G–I). Following 
de-waxing and dehydration, sections were subject to antigen retrieval 
for 2 h at 92°C in a buffer of pH 9. Sections were blocked with 1% 
bovine serum albumin in 0.05% PBS/Tween-20 (P1379; Sigma 
Aldrich) solution for 1 h at room temperature (RT). Sections were 
then immunostained using polyclonal rabbit anti-DACH1 
(daschund1; 1:1000; 10914-1-AP; Proteintech) and monoclonal 
mouse anti-synaptopodin (1:500; SC-515842; Santa Cruz 
Biotechnology) antibodies to label podocyte nuclei (Figures 2A–C) 
and podocyte cytoplasm (Figures  2D–F), respectively. Primary 
antibodies were diluted in a solution of 1% bovine serum albumin 
(BSA; A7906; Sigma-Aldrich) and 0.05% PBS-Tween-20, and 
incubated at 4°C overnight. After a wash step, primary antibodies 
were fluorescently labeled with Alexa Fluor 633-conjugated goat anti-
rabbit IgG antibody (1:1000; A21070; Invitrogen) and Alexa Fluor 
568-conjugated goat anti-mouse IgG antibody (1:1000; A11004; 
Invitrogen) for 2 h at RT. Secondary antibodies were diluted in a 
solution of 10% human serum (H4522; Sigma Aldrich) and PBS/
Tween-20. An autofluorescence quenching kit with DAPI 
(4′,6′-diamidino-2-phenylindole) was then used to identify all nuclei 
(SP-8500; Vector laboratories; Figures 2G–I). Images were obtained 
using a Leica SP5 laser confocal microscope (Leica Microsystems) 
using a x40 oil immersion objective lens (1.25 numerical aperture) and 
x1.6 set zoom. All images were taken with eight line-averages and 
stored in a 1,024 × 1,024-pixel frame.

All glomerular profiles present on a biopsy section were imaged 
(14 ± 7 glomeruli per section; mean ± SD), inclusive of normal 
glomeruli (Figures 2J,M) and those with varying levels of sclerosis 
(Figures 2K,N) and global sclerosis (Figures 2L,O). Patients whose 
biopsies contained ≤6 glomeruli in a section were excluded. PAS 
images were used to confirm the number of glomeruli present per 
section, irrespective of level of sclerosis. If any section had one or 
more glomeruli that were not imaged in immunofluorescence (due 
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to global sclerosis), a serial section of the biopsy was re-stained and 
re-imaged. This double staining validation allowed glomeruli with 
varying levels of sclerosis to be included in both podometric and 
pathology analyses.

Glomerulosclerotic index (GSI)
Sections immunofluorescently stained for podometric analysis 

were re-stained with PAS to quantify GSI in the same glomeruli used 

for podometric assessment (43, 44) and to confirm glomerular profile 
number per section. The degree of sclerosis in each glomerular profile 
was subjectively scored from 0 to 4: score 0, no sclerosis; score 1, 
sclerosis occupies 1–25% of the glomerular area; score 2, sclerosis 
occupies 26–50% of the glomerular area; score 3, sclerosis occupies 
51–75% of the glomerular area; score 4, sclerosis occupies 76–100% 
of the glomerular area. These scores were used to calculate GSI using 
the formula:

FIGURE 2

Immunofluorescent and PAS staining of biopsies. Representative images of a normal glomerulus, glomerulus with FSGS and glomerulus with global 
sclerosis immunofluorescently stained for DACH1 (podocyte nuclei; red; A–C), synaptopodin (SNP; podocyte cytoplasm; yellow; D–F) and DAPI (all 
nuclei; blue; G–I). Merged images show podocyte nuclei as pink where DACH1 and DAPI merge (J–L). Following immunofluorescence imaging, 
sections were re-stained with PAS (M–O). Dashed lines indicate sclerotic lesions, which in the immunofluorescent images lack DACH1 and SNP 
staining. Scale bars  =  50  μm.
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GSI x x x x= + + +( )
+ + + +( )

1 1 2 2 3 3 4 4

0 1 2 3 4

N N N N
N N N N N/

where N is the number of glomeruli with each grade of sclerosis. 
All glomeruli with GSI score 4 presented with global sclerosis, thus 
these terms are used synonymously.

