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As chronic inflammatory conditions driven by immune dysregulation are 
influenced by genetics and environment factors, psoriasis and atopic dermatitis 
(AD) have traditionally been considered to be  distinct diseases characterized 
by different T cell responses. Psoriasis, associated with type 17 helper T (Th17)-
mediated inflammation, presents as well-defined scaly plaques with minimal 
pruritus. AD, primarily linked to Th2-mediated inflammation, presents with 
poorly defined erythema, dry skin, and intense itching. However, psoriasis and 
AD may overlap or transition into one another spontaneously, independent of 
biological agent usage. Emerging evidence suggests that defects in skin barrier-
related molecules interact with the polarization of T cells, which forms a skin 
barrier-inflammatory loop with them. This loop contributes to the chronicity 
of the primary disease or the transition between psoriasis and AD. This review 
aimed to elucidate the mechanisms underlying skin barrier defects in driving the 
overlap between psoriasis and AD. In this review, the importance of repairing 
the skin barrier was underscored, and the significance of tailoring biologic 
treatments based on individual immune status instead of solely adhering to the 
treatment guidelines for AD or psoriasis was emphasized.
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1 Introduction

Psoriasis and atopic dermatitis (AD) are two common chronic immune-inflammatory 
diseases, each marked by distinct clinical manifestations and immunological profiles. The 
acute phase of psoriasis typically results from activating type 17 helper T (Th17) cells and 
presents with well-defined erythematous scales accompanied by mild pruritus. The acute stage 
of AD commences with a Th2 cell-driven inflammatory response and elevated immunoglobulin 
E (IgE) levels, which leads to erythema with ill-defined borders and intense pruritus. Despite 
these contrasting presentations, some psoriasis patients exhibit AD-like symptoms, particularly 
during the acute phase. However, AD can manifest psoriasiform lichenified changes in its 
chronic stage (1, 2). This overlap between psoriasis and AD in clinical manifestations poses 
diagnostic challenges and impacts treatment decisions and clinical outcomes. Moreover, the 
clinical manifestations of these overlapping conditions can be influenced by various factors, 
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including the treatment regimens and immune status of individuals. 
Specifically, individuals with abnormalities in their skin barriers and 
immune responses may be more prone to exhibiting the overlapping 
symptoms of psoriasis and AD. The dynamic changes in local skin 
immunity can further contribute to the variability in clinical  
presentations.

Skin barriers encompass both physical and chemical components. 
Physical barriers are composed of keratinocytes (KCs), keratin, 
cornified cell envelope (CE), intercellular lipids, and skin connective 
structures, while chemical ones mainly comprise antimicrobial 
peptides (AMPs) and natural moisturizing factors (NMFs). Any 
impairment in these structures can predispose to a Th2 
immune response.

The pathogenesis of AD and the subsequent “Atopic March” are 
attributed to a compromised skin barrier, which facilitates the 
increased penetration of external sensitized substances. The exposure 
of these heightened allergens triggers a systemic Th2 immune 
inflammation termed epithelial susceptibility (3). In addition, the 
interaction between Th2/Th17-related cytokines and skin structures 
or Kupffer cell (KC) cytokines establishes a cycle (loop) of skin 
barrier–inflammatory cytokine interactions. The coexistence of AD in 
psoriasis patients and vice versa (4–7) suggests the presence of shared 
pathogenic mechanisms driving the mutual conversion between the 
two diseases. This overlap is postulated to commence with Th2 
inflammatory activation following the breakdown of the skin barrier 
due to genetic or other factors. In psoriasis, compromised skin barrier 
function may result from factors such as mechanical stimulation 
(intense scratching), a genetic mutation affecting epidermal barrier 
integrity, and the downregulation of barrier-related proteins because 
of dysregulated Th17-related cytokines (Supplementary Figure S1).

2 Keratin

Keratin, a cytoplasmic intermediate filament, serves as the 
primary structural protein of epidermal cells and ensures the integrity 
and resilience of the skin. Its proper expression orchestrated 
sequentially is fundamental for differentiating KCs across the various 
layers of the epidermis. Within the cytoplasm, keratin fibers typically 
aggregate into tension filaments and intricately weave a network 
structure. They are anchored to connective structures, such as 
desmosomes and half-desmosomes, and the extracellular matrix 
through transmembrane proteins, such as cadherins and integrins. 
These keratin networks interlink neighboring cells, which creates a 
cohesive framework. This unified structure not only shields the skin 
from external aggressors but also plays an important part in preserving 
the barrier function of the skin and safeguards against moisture loss 
and environmental insults.

2.1 Key keratins in psoriasis

As a fundamental structural protein in the epidermis, keratin10 
(K10 or KRT10) plays a vital role in the hyperkeratosis and metabolic 
disorders of the skin. In psoriasis, various pathogenic mutations in 
KRT10 have been identified in affected skin lesions, which indicates 
its involvement in the pathogenesis of psoriasis (8). Interestingly, the 
expression levels of K10 exhibit a negative correlation with the 

psoriasis area and severity index (PASI) (8). Moreover, therapeutic 
strategies that target the upregulation of K10 expression are promising 
in the management of psoriasis (9).

In response to skin barrier damage in healthy individuals, the 
expression of K1 and K10 is typically downregulated by differentiation-
associated proteins, while that of K5 and K4 is upregulated by 
proliferative proteins. In addition, the expression of K6, K16, or K17, 
which is not normally expressed in KCs, is rapidly induced. Psoriasis 
patients often exhibit an “isomorphic reaction,” where new lesions 
develop in areas of damaged skin. Intriguingly, the expression pattern 
of keratin genes in psoriasis lesions mirrors that of damaged skin in 
individuals without psoriasis (10, 11), which suggests that the 
overexpression of K6, K16, and K17 may contribute to the excessive 
proliferation of KCs within psoriasis lesions (10).

