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Big data and artificial intelligence are key elements in the medical field as they 
are expected to improve accuracy and efficiency in diagnosis and treatment, 
particularly in identifying biomedically relevant patterns, facilitating progress 
towards individually tailored preventative and therapeutic interventions. These 
applications belong to current research practice that is data-intensive. While the 
combination of imaging, pathological, genomic, and clinical data is needed to 
train algorithms to realize the full potential of these technologies, biobanks often 
serve as crucial infrastructures for data-sharing and data flows. In this paper, 
we argue that the ‘data turn’ in the life sciences has increasingly re-structured 
major infrastructures, which often were created for biological samples and 
associated data, as predominantly data infrastructures. These have evolved and 
diversified over time in terms of tackling relevant issues such as harmonization 
and standardization, but also consent practices and risk assessment. In line 
with the datafication, an increased use of AI-based technologies marks the 
current developments at the forefront of the big data research in life science 
and medicine that engender new issues and concerns along with opportunities. 
At a time when secure health data environments, such as European Health Data 
Space, are in the making, we argue that such meta-infrastructures can benefit 
both from the experience and evolution of biobanking, but also the current state 
of affairs in AI in medicine, regarding good governance, the social aspects and 
practices, as well as critical thinking about data practices, which can contribute 
to trustworthiness of such meta-infrastructures.
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1 Introduction

Life sciences knowledge production is increasingly structured by big data approaches, 
internationalization of research and closer coupling between research and applications, where 
biobanks comprise a major form of infrastructure in the current research ecosystems. For 
decades, biobanks have efficiently ensured access to biological samples and associated health 
data, which is being produced, collected and used in various ways, such as for medical research 
and public health databases as the two broad categories of population-based and clinical 
biobanks reflect (1). The historical development of the biobanks and their diversification over 
time contrast starkly with the current efforts for standardization, harmonization, integration, 
globalization and most significantly datafication. They have evolved from mere repositories to 
trusted infrastructures in sharing biomaterials and data (2), highlighting their crucial role in 
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data-intensive research. These efforts for facilitating the movement of 
data materialized into platforms, infrastructures and guiding 
principles to enable the exchange of data that is compliant with ethical, 
legal and societal considerations.

With artificial intelligence (AI), renewed discussions are taking 
place due to the idiosyncrasies of AI, the speed and consequences of the 
implementation of such technologies in biobanking and other domains 
(3, 4). Over the last decade, the development of national and 
transnational biobank networks or infrastructures have made such 
infrastructures instrumental to international research consortia (5–7). 
In addition, meta data infrastructures called health data spaces are 
developed that have the potential to significantly transform the life 
sciences, medicine and healthcare. Back in December 2020, the 
European Commission published the roadmap for the European 
Health Data Space (EHDS) initiative inviting public responses and 
presenting a first draft in May 2022. Currently discussed in the 
European Council and the European Parliament, the ambitious goal 
remains to complete the legislative process by the end of 2023 but no 
later than within the current Commission’s mandate to ensure the 
implementation by 2025 (8). The EHDS will undoubtably transform the 
health sector in Europe. It remains to be seen in which form it will 
be  realized, especially as expectations are high across various 
stakeholder groups, such as patient advocacy groups, researchers from 
academia and industry as well as policy makers (9). At the same time, 
infrastructures such as biobanks have a wealth of experience regarding 
the collection and use of health data for research purposes in an 
ethically and legally compliant way (10). The perspective we present 
here builds on the observation that many biobanks are already going 
through a transformation in becoming bio(data)banks and are 
entangled in trials of various data practices that can inform both the 
debates around AI’s use in life sciences and health research and 
emerging meta infrastructures considering developments, such as EU’s 
upcoming Artificial Intelligence Act. Although there has been a 
provisional agreement as of December 9th, 2023, among negotiators 
from EU’s Parliament and Council, the legal text will be implemented 
when the two institutions provide their approval and, if so, with its risk-
based categorization and the accompanying requirements, the AI Act 
may have an impact on many aspects of AI’s use in health research and 
applications, such as on data governance, explainability, requirements, 
practicing human-in-the-loop among others with potential effect also 
on the EHDS (11). In light of these recent developments, we argue that 
it is timely to look back at the practice of biobanking, especially the 
so-called data turn, and the current momentum in biobanking and 
medicine regarding AI and its implementation into research and 
technology, for insights on health data spaces and their development.