Glomerular and podometric analyses

Estimation of glomerular volume
All included patients had biopsies analyzed for podometrics 

based on the method of Venkatareddy et  al. (39) modified by 
Haruhara et al. (45). Image files obtained using the SP5 confocal 
microscope were assessed for all podometric analyses using FIJI® 
imaging software. Glomerular tuft area was assessed on merged 

immunofluorescent images of DACH1, synaptopodin and DAPI 
(Figures 3A–C) and defined as the area on the outer side of the 
capillary loops of the glomerular tuft. For glomeruli with sclerosis, 
the sclerotic region was also included in glomerular tuft area, where 
background staining and PAS images were used as a guide to 
estimate tuft area (Figures 3D–F). Mean glomerular area for each 
biopsy was calculated by averaging the measured areas of all 
glomerular tufts (46). Mean glomerular area was then used to 
calculate mean glomerular volume using the following Weibel and 
Gomez equation:

 
Glomerular volume d mean glomerular area= × ( )β /

/3 2

where β is a dimensionless shape coefficient (1.382 for spheres), 
and d is a size distribution coefficient used to adjust for variations in 
glomerular size. This study used a value of d = 1.01 (47, 48).

FIGURE 3

Glomerular tuft area and podocyte nuclear analysis. Mean glomerular area for each biopsy was determined and used to calculate mean glomerular 
volume. Glomerular tuft area (indicated with an arrow) was defined as the area of tissue immunofluorescently stained for podocyte cytoplasm and 
podocyte nuclei shown in a normal glomerulus (A), a glomerulus with FSGS (B) and a glomerulus with global sclerosis (C). Based on PAS images (D–F), 
regions with glomerulosclerosis were included in the glomerular area analysis. (G–I), DACH1 and DAPI merged images used to identify podocyte 
nuclei (DACH1+ and DAPI+) as regions of interest (ROIs), as indicated by arrows. Podocyte nuclear caliper diameters on the x- and y-axis were 
measured (J) and averaged for each biopsy. Scale bars  =  50  μm.
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Estimation of podocyte number and density
Podocyte nuclei were defined as DACH1+ and DAPI+ and located 

outside glomerular capillaries, but not located on the Bowman’s 
capsule (Figures  3G–I). DACH1+ and DAPI+ nuclei located on 
Bowman’s capsule were considered parietal epithelial cells (42). 
Merged DAPI and DACH1 images were assessed using FIJI® software, 
and DACH1+ and DAPI+ nuclei were marked as regions of interest 
(ROIs; Figure  3J). The XY-axis caliper diameters of all identified 
podocyte nuclei were measured and averaged for each biopsy 
(Figure 3J).

Podocyte density was calculated using the number of podocyte 
nuclei per biopsy, apparent podocyte nuclear caliper diameter, total 
glomerular area, and optical section thickness. Optical section 
thickness was calculated as 0.541 μm using the formula for axial 
resolution on confocal microscopy:

 
Axial resolution n= ×( ) − √ − ( )( ) 0 88 2 2. / ^ ^λ n NA

where λ is the excitation wavelength for DAPI (405 nm), n is the 
refractive index of the immersion oil (1.515), and NA is the numerical 
aperture of the objective lens (1.25). Podocyte number per tuft was 
calculated by multiplying podocyte density by glomerular volume.

Estimation of podocyte nuclear, cytoplasmic and 
total volumes

Podocyte cytoplasm was defined as synaptopodin+. A binary 
image of the synaptopodin file obtained from the confocal microscope 
was created using the IsoData algorithm (49) and used to measure the 
synaptopodin+ area within each glomerulus. The percentage of 
glomerular area with synaptopodin immunostaining was defined as 
the sum of all synaptopodin+ areas in glomerular tufts divided by the 
sum of all glomerular tuft areas in the biopsy section. The average 
volume of cytoplasm per podocyte was calculated as follows:

 

Podocyte cytoplasmic volume
Glomerular volume

Synaptopodi
=

× % nn

Podocyte number per tuft

( )










( )/

Average podocyte nuclear volume was estimated based on the 
mean apparent caliper diameter of podocyte nuclei using the following 
formula (50, 51):