The presence of the K17–T cell–cytokine inflammatory loop in 
psoriasis lesions is implicated in the development and exacerbation of 
the condition via two distinct mechanisms. First, in this loop, KCs 
respond to external stimuli via various pattern recognitions (PRPs), 
factors, and cytokine receptors. This triggers downstream signaling 
pathways such as extracellular signal-regulated kinase (ERK) 1/2, 
protein 38 (p38), transcription factors such as signal transducer and 
activator of transcription 1 (STAT1), STAT3, and nuclear factor-E-2 
correlation factor (Nrf2), and activator protein 1 (AP-1). The binding 
of these transcription factors to the K17 promoter results in the 
upregulated expression of K17. Concurrently, cytokines produced in 
the epidermis further activate the Nrf2 signaling pathway, which 
elevates the expression of K17 (12–15). Moreover, K17 can translocate 
to the nucleus, which induces the expression of cytokines such as 
interleukin (IL)-1β and chemokines, including C-X-C motif 
chemokine ligand (CXCL)-1, CXCL-10, CXCL-11, and chemokine 
ligand (CCL)-20. These molecules accelerate the differentiation of KCs 
and attract more T cells and neutrophils to psoriasis lesions, which 
contributes to disease progression.

Second, peptides derived from K17 exhibit molecular mimicry 
with the M protein of β-hemolytic Streptococcus. These peptides act as 
autoantigens, polarizing naive T cells into Th1, Th17, and Th22 cell 
subsets, which further promotes the development of psoriasis (16). 
The cytokines produced by these T cells, including interferon (IFN) 
-γ, IL-17A, IL-22, and tumor necrosis factor (TNF)-α, activate 
signaling pathways in KCs, which stimulates the expression of K17s 
and the proliferation of KCs. Thus, the K17–T cell–cytokine 
inflammatory loop plays a crucial role in the pathogenesis of psoriasis, 
with K17 serving as a central component of this loop (12, 16, 17). 
Furthermore, IL-22 may contribute to this loop by inhibiting the 
expression of K1 and K10 through activating STAT3 (18, 19).

2.2 Key keratins in AD

The involvement of the keratin-inflammatory cytokine pathway is 
also significant in the pathogenesis of AD. To be specific, K6 acts as an 
alarm protein in AD and triggers the generation of pro-inflammatory 
cytokines and AMPs. Variations in the KRT6 gene have been 
associated with the onset, severity, progression, and outcomes of 
psoriasis and AD (10, 20), underscoring its importance in 
dermatological conditions. Damage to keratin proteins disrupts skin 
barrier integrity and initiates a subsequent Th2-type inflammatory 
response. In AD, Th2-related inflammatory cytokines such as IL-4 and 
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IL-13 downregulate the expression of key keratins such as K1 and K10, 
desmoglein (Dsg) 1, and desmocollin (Dsc) 1 (21). This dysregulation 
further exacerbates barrier dysfunction and helps perpetuate the 
inflammatory cascade characteristic of AD pathology.

2.3 Keratins for psoriasis–AD overlap

Psoriasis and AD may present distinct abnormalities in the keratin 
structure, but their shared consequence lies in disrupting the skin 
barrier. This disruption serves as a common pathway through which 
immune dysregulation occurs and potentially manifests as a Th2 
immune disorder or a shift between Th17 and Th2 responses. 
Consequently, the compromised skin barrier exacerbates the chronic 
course and severity of psoriasis and AD individually and increases the 
likelihood of developing a psoriasis–AD overlap condition. In essence, 
the role of abnormal keratins in these dermatological conditions 
underlines the pivotal link between barrier integrity, immune 
dysregulation, and the clinical manifestations observed in patients 
with psoriasis, AD, and their overlap.

3 Cornified cell envelope

The cornified cell envelope (CE), a crucial component of the 
epidermis, is formed during the terminal differentiation of KCs. It 
consists of an insoluble tough outer membrane that forms the extensive 
cross-linking of various structural proteins and intercellular lipids. The 
CE comprises a complex network of cytoskeleton and keratin 
intermediate filament-related proteins. During the formation of the CE, 
keratin intermediate filaments and filaggrin (FLG) initially aggregate 
into bundles. After that, transglutaminase (TG)-1 catalyzes the 
connections among other structural proteins, including involucrin 
(IVL), loricrin (LOR), small proline-rich region proteins (SPRRs), 
trichohyalin, and late cornified envelope (LCE), as well as members of 
the S100 protein family (22–24). These interconnected proteins form a 
robust structural complex produced by KCs in the upper layers of the 
epidermis and serve as the foundation of the defense barrier of the skin.

Located at the q21.3 site on chromosome 1, the epidermal 
differentiation complex (EDC) encompasses a cluster of genes crucial 
for forming and maintaining the epidermal barrier. These genes can 
be  categorized into three families. First, the KC envelope gene 
precursor family includes LOR, IVL, LCEs, and SPRRs. Second, the 
calcium-binding protein (S100) family contains EF-hand domains. 
Third, the fusion gene family is evolved from the above two, including 
FLG, Filaggrin-2 (FLG2), hornerin (HRNR), tripterygium 
hypoglaucum hutch (THH), trichohyalin-like-1 (TCHHL1), and 
cornulin (CRNN). The abnormal expression of any gene within the 
EDC, whether it encodes envelope structure proteins or enzymes 
involved in catalytic processes, can disrupt various differentiation 
stages of KCs. For instance, mutations in the FLG gene have been 
confirmed as a major predisposing factor for AD by triggering a Th2 
immune response. Moreover, genes responsible for aggregating the 
keratinizing envelope within the EDC are also implicated in psoriasis 
(25). In psoriatic skin, a disruption in the formation of the cornified 
envelope (CE) could significantly compromise the barrier function of 
the skin (26), highlighting the importance of proper CE formation in 
maintaining skin health.