2 Data turn in life sciences: biobanks 
as data infrastructures

Biomedical research has become increasingly data-intensive and 
undergone a process of datafication (12). Central to this datafication 
are biobanks. As infrastructures, they can be characterized as vital 
entities in organizing practices, as embedded in other structures, 
social arrangements and technologies (13). In this capacity, biobanks 
support medical innovation, such as personalized medicine and 
genomic research, with scholars noting the molecularization and 
computerization sustaining both (14, 15).

The molecularization and data turn in the focus of biobank 
research in the last two decades deserves more attention. For instance, 
infrastructures have been created that gather genetic data from 
commercial and clinical sources, enabling population-based genetics 
research to be conducted (16). The outcome of such research, especially 
in genomics, raises hopes with a better understanding of the genetic 
bases of health conditions such as coronary artery disease, ideally 
based on diverse populations (17). However, the genomic data and 
infrastructures raise also concerns, especially regarding phenomena, 
such as sexual orientation, which received renewed attention in the 
search for a genetic basis (18) and also harbor emerging risks that are 
radically different than the previous ones due to intensive datafication, 
for instance, risks of genomic identifiability (19).

The existence of efforts towards standardization and 
interoperability in biobanking as reflected in the acronyms SPREC 
(20), BRISQ (21), MIABIS (22, 23) and others show the centrality of 
these notions for the data turn, but also harmonization regarding 
samples, technical infrastructures and practices. The relevant research 
contributes to developments such as specific algorithms for post-
analytical use, which may bridge the differences between distinct types 
of blood samples originally stored for different uses (24, 25). Such 
developments are especially salient considering that biobanks are not 
independent of the broader infrastructures of medicine and 
healthcare. From disease categorization to defining and standardizing 
biomarkers at a time wearable devices, sensors and emerging forms of 
data are increasingly being embedded into entire ecosystems often in 
the digital (26), the existing samples and data with different conditions 
of collection, annotation, consent status and storage, as well as 
variations across institutions are still part of the picture. Biobanks are 
expanding with both typical samples and data (e.g., blood, BMI) and 
further kinds (e.g., epigenetic, microbiome, etc.) being integrated and 
standardized, expanding the data in both dimensions of volume 
and diversity.

In attempts towards datafication, practices around samples such 
as in pathology are also being transformed, exemplified by “digital 
pathology” where whole slide images that are once created may 
decrease the need to store samples or increase the findability by 
turning images into data collected (27). Scholars observe along a trend 
of consolidation emergence of virtual biobanks brings together 
resources from multiple biobanks (28, 29), though such cataloging 
examples also include efforts of broader research infrastructures, such 
as BBMRI-ERIC (30). Similarly, in the genomics world, efforts to 
standardize and make genomic data accessible such as summary 
statistics of genome-wide association studies is picking up pace (31, 
32) as well as the development of trusted research environments 
despite critique (33) with specific tools, such as DataSHIELD (34).

3 AI in medicine and new beginnings 
for biobanking

Large amounts of data are needed to advance biomedical 
knowledge generation as well as big data analytics and new data-
driven technologies in AI. While the history of AI in medicine goes 
back half a century with the initiation of computational tools and 
technical infrastructures as well as events devoted to the topic (35), it 
has gained pronounced attention and applicability in recent years in 
line with its intensive use in other domains. Medical AI is seen as a 
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promising innovation for uses such as screening, diagnosis, risk 
assessment, clinical decision-making, management planning, and 
precision medicine, with available tools ranging from chatbots to 
clinical decision support (36). The hope is that AI systems will reduce 
human bias and improve performance, as has been demonstrated in 
certain areas such as radiology (37), by improving accuracy in medical 
image analysis and easing the workload in screening (38), or for 
AI-driven polygenic risk scores (PRS) which may enable greater 
accuracy, performance and prediction (39). AI can also bring 
improvements when it comes to clinical measurements (40), 
interpretation of tests (41), decision making for intensive care unit 
admission (42), or embryo implantation (43), among others. However, 
it is important to note that AI is not a one-size-fits-all solution, and its 
benefits may not be realized in every application.

The development and implementation of medical AI involves 
numerous key challenges. First, AI is data hungry. Large amounts of 
data are needed to train AI and access to these data is challenging for 
technical, legal, and practical reasons, along with emerging issues 
regarding computational power and infrastructures and alternatives 
such as federated learning, which bring their own challenges and 
opportunities (44). One salient challenge in this respect relates to the 
tradeoff between data access and data privacy, the resolution of which 
necessitates bottom-up, democratic and engaging processes (3) in 
consideration of commitment for findable, accessible, interoperable 
and reusable data as often referred to with the acronym FAIR (45) and 
further FAIR principles (e.g., https://www.go-fair.org/fair-principles/). 
Second, despite the immense potential benefits, the risks revolve 
around perpetuation or even amplification of societal inequality and 
injustices due to potentially biased datasets as well as certain data 
practices (46). Third, practitioners require practical recommendations 
for applying AI (47). Furthermore, patients’ preference for human 
agents or human supervision, possible strain between patients and 
treating physicians, especially in relation to privacy, data security and 
potential vulnerabilities related to AI tools need attention as do the 
implementation of guidelines and frameworks to ensure bioethical 
principles [e.g., (48)] are upheld and monitored (49). These call for 
engagement of multiple stakeholders in the resolution of ethical and 
legal issues, sharing similarities with biobanking, though at a 
different scale.