 
Podocyte nuclear volume

apparent caliper

diameter 
= ×

×
4 3

2π π
/

/

oof podocyte nuclei









Average podocyte volume was calculated as the sum of podocyte 
cytoplasmic volume and podocyte nuclear volume (52). Podocyte 
volumetric density in glomeruli (VVPod/Glom) was defined as the 
proportion of glomerular tuft volume comprised by podocytes, and 
was estimated using:

 

V Pod Glom
Podocyte volume

podocyte number per tuft
V /

/

( ) = ×








GGlomerular volume( )

Statistical analysis

Data were analyzed using GraphPad Prism software (Version 8, 
GraphPad Software, Inc., USA). Continuous data were tested for 
normality using the D’Agostino-Pearson omnibus normality test, and 
depending on the outcomes data were analyzed using an un-paired 
t-test (parametric data) or a Mann–Whitney test (non-parametric). 
Categorical data and difference between proportions were analyzed by 
Chi-Squared test. Most data were non-parametric and are therefore 
presented as median [inter-quartile range (IQR)]. Correlations 
between podometrics, GSI and urinary/serum data were analyzed 
with Spearman’s correlation test. Data are presented as trend-line 
±95% confidence intervals (CI). A p value <0.05 was considered 
statistically significant.

Results

Patient clinical characteristics

Patient demographics and kidney function at 
time of biopsy

Patient demographics in the treatment responder and 
non-responder groups were similar (Table 1), with the exception of 
sex, with all six non-responders being male. Treatment responders 
and non-responders had similar levels of proteinuria at the time of 
biopsy, with median proteinuria in both groups >3.5 g/d (Table 1). 
Kidney function at the time of biopsy was also similar in the two 
groups, with median eGFR in both groups categorized as G2  
GFR for CKD, which KDIGO defines as mildly decreased 
kidney function.

Patient biopsy, treatment and response
38% of patients who responded to treatment were prescribed 

steroids only, and another 38% were prescribed steroids and 

TABLE 1 Patient demographics and urine/serum data at time of biopsy.

Responders 
(13)

Non-
responders (6)

p

Demographics

Age, years 35 (23–53) 45 (41–58) 0.16

Sex; male, n (%) 7 (56%) 6 (100%) <0.05

Ethnicity; 

Caucasian, n (%)
11 (85%) 5 (83%) 0.94

Hypertension, n 

(%)
4 (31%) 2 (33%) 0.91

Smoking, n (%) 1 (8%) 2 (33%) 0.15

Urine/serum data at time of biopsy

Proteinuria, g/24 h 3.87 (2.14–6.75) 5.83 (5.18–6.77) 0.08

Serum creatinine, 

μmol/l
88 (65–114) 116 (84–161) 0.13

eGFR*, ml/

min/1.73 m2
84 (62–118) 62 (51–94) 0.22

Continuous data are median (IQR). *Indicates one patient from each group was <18 years of 
age, for which eGFR was not calculated.
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medications to regulate blood pressure (Table 2). Notably, 23% of 
treatment responders were only prescribed blood pressure medication. 
Of the patients who did not respond to treatment, 17% were prescribed 
steroids only, and 50% received steroids and ACEi/ARBs.

As expected, non-responders had a higher level of proteinuria 
6 months after diagnosis than responders (p < 0.001; Table 2). There 
was a trend toward lower eGFR in non-responders at 6 months, but 
this difference was not statistically significant (p = 0.14).

Patients who did not respond to treatment at 6 months had a 
significantly higher percentage of glomeruli with global sclerosis 
than responders at diagnosis (p < 0.05; Figure  4A). A greater 
percentage of glomeruli in non-responders had FSGS lesions 
although this did not reach statistical significance (p = 0.06; 
Figure 4B). Non-responders had a significantly higher GSI than 
responders (p < 0.05; Figure  4C). Importantly, 67% of 
non-responders (4/6) compared to only 7% of responders (1/13) 
had greater than 20% of glomeruli with global sclerosis (p < 0.01; 
Figure 4A). Similarly, 83% of non-responders (5/6) compared to 
only 30% of responders had greater than 50% of glomeruli affected 
by FSGS lesions (p < 0.05; Figure 4B) and 67% of non-responders 
(4/6) compared to 15% of responders (2/13) had a GSI greater than 
1 (p < 0.05; Figure 4C). Together, these findings indicate a threshold 
of 20% global sclerosis, 50% of glomeruli with FSGS lesions and a 
GSI of 1 or more may indicate the response to first line therapy 
(Figures 4A–C).