3.1 CE defects in psoriasis

In the past, it was widely believed that FLG plays a central 
pathogenic role in AD rather than psoriasis and psoriatic arthritis 
(27–30). However, the results obtained from recent studies challenge 
this notion, which suggests a broader role of FLG beyond AD 
condition and its potential association with psoriasis. For example, a 
study conducted in Taiwan revealed a high prevalence of the FLG 
P478S mutation among psoriatic patients (31). Additionally, the 
downregulated expression of FLG has been observed in some psoriasis 
patients even when identified FLG gene mutations are absent (29).

Moreover, caspase-14, a vital protease responsible for degrading 
FLG into NMFs, was shown to be  downregulated in psoriatic 
hyperkeratotic skin lesions (32). The downregulation of caspase-14 
indicates impaired FLG processing in psoriasis, which may contribute 
to the dysfunction of the skin barrier and exacerbate dry skin 
symptoms in psoriatic lesions. Similarly, an FLG-deficient mouse 
model exhibited skin inflammation dominated by Th17 responses 
(33). These findings collectively highlight the potential significance of 
FLG in psoriasis and underscore the need for further research into its 
role in the disease.

Mutations in six LOR genes have also been demonstrated in 
psoriasis (34), but their exact impact on the function of the CE 
remains unclear. Research on the LCE gene family has shown that LCE 
gene polymorphisms are associated with psoriasis (35, 36). The LCE 
gene family, composed of 18 members derived from LCE1 to LCE6, is 
predominantly expressed in the skin and other keratinized epithelia. 
In particular, the deletion of LCE3B/C accounts for a significant 
proportion of psoriasis, akin to FLG mutations in AD (36–39). Unlike 
FLG, LCE3B and LCE3C show minimal expression in normal skin but 
are induced following skin damage, demonstrating their role in skin 
barrier repair. The inadequate post-injury repair of the skin barrier 
then leads to antigen penetration, which triggers toll-like receptors 
(TLRs) on Langerhans cell histiocytosis (LCH) or dendritic cells (DC) 
and subsequently activates Th17-mediated pathways involved in 
psoriasis (40). Further research should be conducted to examine the 
association of these proteins with the pathogenesis of psoriasis and AD.

CE component proteins such as FLG, LOR, and IVL are linked to 
Th1-, Th17-, and Th22-related cytokines. Specifically, the IL-17A-C/
CAAT-enhancer-binding protein β (C/EBPB) pathway has been 
shown to upregulate IVL but downregulate FLG and LOR (41, 42). It 
has been found that IL-22 downregulates FLG, LOR (43), and IVL (42, 
43) and also inhibits the expression of the EDC through the activation 
of the Janus kinase 1 (JAK1)-tyrosine kinase 2 (TYK2)-STAT3 
pathway (43–47). Moreover, TNF-α is implicated in the 
downregulation of LOR expression (42). Interestingly, the level of LOR 
in psoriasis patients can be upregulated after using TNF-α antagonists. 
This suggests that TNF-α, a core pathogenic factor in psoriasis, may 
disrupt the skin barrier by downregulating LOR genes (48).

TG enzymes play a crucial role in maintaining the integrity of the 
skin barrier. TG1, TG3, and TG5 are primarily expressed in the 
epidermis and involved in the formation of the CE, while TG2 is 
predominantly expressed in the dermis and facilitates apoptosis and 
extracellular matrix formation. The expression levels of TG1 and TG2 
in psoriasis patients are elevated compared to those in healthy 
individuals (49, 50) and positively correlated with levels of IL-6, 
CXCL8, and CCL20 (50). On the contrary, TG3 is upregulated in 
psoriasis and acts as a protective factor by inhibiting the activation of 
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nuclear factor kappa-B (NF-κB) through the phosphorylated STAT3-
ten-eleven translocase 3 (p-STAT3-TET3) pathway, which thereby 
reduces skin inflammation (51, 52). Collectively, these findings 
underscore the intricate involvement of CE component proteins in the 
pathogenesis of psoriasis and highlight their potential as therapeutic 
targets for managing skin barrier dysfunction and inflammation in 
psoriatic lesions.

3.2 CE defects in AD

In AD, FLG gene mutations or expression defects (3, 53) are 
considered a center factor in the “out-to-in” barrier pathogenesis 
observed in this condition (54–56). The resulting barrier defect gives 
rise to subsequent local and systemic Th2 immune responses, 
contributes to the early onset and persistence of AD (57, 58), and 
manifests as symptoms such as dry skin (59), eczema, and asthma (60, 
61). Th2-related cytokines can further exacerbate barrier dysfunction 
by downregulating the expression of FLG (48, 62–66). For instance, 
IL-4 and IL-13 activate the JAK1/JAK2-STAT6/STAT3 pathway, which 
inhibits the expression of the EDC and downregulates FLG, LOR, and 
IVL (42). Furthermore, IL-13 triggers barrier dysfunction via the 
downregulation of the OVOL1-FLG axis and the upregulation of the 
periostin-IL-24 axis (67). The absence of LOR and IVL can further 
promote skin antigen penetration, increase atopic susceptibility, 
activate Th2 response, and perpetuate inflammatory loops.