Biobanks, as key entities for providing access to large amounts of 
high-quality data, are central to the development of new data-based 
technologies such as AI. Similar to AI in medicine, the early 
developments in the use of AI in biobanking often focus on biobank 
participants’ health conditions as reviewed elsewhere (50). These 
include developments such as, identifying and categorizing 
Alzheimer’s disease patients (51), calculating risks scores for 
conditions such as age-related macular degeneration (52) or 
cardiovascular diseases (53), aiding in classification of disease 
subtypes (54) as well as providing predictions at individual level for 
COVID-19 (55, 56) or potential conditions due to therapeutic agents 
such as aromatase inhibitor-related arthralgia (57). However, biobanks 
are not merely support structures for healthcare or repositories for 
medical data. Biobanks have the potential to handle the data turn as 
they pursue data-driven practices in a standardized, industrialized 
manner (58). As research infrastructures, biobanks, may benefit from 
AI in the collection of biological samples and data, such as analysis of 
the scholarly literature for development of criteria for sampling, 
analysis, interpretation, data extraction, even engagements with 

biobank participants, from consent process to research process; 
however, AI can also contribute to purely managerial tasks including 
storage space optimization or upstream research processes, such as 
suggesting samples and data for research proposals based on content 
and methods, as well as downstream research evaluation, assessing the 
“value” of samples and data based on the scholarly literature (59). AI’s 
potential impact on biobanking may also include possible increases in 
the use of biobank samples and data, thus contributing to sustainability 
and speed of research as well as aiding biobanks in identification and 
recruitment of participants, training, annotation of samples and data, 
increasing interoperability, visibility, and access (60).

AI is central to the idea of “biobanks for the future” (61) though 
challenges in implementation of AI in biobanking range from 
difficulties aligning standards not only across data in the long run, but 
also samples, workflows, ethics management, legal and governance-
related aspects, from transparency to informed consent (28) as well as 
justice, both epistemically and ethically (14). There are efforts such as 
workshops or collections of best practices to increase the “readiness” 
of these infrastructures for AI (60) with calls, checklists, tools and 
frameworks for ethical use of AI in medicine/biobanking (47, 62). 
New and alternative forms of governance are needed for a new form 
of biobanking that revolves around big data considering the increasing 
widening of the scope of data from social media to devices capturing 
bodily function, resulting in streams of data over time and analytical 
capacity over space (63). Biobanks’ positioning at the in practice often 
gray intersection of healthcare and research can inform the discussions 
on health data spaces, in light of the recent developments.

4 Discussion

The ways in which risks are approached in biobanking and the 
normative arguments regarding how they should, such as future-
proofing the governance of biobanks (64) and adaptive risk 
governance (65), suggest biobanking may be helpful in identifying key 
questions medical AI and health data spaces are facing from informed 
consent, representation in datasets, to risks associated with data 
protection and responsibility. While acknowledging the digital divide 
and its consequences, the increased ability of participants to follow 
and engage with biobanking and healthcare infrastructures are leading 
to reconfigurations of “traditional boundaries between the public 
domain (healthcare systems, medical research, and clinical practice) 
and the private one (patients and citizens)” which necessitate new 
approaches to fostering trust (63). Health data spaces bring such 
observations to a new level.

Trust and trustworthiness have become keywords that are often 
attached to how AI should be, with limited discussion of what this 
entails. Despite the burgeoning literature on ethics of AI in medicine, 
three areas relevant for trust are problematic (46): limited analytical 
accuracy and conceptual slippages, inadequate analysis of the contexts 
in which medical AI tools are embedded, and scarcity of 
interdisciplinary approaches. Considering trust central to societal 
functioning as “a fundamental principle for interpersonal interactions” 
(66), it cannot be  considered unidirectional. Rather, it needs to 
be understood as a complex, situated, context-dependent, and relational 
concept that involves several trustor/trustee relationships, such as trust 
in persons (e.g., scientists who trust each other, patients who trust 
scientists and clinicians), technology, and institutions (67, 68). Trust or 
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more precisely trusting relationships are fragile and require continuous 
work, which means that they need to be  actively established and 
sustained. In this sense, we  see three main considerations from 
biobanking – a domain that should be  built on trust – that can 
contribute to better medical AI and health data spaces.