Podometric analyses

Median podocyte number per glomerulus in treatment responders 
was 279 (203–507), 50% greater than that of non-responders (186, 
118–310; p < 0.05; Table 3; Figure 4D). Interestingly, the proportion of 
patients with a podocyte count of 216 or less was significantly higher 
in non-responders (83%) than responders (30%), indicating podocyte 
number per glomerulus can also indicate the response to first line 
therapy (p < 0.05; Figure 4D). Glomerular volume was similar in the 
two groups. Podocyte density was 27% greater in responders than 
non-responders, but this difference was not statistically significant 
(p = 0.12; Table 3; Figure 4E).

The proportion of glomerular volume comprised by podocyte 
cytoplasm was similar in responders and non-responders (Table 3). 
Podocyte volume was 48% greater in non-responders (2,721, 2,072–
3,092 × 10 μm3) than responders (1,834, 1,493–2,632 × 10 μm3), 

however this difference was not statistically significant (p = 0.08; 
Table 3; Figure 4F).

Remaining podocytes increase in size following 
absolute and relative podocyte depletion

Total podocyte number per glomerulus correlated directly with 
glomerular volume (p < 0.05; Figure  5A). However, there was no 
relationship between podocyte density and glomerular volume 
(Figure  5B). Average podocyte volume negatively correlated with 
podocyte number (p < 0.01; Figure 5C), suggesting that as podocyte 
number decreases, remaining podocytes undergo hypertrophy. 
Average podocyte volume was inversely correlated with podocyte 
density (p < 0.0001; Figure 5D).

Podocyte depletion is a key event in the 
development of glomerulosclerosis

As expected, GSI at the time of diagnostic biopsy was negatively 
correlated with both podocyte number (p < 0.01; Figure  6A) and 
podocyte density (p < 0.05; Figure 6B). The extent of glomerulosclerosis 
negatively correlated with the percentage of glomerular volume 
constituted by podocyte cytoplasm (p < 0.01; Figure  6C). The 
percentage of glomerular volume comprised by podocytes was also 
negatively correlated with severity of glomerulosclerosis (p < 0.001; 
Figure 6D).

Podometrics and urinary/serum data
Given podocyte number was significantly lower in non-responders 

than responders, the relationships between podocyte number per 
glomerulus and proteinuria, serum creatinine and eGFR at biopsy 
were investigated to determine if non-invasive urinalysis could 
be used to determine the severity of podocyte depletion at diagnosis 
(Figures 7A–C). A negative correlation between podocyte number and 
serum creatinine at biopsy approached statistical significance (p = 0.08; 
Figure 7B). However, no other associations between other urinary/
serum data at biopsy and podometrics were observed. Similarly, there 
were no statistical relationships between podocyte density and 
proteinuria, serum creatinine or eGFR (Figures 7D–F).

Discussion

This is the first study to analyze podometrics and indices of 
glomerulosclerosis in diagnostic biopsies of patients with primary 

TABLE 2 Initial treatment regime and 6  month outcomes.

Responders (13) Non-responders (6) p

Initial treatment regime

Steroids only, n (%) 5 (38%) 1 (17%) 0.34

Steroids + ACEi/ARBs, n (%) 5 (38%) 3 (50%) 0.63

ACEi/ARBs only, n (%) 3 (23%) 2 (33%) 0.64

Urinary/serum data 6 months after treatment

Proteinuria, g/24 h* 1.00 (0.20–1.90) 6.11 (3.92–9.14) <0.001

Serum creatinine, μmol/l* 91 (74–107) 121 (92–227) 0.053

eGFR, ml/min/1.73 m2* 85 (62–120) 61 (41–86) 0.14

Continuous data are median (IQR). *Indicates incomplete dataset (see Methods for justification).
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TABLE 3 Podometric data.