Abnormal TG expression is also observed in AD patients, 
although the genetic variants of TG are not considered a significant 
factor in AD susceptibility (68). Instead, the abnormal expression of 
TG2 is associated with eosinophilic bronchitis (EB), asthma, and other 
atopic diseases (69). Su et al. (68) showed that TG1 and TG3 messenger 
ribonucleic acid (mRNA) are significantly increased in the skin lesions 
of AD patients, which indicates that they are easily upregulated after 
inflammatory stimulation (68). However, conflicting results regarding 
TG3 expression have been reported (70), with some studies suggesting 
a significant reduction in both AD and non-AD lesions. In AD, TG3 
and tropomyosin (TMP) can activate the Th2 response (71), and 
specific IgE antibodies to TG3 and TMP have been detected. 
Currently, no correlation has been found between LCE gene mutation 
and atopic diseases (72, 73).

3.3 CE molecules in the psoriasis–AD 
overlap

In psoriasis–AD overlap, the cytokines associated with Th1, Th17, 
and Th22 responses in psoriasis are beneficial to downregulating the 
expression of FLG, LOR, and IVL (41–48). This downregulation of 
FLG activates the Th2 immune axis (3, 53–61), further exacerbating 
the inflammatory response. Additionally, the Th2 immune axis per se 
can also downregulate the expression of FLG, LOR, and IVL (42), 
which thus forms a feedback loop between the epidermal barrier and 
inflammatory factors. This dysregulation of both the epidermal barrier 
and immune response aggravates the disease condition and prolongs 
the chronic course of AD. This reciprocal regulation between T cells 
and the CE may represent a critical target for understanding the inter-
transformation of psoriasis and AD, as well as the chronicity of 
psoriasis and AD.

4 Epidermal connection 
structure-related proteins

Epidermal connection structures, including tight junctions (TJs) 
and anchored connections such as desmosomes and half-desmosomes, 
are important to maintain the structural integrity and barrier function 
of the skin. Key proteins involved in these connection structures, such 
as claudins (CLDNs) and cadherins, are fundamental to their proper 
function. The aberrant expression of these proteins can disrupt barrier 
function, which leads to persistent inflammation and skin damage. 
This disruption ultimately contributes to the development of 
conditions such as AD and psoriasis and may facilitate 
their interconversion.

4.1 TJ: CLDN

As vital components of the skin barrier, TJs are predominantly 
located in the lateral membranes of granular KCs. Their main function 
lies in sealing KCs together, which prevents the entry of external 
antigens and microorganisms through the skin barrier. In addition, 
TJs also regulate substance transport, proliferation, and differentiation, 
as well as the polar secretion of lipids in epidermal cells. The structure 
integrity of TJs relies on a family of proteins known as CLDNs, which 
are encoded by CLDN genes. Numbered from CLDN1 to CLDN27 
based on their order of discovery, CLDNs form the backbone of the 
TJ structure.

4.1.1 CLDNs in psoriasis
The expression levels of CLDN-1 and CLDN-7 are notably 

decreased in patients with psoriasis (74). As a member of the IL-1 
cytokine family, IL-36γ is frequently over-expressed in psoriatic 
lesions, along with other IL-36 isomers. It has been identified that 
IL-36γ downregulates CLDN-1 and CLDN-7, which thereby 
compromises the integrity of TJs within the affected area and 
contributes to impaired skin barrier function (75). Additionally, the 
cytokines associated with the Th2/22 immune response are implicated 
in exerting negative effects on the expression of CLDN proteins (76).

4.1.2 CLDNs in AD
CLDN-1 and CLDN-4 are key components of the TJ of the 

epidermis, and their absence results in embryonic lethality owing to 
water loss and aberrant skin phenotypes (77). Mice lacking CLDN1 
displayed severe impairment in skin barrier function and reduced 
CLDN1 expression, which correlates with the activation of the Th2 
immune pathway, elevated serum IgE levels, increased eosinophils 
(EOS), and heightened susceptibility to herpes simplex virus infection 
(78). In the context of AD, the decreased level of CLDN-1 induces the 
autonomous expression of IL-1β in KCs and promotes an epidermal 
inflammatory response upon exposure to non-pathogenic 
Staphylococci. Reversely, the increased level of CLDN-1 has been 
demonstrated to enhance barrier function and alleviate 
inflammation (79).

4.1.3 CLDNs in the psoriasis–AD overlap
Psoriasis and AD-associated cytokines have been observed to 

downregulate the expression of CLDNs, which disrupts the skin 
barrier (75, 76, 78). This dysregulation of CLDNs can lead to 

https://doi.org/10.3389/fmed.2024.1335551
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Dong et al. 10.3389/fmed.2024.1335551

Frontiers in Medicine 05 frontiersin.org

compromised barrier integrity and accelerate the development of 
Th2-type inflammation, characteristic of AD. Consequently, CLDNs 
emerge as a critical component involved in both Th2 and IL-1β 
inflammatory pathways within the spectrum of psoriasis–AD overlap. 
This dual involvement of CLDNs underscores their potential 
significance in the pathogenesis of psoriasis–AD overlap, which 
indicates a mechanistic link between CLDN dysregulation and the 
convergence of these two dermatological conditions.

4.2 Anchored connections: CLDNs

4.2.1 CLDNs in psoriasis
CLDN proteins are vital for anchoring cellular connections, and 

their dysregulation is implicated in psoriasis pathogenesis. Specifically, 
several type I classical cadherins are associated with the development 
of psoriasis (80). In psoriasis vulgaris, the expression of E-cadherin, 
β-catenin, and T-cadherin is downregulated (81), whereas that of 
P-cadherin is upregulated (82). These changes may contribute to the 
excessive proliferation of KCs observed in psoriasis. The interaction 
between E-cadherin and integrin molecule αEβ7 (CD103) has been 
shown to aid the adhesion of lymphocytes to the skin epithelium. 
Abnormalities in this interaction can quicken the production of IL-17, 
leading to excessive epidermal hyperplasia and inflammatory 
leukocyte infiltration, thereby exacerbating psoriasis (83, 84). 
Furthermore, Dsg1, a critical component of desmosomes, is linked to 
psoriasis. Mice with the knocked-out DSG1 gene exhibit the 
characteristics of an IL-17-skewed inflammatory signature. Current 
treatments that involve IL-12/23 antagonists have shown promising 
results in the improvement of psoriasis-related skin lesions (85).