Regulations may provide guidance, but good governance is an active 
process that comprises more than following regulations. Efforts towards 
regulating and guiding AI have been abundant with ‘AI Ethics’ 
becoming a buzzword (69, 70) along with the legal frameworks such 
as the proposed Artificial Intelligence Act of the EU (11). Considering 
international standards, overseeing organizations, national legislations, 
as well as practices, from engaging participants to consents, biobanks 
have accumulated over decades experiences related to intensified 
transnational data sharing, international collaborations, including 
public-private partnerships, access to and reuse of data, and efforts to 
harmonize data, ethical/legal standards and societal aspects. Hence, 
biobanking incorporates knowledge of the “ethics work” that is an 
integral part of data flows (71) and necessitates thinking critically 
about potential issues that go beyond individual institutions, such as 
identifiability risks in a datafied world both in regards to genomic (19) 
and medical imaging data (72). Thus, necessary good governance 
involves more than procedure-following.

Infrastructures are not merely technical, i.e., buildings, data 
repositories, but also social – involving practices. A recent study (73) 
with biobank professionals and experts indicates that expectations 
towards biobanks in view of data processing are going beyond their 
status as repositories. They see biobanks in a more active role when 
it comes to providing information and communicating and engaging 
with biobanks participants and point to the need to improve consent 
procedures and the role of biobanks in sharing samples and data 
with industry partners and different countries. Considering that 
participants are the origin of the data, as key stakeholders they 
should be involved in the development and governance, just as staff 
in biobanks should be included (74). Decades of biobanking show 
that the concerns of citizens cannot be ignored. In the case of AI in 
health, these not only relate to the general concerns regarding 
AI. On the contrary, as suggested by the PRS and AI, ethical, legal 
and societal issues necessitate a layered understanding due to 
increasing complexity bringing new relevance to concepts such as 
explainability and interpretability, both for the users and the broader 
society (39). Considering the drivers of AI in medicine, such as 
identification and management of potential patients that can 
be “high-risk” but also “high-cost” (75), the developments may not 
benefit individuals who may otherwise develop conditions that are 
harder to treat or identify and manage emerging outbreaks in real-
time, and such AI tools may cause further burdens on the 
individuals. These necessitate societal debates and empowering 
citizens, including involving potential non-users, as part of bringing 
infrastructures to life (76).

Not only are data not always perfect due to inherent finite 
categorization of potentially infinite diversity, but their capacity to 
represent should always be continuously problematized. Against the 
biobanking professionals’ concerns, the tendency to see biobanks as 
data repositories and medicine as increasingly digital (27, 63) can 
result in a false sense of security in the imaginary of increasing data 
interoperability and connectedness at the peril of ignoring what 
D’Ignazio and Klein (77) rightly note the existence of “problems that 
cannot be represented—or addressed—by data alone” (p. 10). Risks 
accompany the opportunities in a datafied world. The existence of data 

should not automatically lead to testing of any potential association 
and scholars have been trying to identify ways of coping with such 
issues of reproducibility, e.g., for PRS (78, 79). In this regard, the “curse 
of dimensionality” in biobanking due to multitude of secondary data 
even in cases of low sample sizes, can also be seen as an opportunity 
to think outside of the box to overcome issues even in smaller sample 
size situations (80). Furthermore, AI may also exacerbate the existing 
big data issues that are yet to be resolved. While the uses may relate to 
privacy with unintended access to data from patient implants, sensors 
and other devices that collect and transfer multiple forms of data, they 
may also lead to spurious correlations and false positives, tacit 
assumptions regarding individual behavior based on limited data, 
sampling issues due to replacement of traditional ways of data 
collection as well as resulting in injustices due to resource 
mismanagement and allocation, especially in case of public health 
issues (81). With health data spaces, these issues will likely need 
more attention.

Projectified ways of health infrastructuring often restrict the 
outcome in many ways, through visions and expectations for whom 
and which purposes the infrastructure is to be developed even in cases 
where the aim is to involve stakeholders in co-creation processes (76). 
In this paper we  have shown the wealth of knowledge generated 
through the use of AI in medicine and the evolution of biobanking. 
We argue, when taken into account, these can positively impact the 
future European Health Data Space, but also similar establishments, 
giving power to the citizen, strengthening governance, breaking down 
potential silos and contributing to trustworthiness of such 
meta-infrastructures.
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