Variable Responders (13) Non-responders (6) p

Analysis parameters

Number of glomerular profiles evaluated/biopsy 13 (10–16) 13 (9–20) 0.99

Apparent caliper diameter of podocyte nuclei, μm 7.31 (7.11–7.70) 7.64 (6.90–8.02) 0.57

Estimated true diameter of podocyte nuclei, μm 9.95 (9.67–10.50) 10.4 (9.39–10.90) 0.57

Podocyte number and density, and glomerular volume

Podocyte number per glomerular tuft 279 (203–507) 186 (118–310) <0.05

Glomerular volume, x10 μm3 3.88 (2.76–4.56) 2.95 (2.35–4.85) 0.64

Podocyte density, per 106 μm3 76 (60–143) 60 (36–83) 0.12

Podocyte volume indices

% of glomerulus stained for SNP 13 (11–19) 12 (9–18) 0.37

Podocyte nuclear volume, μm3 399 (357–452) 456 (295–530) 0.37

Podocyte cytoplasmic volume, μm3 1,425 (1122–2,167) 2,286 (1627–2,549) 0.07

Total podocyte volume, μm3 1834 (1493–2,632) 2,721 (2072–3,092) 0.08

Podocyte nuclear to cytoplasmic ratio 0.25 (0.21–0.37) 0.22 (0.19–0.25) 0.11

VV(Pod/Glom), % 17 (15–23) 15 (10–22) 0.37

Data are median (IQR). VV(Pod/Glom): percentage of glomerular volume comprised by podocytes.

FIGURE 4

Biopsy analysis of glomerulosclerosis and podometrics. Percentage of glomeruli with global sclerosis, with the potential threshold of 20% global 
sclerosis (dashed line) as an indicator of treatment response (A). Percentage of glomeruli with FSGS in responder and non-responder patients with a 
threshold of 50% of glomeruli with FSGS lesions (dashed line) as an indicator of treatment response (B). Glomerulosclerotic index in responder and 
non-responder patients with a threshold GSI of 1 (dashed line) to indicate response to treatment (C). Podocyte number per glomerular tuft, where the 
average normal value of ~500 podocytes per glomerulus in healthy adults is indicated by a dotted line and the dashed line at 216 podocytes indicates 
the potential threshold of podocytes/glomerulus that could identify treatment response (D). Glomerular podocyte density (E) and podocyte volume 
per glomerulus (F) were similar in responders and non-responders. Each point represents a patient who responded to treatment (R; black; n  =  13) or 
did not (NR; white; n  =  6). Continuous data tested by Mann–Whitney test and proportion analysis tested with Chi-Square test. Data are median  ±  IQR. * 
indicates p  <  0.05.
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FSGS who were subsequently shown at 6 months to be  either 
responders or non-responders to first-line therapy. Our results show 
that total podocyte number per glomerulus at the time of biopsy was 
significantly higher in responders than non-responders at 6 months, 
whereas glomerulosclerotic index and the percentage of glomeruli 
with global sclerosis were significantly lower in responders. Moreover, 
threshold values at the time of biopsy of approximately 216 podocytes 
per glomerulus, 20% of glomeruli with global sclerosis, 50% of 
glomeruli with FSGS lesions and a GSI score of 1 were able to indicate 
the response to first line therapy at 6 months.

The mechanisms of action and target cells of corticosteroids are 
still not completely understood, although recent studies suggest the 
efficacy of glucocorticoid therapy is achieved, at least in part, through 
direct effects on podocytes (53). The present findings demonstrate that 
patients with primary FSGS who responded to first-line therapy had 
more podocytes per glomerulus at the time of biopsy than patients 
who did not respond. Studies have also reported increased podocyte 
survival and preservation of podocyte number following corticosteroid 
therapy (24, 54).