4.2.2 Cadherins in AD
Cadherin defects are indeed observed in atopic dermatitis. Skin-

derived group 2 innate lymphoid cells (ILC2) express skin-homing 
receptors and produce type 2 cytokines upon allergen infiltration 
through the skin. E-cadherin can inhibit the generation of type 2 
cytokines (IL-4/IL-13) after ligating to ILC2. However, the 
downregulation of FLG, an important protein involved in maintaining 
the function of the skin barrier, results in that of E-cadherin. It is one 
of the important characteristics of AD. Consequently, the 
downregulation of E-cadherin caused by that of FLG leads to the loss 
of inhibition of ILC2 in AD patients, which increases the production 
of type 2 cytokines. As a result, E-cadherin is also important in the 
occurrence and development of AD (86–88). In addition, Th2 
cytokine (IL-4) downregulates the expression of Dsg1 and reduces the 
number of desmosomes, which thereby compromises the integrity of 
the skin barrier (88).

4.2.3 Cadherins in the psoriasis–AD overlap
In the context of psoriasis–AD overlap, the downregulation of 

E/T-cadherin observed in psoriasis (80, 81) creates an environment 
conducive to producing Th2/Th17 inflammatory cytokines (83–88). 
These cytokines are pivotal in orchestrating the inflammatory 
response characteristic of both psoriasis and AD. To be specific, Th2 
cytokines can downregulate the expression of Dsg1. The reduction in 
Dsg1 levels can lead to compromised barrier function and the 
skewness of subsequent inflammatory responses toward IL-17-skewed 
inflammation (85). Moreover, the dysregulation of cadherin 

expression may further perpetuate the inflammatory loop between 
psoriasis and AD. This interplay between multiple cadherins and 
inflammatory cytokines provides a potential mechanistic link for the 
overlap and interconversion of these two dermatological conditions.

5 Amps in psoriasis and AD

Chemical and physical barriers are essential components of 
cutaneous defense mechanisms. These barriers are primarily made up 
of AMPs, epidermal lipids, and NMFs (89). Among them, AMPs play 
a significant role in the chemical barrier of the skin. Apart from owing 
antimicrobial properties, AMPs are involved in various functions, 
including promoting cell migration, proliferation, and differentiation. 
They also modulate the expression of inflammatory factors and 
regulate the function of the skin barrier (90). In the skin, AMPs are 
primarily expressed constitutively or indelibly by stimuli such as 
microbial invasion or inflammation, KCs, and other cell types. Several 
key AMPs are found in human skin, including defensins, cathelicidin, 
ribonuclease 7 (RNase 7), psoriasin, and dermcidin (DCD). Studies 
have demonstrated that these AMPs involve the mechanisms 
underlying the development of psoriasis and AD (90).

5.1 Defensins

Defensins, a class of AMPs, are classified into three groups: 
α-defensins, β-defensins, and θ-defensins. Only α-defensins and 
β-defensins are expressed in humans (91). Human β-defensins (hBDs) 
1–4 are expressed in leukocytes and epithelial cells (92). Despite the 
constitutive expression of hBD-1, hBD-2, and hBD-3, they are induced 
by factors such as skin barrier damage, microbial stimuli, and 
inflammation. Interestingly, hBD-2 is primarily resistant to Gram-
negative bacteria, but hBD-3 demonstrates broad-spectrum 
antimicrobial activity against some microorganisms, including some 
multiple drug-resistant bacteria (93).

Immune disorders, barrier defects, and microbial invasion 
commonly found in psoriasis and AD can stimulate KCs, immune 
cells, and other cells to express excessive amounts of hBDs. These 
peptides function as antimicrobials, contribute to skin barrier repair, 
and modulate immune responses. Despite being elevated in the skin 
lesions of both psoriasis and AD patients, the expression levels of 
hBD-2 and hBD-3 are generally higher in psoriasis compared to AD 
(94). This disparity may explain why patients with AD are more prone 
to epidermal infections compared to those with psoriasis (95). 
Moreover, hBD-1 and hBD-3 are important in promoting the 
development and repair of TJs, crucial components of the physical 
barrier of the skin (96–98). In addition, hBD-3 can activate autophagy 
in KCs through the aryl hydrocarbon receptor (AhR) signaling 
pathway, which mitigates damage to the TJ barrier caused by IL-4 and 
IL-13 (99). It is believed that the defective expression of hBDs in AD, 
relative to psoriasis, is ascribed to the inhibition by Th2-type cytokines 
(100). Conversely, the upregulation of hBDs in psoriasis may 
be related to higher levels of IL-17, IL-22, and IFN-γ in the skin lesions 
of psoriasis patients (101). Furthermore, the modulation of T cell-
mediated immune responses by hBDs enhances the generation of Th2 
cytokines, IL-22, IFN-γ, and IL-10 while inhibiting the production of 
IL-17 (102, 103). As a result, hBDs may serve as a bridge for the 
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interplay between Th2/Th22 and Th1/Th17 immune responses. Agents 
targeting AMPs may have a potential impact on the overlap and 
transformation of psoriasis and AD.

5.2 Human cationic antimicrobial protein

Human cationic antimicrobial protein (hCAP) is among the 
earliest AMPs discovered in mammalian skin. Derived from hCAP, 
LL-37 is inducibly expressed in the presence of proteases (104) and 
present in different kinds of tissues and cells, including epithelial cells, 
KCs, and macrophages (105). Similar to other AMPs, hCAP is highly 
expressed when cells are stimulated by trauma, infection, or 
inflammation and acts as an antimicrobial agent and 
immunomodulator (106–109).

In psoriasis, LL-37 not only directly promotes the gene expression 
related to psoriasis (110) but also activates TLR7/8, which further 
enhances this gene expression. Additionally, it serves as a central 
player in the intricate interplay between various aspects of skin 
barriers, immunity, and autophagy. Its impact on the physical barrier 
of the skin and innate immunity involves a few mechanisms. For 
example, LL-37 forms complexes with self-deoxyribonucleic acid 
(DNA) released from apoptotic cells, which activates plasmacytoid 
dendritic cells (pDCs) via TLR9 and induces the production of 
interferon-α (IFN-α). Then, the increased level of IFN-α triggers the 
activation of myeloid DCs (mDCs) and T-cells, thereby promoting the 
inflammatory response and the development of skin lesions in 
psoriasis (111).

The second crucial function of LL-37 is to uphold the integrity of 
epidermal permeability and antimicrobial barriers. LL-37 is stored 
along with other AMPs, such as hBD-2, in epidermal lamellar bodies 
(LBs). The disruption of the permeability barrier leads to increased 
lipid synthesis and elevated mRNA and protein expression of LL-37 
and hBD-2 homologs in mice. Conversely, the absence of hBD-2 
delays the recovery of the permeability barrier, notwithstanding 
increased LL-37 expression, which indicates mutual regulation 
between epidermal permeability and antimicrobial barriers through 
AMPs (112). The modulation role of LL-37  in the skin’s physical 
barrier results in the enhanced expression of TJ-related proteins, 
increased transepithelial resistance (TER), and reduced paracellular 
flux in the stratum corneum (SC). This process involves multiple 
signaling pathways and induces the expression of KC differentiation-
specific proteins, which suggests that LL-37 contributes to maintaining 
the stability of the physical barrier while participating in cutaneous 
innate immunity (113). Moreover, studies have demonstrated that the 
restoration of the LL-37-mediated TJ barrier is associated with the 
activation of autophagy. In autophagy-deficient KCs and skin models, 
the TJ improvement induced by LL-37 was hindered, which suggests 
that LL-37 is capable of regulating the skin barrier by modulating 
autophagy (114).

In summary, the multifaceted roles of LL-37 highlight its 
significance in skin barrier function and immune modulation. Mast 
cell chemotaxis and IL-31 secretion are induced by hBDs and hCAP, 
which reveals their involvement in itch sensation, a common symptom 
in various skin diseases (115–117). Moreover, the upregulation of 
Th2-associated cytokines in the presence of hCAP indicates its role in 
promoting the inflammatory environment, potentially contributing to 
conditions such as psoriasis (118) and the overlap and transformation 

of psoriasis and AD. Considering these diverse functions, targeting 
LL-37 and related AMPs could provide therapeutic avenues for skin 
diseases featuring barrier dysfunction.

5.3 Psoriasin

Also known as S100A7, psoriasin plays a critical role in 
inflammatory cell chemotaxis, oxidative stress response, and the 
proliferation and differentiation of KCs. Expression levels of psoriasin 
are upregulated in the skin lesions of both psoriasis and AD (119–121).

Psoriasin production can be  induced by an assortment of 
endogenous and exogenous factors and is involved in multiple 
signaling pathways, including AP-1, NF-κB, and STAT3. The 
activation of these pathways upregulates various pro-inflammatory 
cytokines, which directly or indirectly contribute to the pathogenesis 
of psoriasis and AD (122–125). In addition, several cytokines can 
induce the expression of S100A. IL-17, a crucial pro-inflammatory 
factor in psoriasis, is also important in both the acute and chronic 
phases of AD. IL-19, which enhances the action of IL-17A and induces 
IL-23, is part of the IL-23/IL-17 axis. It can also induce hBDs, which 
also cause the abnormal differentiation and proliferation of KCs (126). 
IL-1, IL-17, and IL-19 all upregulate the expression of S100A (126–
128). IL-17 synergizes with IL-22 to induce the expression of S100A7, 
S100A8, and S100A9 (129). IL-36 also synergizes with IL-17A to 
induce the expression of S100A7 in vitro (130). In contrast to psoriasis-
associated cytokines, however, Th2-associated cytokines, such as IL-4 
and histamine, may hinder the expression of S100A7 in the skin (131, 
132). Interestingly, Gittler et al. demonstrated an increase in S100A7, 
S100A8, and S100A9 genes, along with an increase in Th2/Th22 
cytokines during the transition from the acute to the chronic stage of 
AD (129). Therefore, S100A may serve as a marker for the transition 
from the acute to chronic stage of AD. Additionally, chronic AD and 
psoriasis share overlapping immunologic and clinical features, which 
suggests that S100A may also play a pivotal role in psoriasis and AD.

Furthermore, akin to LL-37, S100A7 not only participates in 
innate immunity but also enhances the differentiation of KCs and 
increases the expression of epidermal differentiation markers. 
Similarly, it is beneficial to maintaining the stability of the skin barrier 
by regulating the expression of TJ-related proteins, a process 
modulated by glycogen synthase kinase 3 (GSK-3) and mitogen-
activated protein kinase (MAPK) pathways (133). Similar to LL-37, 
S100A7 also serves as a crucial intersection of epidermal physical, 
immune, permeability, and antimicrobial barriers. The development 
of both psoriasis and AD involves multiple disruptions in the skin 
barrier and abnormalities in autophagy. Hence, AMPs such as LL-37 
and S100A7 could present novel targets for treating these diseases 
characterized by skin barrier disorders in cases where it is challenging 
to distinguish between AD and psoriasis or when these conditions 
overlap. This approach could help avoid the direct use of potentially 
inappropriate immunosuppressive agents.