Although steroid treatment is considered first-line therapy in 
primary FSGS, it is avoided in patients in whom side effects of steroids 
are of particular concern (22). For these patients, more conservative 
therapy may be considered such as blood pressure control achieved 
with RAS blockade (ACEi/ARBs) and dietary modifications (8), as 

observed in approximately 30% of patients in both groups in the 
present study. Moreover, steroid treatment is often prescribed in 
combination with ACEi/ARBs, which was the case in 38% of 
responders and 50% of non-responders in the present study. RAS 
blockade lowers systemic blood pressure which in turn reduces 
intraglomerular capillary pressure, reducing mechanical distension 
(stress) of the capillary tuft and thereby protecting podocytes (55). 
However, podocytes express angiotensin II type 1 receptors and this 
increases following mechanical stress in vitro (56). Mechanical stress 
on podocytes also increased podocyte angiotensin II production and 
apoptosis by 2.5 fold, which was ameliorated by RAS blockade (56). 
Taken together, these findings suggest that ACEi/ARBs have direct 
effects on podocyte survival, independent from systemic blood 
pressure control.

Normal adult human glomeruli contain approximately 500–600 
podocytes each (57, 58). Interestingly, several studies have identified 
that a podocyte number of approximately 200 or less can indicate 
poorer outcomes. Lemley et  al. (59) found that patients with IgA 
nephropathy and with fewer than 200 podocytes per glomerulus had 
increased frequency of GFR < 90 mL/min/1.73 m2, a higher percentage 
of global glomerulosclerosis and high shunt magnitude. Similarly, 
Andeen et al. (60) found patients with early stage diabetic nephropathy 
had 268 ± 73 (mean ± standard deviation) podocytes per glomerulus, 
whilst those with advanced disease had 144 ± 52 podocytes per 

FIGURE 5

Correlations between podometrics and glomerular size. Correlation analyses between glomerular volume and podocyte number (A), and between 
glomerular volume and podocyte density (B). Correlations between podocyte volume and podocyte number (C), and between podocyte volume and 
podocyte density (D). Trend line ±95% CI. Responders (black), non-responders (white).
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FIGURE 6

Correlations between podometric parameters and glomerulosclerosis. Correlation analyses between GSI and (A) podocyte number, (B) podocyte 
density, (C) glomerular synaptopodin (SNP) staining and (D) percentage of glomerular volume comprised by podocytes (VV(Pod/Glom)). Trend line ±95% CI. 
Responders (black), non-responders (white).

glomerulus. Although these studies did not evaluate therapeutics 
specifically, the findings support the concept that patients with 
podocytopathies with fewer than around 200 podocytes per 
glomerulus are of increased clinical concern and may require more 
intricate therapeutic strategies than standard first-line therapy. 
Similarly, ten of the nineteen patients in the present study had 216 or 
fewer podocytes per glomerulus  - this included five of the six 
non-responders and four of the thirteen responders, suggesting that 
patients with fewer than approximately 200 podocytes per glomerulus 
may be more unlikely to respond to first-line therapy.

In contrast to podocyte number per glomerulus, podocyte density 
is an index of relative podocyte depletion which has repeatedly been 
shown to be  a key event in the onset and progression of 
glomerulosclerosis (61, 62). We therefore expected that differences in 
both podocyte number and podocyte density would be found between 
responders and non-responders to first-line therapy. However, 
we found no difference in podocyte density between these two groups.

Although the present study found that podocyte density may not 
be useful in identifying patients who are likely to respond to first-line 
therapy, podocyte density undoubtedly remains a very valuable tool 
for assessing glomerular disease. A podocyte density of 100 podocytes 
per 106 μm3 glomerular volume is considered a critical threshold that 
results in dysfunctional glomeruli, protein leakage, glomerulosclerosis 

and decreased renal function (63). Further decreases in podocyte 
density require exponential increases in podocyte hypertrophic 
compensatory adaptations. However, this is difficult to accomplish 
given that podocytes have a limited capacity to increase in size. Failure 
of podocyte hypertrophy to match the enlarged glomerulus drives 
progression of glomerular disease (64).

Median podocyte density for both groups in the present study 
was less than 100 per 106 μm3 at the time of biopsy. Interestingly, all 
non-responders had a podocyte density less than this value, as did 
62% of responders. For both groups of patients, podocyte volume 
was significantly and negatively correlated with podocyte number 
and podocyte density, evidence of podocyte hypertrophy. Although 
not statistically significant, it is of interest that podocyte cytoplasmic 
volume was 60% higher in non-responders than responders 
(p = 0.07), while total podocyte volume was 48% higher in 
non-responders (p = 0.08). This suggests that podocytes in 
non-responders had undergone greater hypertrophy than podocytes 
in responders, indicative of increased podocyte hypertrophic stress. 
Non-responders also had a higher level of glomerulosclerosis. 
Taken together, these data support the podocyte depletion 
hypothesis (6, 64).