5.4 DCD

DCD, one of the AMPs with broad-spectrum activity, is produced 
by exocrine sweat glands and secreted onto the surface of the skin with 
sweat. It exerts its antimicrobial activity by inhibiting bacterial RNA 
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and protein expression (134). Unlike hBDs and hCAP, DCD secretion 
is not induced by skin injury or inflammation but rather regarded as 
a component of the innate defense of human skin (135). Abnormal 
levels of DCD are implicated in the pathogenesis of psoriasis and 
AD. The reduced expression of FLG leads to impaired sweat transport, 
which results in the accumulation of DCD in sweat glands and a 
decrease in sweat production (134). DCD-1 L stimulates the 
production of Th2 cytokines (IL-4, IL-13, and IL-31) and TNF-α by 
KCs (136). Moreover, it significantly upregulates the activation of 
NF-κB (137), a pathway involved in developing psoriasis. Furthermore, 
DCD-derived polypeptides such as DCD (86–103) activate mast cells 
and induce an inflammatory reaction, which thereby contributes to 
the occurrence and progression of psoriasis (138).

5.5 RNase7

RNase 7 is one of the primary AMPs secreted by KCs and acts as 
an alert protein in response to the disruption of the skin barrier. Its 
expression exhibits a significant elevation in the lesional skin of 
patients with AD or psoriasis compared to healthy individuals (139). 
RNase 7 promotes the recognition of self-DNA by plasmacytoid 
dendritic cells (pDCs) and facilitates their rapid sensing of bacterial 
DNA. Then, activated pDCs trigger a massive release of IFN-α (139). 
This mechanism aligns with the IFN-α expression induced by LL-37 
and hBD-2/3 and is amplified by RNase 7 (140). Notably, pDCs and 
IFN-α are not only of importance to combat infections but also drive 
the initiation and progression of psoriasis and AD (141, 142). 
Furthermore, IL-17A and IFN-γ induce the expression of RNase 7 in 
KCs synergistically via STAT3 (143). Moreover, RNase7 downregulates 
Th2 cytokines (IL-4, IL-5, and IL-13) through the activation of GATA 
binding protein 3 (GATA3) (144). The protective role of RNase7 in 
AD appears to be well-established, although further studies are needed 
to fully understand its function.

6 Flightless I in psoriasis and AD

Flightless I  (Flii), as a member of the gelsolin superfamily of 
proteins, is involved in various biological processes, including 
embryonic development, skin barrier repair, signaling, autophagy, and 
cancer onset and development. Emerging evidence shows that Flii is 
also significant in developing AD and psoriasis.

Skin barrier damage leads to the continuous invasion of allergens, 
which triggers immune activation and the development of immune-
inflammatory skin diseases. Flii proteins act as negative regulators in 
the repair of skin barrier damage. With the over-expression of Flii in 
mice, the formation of hemidesmosomes is impaired, which affects 
the adhesion and migration of KCs (145). The over-expression of Flii 
in embryos decreases the expression of CLDN-1 and zonula 
occludens-2 (ZO-2), which are proteins associated with TJs (146). 
Despite being identified as a negative regulator of skin barrier repair, 
the exact mechanism by which Flii operates remains unclear and 
requires further investigation.

Elevated Flii expression has been observed in the skin lesions of 
patients with psoriasis. It has been shown that the use of neutralizing 
antibodies against Flii attenuates the inflammatory response induced 
by imiquimod in psoriasis mice (147). Regarding the fundamental role 

of the TLR4-NF-κB pathway in the pathogenesis of psoriasis (148), 
Flii may interfere with the binding of TLR4 to myeloid differentiation 
primary response protein 88 (MyD88), which thereby inhibits the 
NF-κB pathway (149). Resultantly, this leads to a reduction in the 
release of downstream inflammatory factors and a decrease in 
psoriasis symptoms.

In an ovalbumin (OVA)-induced mouse model of AD, the over-
expression of Flii results in a Th2-skewed response that exacerbates 
the inflammatory response. Conversely, Flii heterozygous knockout 
mice exhibit significant Th1 immunoreactivity and reduced severity 
of AD and tissue inflammation (150). It was hypothesized in this 
study that Flii serves as a target protein contributing to the 
transition and overlap of psoriasis and AD. In psoriasis patients 
with epidermal over-expressing Flii, the disruption of the skin 
barrier promotes Th2 activation, which potentially causes the 
transition from psoriasis to AD. Further investigation into the 
intrinsic mechanism of the interaction between Flii and Th cells can 
provide valuable insights, which may represent a potential 
therapeutic target for skin inflammatory diseases featuring skin 
barrier dysfunction.

7 Autophagy in psoriasis and AD

Also called type II programmed cell death, autophagy is a cellular 
process in which damaged or aged macromolecules and organelles are 
degraded by lysosomal enzymes for self-digestion when cells are 
under external stress (151). It is a normal physiological process in the 
differentiation of KCs, regulating the inflammatory response and 
repairing the epidermal barrier (152). Nevertheless, the dysregulation 
of autophagy of KCs is also involved in the pathogenesis of psoriasis, 
AD, and other autoimmune skin diseases (153). Defective autophagy 
affects the differentiation of KCs, disrupts the skin barrier, and triggers 
inflammation, which leads to the increased production of 
inflammatory factors (154). Of note, a moisturizer with strong 
autophagy-stimulating properties has shown promising results in 
improving skin barrier function and alleviating itching in AD patients 
by promoting skin barrier restoration and inflammation control (155).