In addition to podocyte number being able to distinguish 
treatment responders from non-responders in the present study, three 
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indices of glomerulosclerosis also distinguished between these 
patients – the percentage of glomeruli with global sclerosis, the 
percentage of glomeruli with FSGS lesions, and GSI. While these 
findings are perhaps not surprising, to our knowledge this is the first 
study to report that indices of glomerulosclerosis have predictive 
clinical value in patients with primary FSGS. Interestingly, in a study 
of ANCA-associated glomerulonephritis, Brix et al. (65) developed 
and validated a clinicopathologic score to indicate renal outcomes. 
They found that the percentage of normal glomeruli (without scarring, 
crescents or necrosis) was the strongest indicator of death-censored 
end stage renal disease. Brix et  al. (65) also identified predictive 
threshold values for these three parameters. With the recent 
development of deep learning algorithms and new morphometrics to 
interrogate renal histopathology (66), one can envisage rapid progress 
in the development of new strategies to indicate kidney outcomes 
from diagnostic biopsies and functional data and thereby more 
accurately indicate and refine therapy.

The relationships between urinary/serum data at biopsy and 
podocyte number per glomerulus and podocyte density were analyzed 
to determine if non-invasive urinalysis could be used to determine the 
severity of podocyte depletion at diagnosis. No significant correlations 
were observed, although the relationship between serum creatinine 
and podocyte number approached statistical significance. It was 
expected that increased proteinuria and serum creatinine, and 
decreased eGFR would be associated with greater podocyte depletion. 
This was the case in a study of patients with IgA nephropathy where 
podocyte density was significantly correlated with serum creatinine 
and eGFR (67).

A limitation of this single center study is the relatively small 
sample size. Archival kidney biopsy tissue was obtained from patients 
who required a biopsy to confirm diagnosis of primary FSGS over a 
12-year period (2009 to 2020). While 84 patients were initially 
recruited, 65 patients were excluded, leaving 13 responders and 6 
non-responders. While novel and clinically relevant findings were 
obtained, a larger sample size may have found that podocyte density 
was higher in responders than non-responders, as was found for 
podocyte number. The small study size also meant that differences 
between groups could not be  fully appreciated. For instance, 
non-responders were older, but the age difference between groups was 
not significant. Treatment regimens also differed, with not all study 
patients having documented ACEI/ARB therapy which is now 
standard of care alongside any immunosuppressive therapy (8, 9). Due 
to the retrospective nature of the study, data collection was limited to 
what was recorded in patient notes whereby 24-h urine protein results 
were not available for 16% of patients at time of biopsy and 74% of 
patients at 6 months. However, spot urine protein levels have been 
shown to be comparable to 24 h urine protein calculations for the 
clinical outcomes of end stage renal failure and death (68). Given the 
retrospective nature of the study and the small sample size, further 
studies incorporating stratification for confounders such as patient age 
and treatment regimen are required to fully understand the utility of 
podometrics and glomerulosclerosis indices for determining 
therapeutic options.

In conclusion, these findings suggest that primary FSGS patients 
with higher podocyte number per glomerulus and less 
glomerulosclerosis at the time of diagnostic biopsy respond to 

FIGURE 7

Correlations between podometric and urinary/serum data at biopsy. Correlations between podocyte number and (A) proteinuria, (B) serum creatinine 
and (C) eGFR. Correlations between podocyte density and (D) proteinuria, (E) serum creatinine and (F) eGFR. Trend line ±95% CI. Responders (black), 
non-responders (white).
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first-line therapy at 6 months. A podocyte number of less than 
approximately 200 per glomerulus, a GSI greater than 1, and a 
percentage global sclerosis greater than 20% may all be associated with 
a lack of response to first-line therapy. Podometric and 
glomerulosclerosis analyses of diagnostic biopsies may be of clinical 
value in determining optimum therapeutic options for patients with 
primary FSGS, however, larger, prospective studies would be needed 
to confirm this.
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