IL-17A, a key player in AD and psoriasis pathogenesis, negatively 
regulates autophagy and promotes inflammatory responses. KCs 
stimulated by IL-17 activate the phosphatidylinositol-3-hydroxy 
kinase (PI3K)/protein kinase B (AKT)/mammalian target of 
rapamycin (mTOR) signaling pathway, which inhibits the formation 
of autophagic vesicles and enhances autophagic flux, thereby 
suppressing autophagy while promoting cholesterol degradation (156, 
157). Additionally, cis-Khellactone, an inhibitor of pro-inflammatory 
macrophages, promotes autophagy, reduces the infiltration of dermal 
macrophages in psoriasis, and markedly inhibits the production of 
IL-17A by Th17 cells (158). Thus, the inhibition of IL-17A may 
represent a potential therapeutic strategy for psoriasis and psoriasis-
associated dyslipidemia by alleviating autophagy inhibition. 
Furthermore, metformin, a medicine commonly used to treat 
diabetes, has been shown to convert Th17 to Treg through enhanced 
autophagy (159). By reducing the number of Th17 cells and increasing 
that of Treg cells, metformin effectively enhances autophagy and may 
offer a therapeutic benefit to Th17-mediated psoriasis. Furthermore, 
KCs stimulated by a combination of psoriasis-associated cytokines 
(TNF-α, IL-1A, IL-17A, IL-22, and oncostatin M) activate autophagic 
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flux, which leads to recurrent psoriasis inflammation and increased 
skin barrier damage (157).

It has been shown that TNF-α, an important pro-inflammatory 
cytokine implicated in the pathogenesis of psoriasis, enhances the 
initiation of autophagosome formation but impairs subsequent 
processing, which leads to a negative impact on autophagy (160). In 
TNF-α-stimulated human immortal keratinocyte line (HaCaT) cells, 
the inhibitor of the wingless (Wnt)/β-catenin signaling pathway 
mitigates the pro-inflammatory and anti-autophagic effects of 
granulin precursor (PGRN) small interfering RNA (siRNA) (161). 
Moreover, both the number and activity of lysosomal components, 
including histone proteases D and L, were significantly reduced in KCs 
stimulated with TNF-α, which indicated impaired autophagy in AD 
and psoriasis (162, 163).

The protein sequestosome 1 (P62/SQSTM1), which acts as a 
selective autophagy receptor and a signaling hub, activates multiple 
inflammatory signaling pathways such as NF-κB and Nrf2 (160). The 
direct interaction between p62 and light chain (LC3) via the 
LC3-interacting region (LIR) domain facilitates the delivery of 
ubiquitinated protein aggregates to autophagic vesicles for selective 
autophagy (164). Increased p62 expression can upregulate various 
inflammatory signaling pathways associated with psoriasis and AD. In 
the TLR-NF-κB signaling pathway, the activation of TLR2/6 and TLR4 
induces the autophagy pathway in human primary KCs and 
upregulates p62 expression (165). MyD88 and tumor necrosis factor 
receptor superfamily (TNFR)-associated factor 6, which are key 
signaling factors mediating TLR activation, play a critical role in 
autophagy development and p62 expression. Significant in the 
development of psoriasis and AD, Flii proteins hinder MyD88 binding 
to TLR4, which thus inhibits the TLR4-NF-κB pathway and cellular 
autophagy. Flii also disrupts selective autophagy by blocking the 
binding of p62 and LC3, thereby promoting the development of 
psoriasis and AD (166). The silencing of P62 results in the decreased 
expression of cytokines and AMPs in KCs, reduces NF-κB activity and 
decreases cell proliferation (165). In addition, the knockout of the 
AP1S3 gene associated with autophagosome formation leads to 
defective autophagy, increased p62 accumulation, and enhanced 
inflammation mediated by NF-κB and Nrf2 signaling pathways (167). 
Furthermore, the inactivation of the MAPK family in psoriasis 
decreases the autophagy of KCs, which correlates positively with the 
severity of psoriasis in patients and mouse models (168, 169). 
However, increased autophagy in KCs also results in the rapid 
degradation of proteins, including antigen proteins, despite 
exacerbating psoriasis and AD. This leads to increased recognition 
and presentation, which activates T helper cells (160). Moreover, the 
direct stimulation of the TCR enhances autophagy (170). Therefore, 
enhanced autophagy may promote T-cell survival and inflammatory 
responses, exacerbating psoriasis and AD.

Autophagy shares a common mechanism of action in psoriasis 
and AD, which signifies that abnormal cellular autophagy might play 
a significant role in the overlap, conversion, and development of 
psoriasis and AD. However, several questions remain unanswered, 
including whether autophagy promotes or attenuates skin 
inflammatory diseases, the pathways or mechanisms through which 
autophagy interacts with multiple immunoinflammatory factors, and 
how autophagy selectively promotes specific types of T cell 
differentiation. Controlling cellular autophagy could be a possible 
target for AD and psoriasis treatment.

8 Tissue-resident memory T cells and 
skin barrier interactions in psoriasis 
and AD

The recurrence of psoriasis and AD poses a significant challenge 
in treatment. It is currently proposed that the mechanism underlying 
the relapse of these conditions is closely related to the presence of 
tissue-resident memory T (TRM) within the skin barrier (171, 172). 
TRM leaves an “immune memory” in the skin even after the 
subsidence of inflammation (172). Upon the invasion of pathogens, 
initial T cells differentiate into effector and memory T cells, the latter 
of which is further classified into central memory T cells (TCM), 
effector memory T cells (TEM), and TRM (173). The residency and 
longevity of TRM within the skin are influenced by the interaction and 
regulation with KCs, fibroblasts, and other skin structural cells in 
the skin.

Unlike circulating T cells, TRM cannot migrate through the 
bloodstream and instead reside within skin tissues. This is primarily 
due to the binding of TRM to various ligands on the surface of KCs 
and its adherence to different structures within the skin barrier. TRM 
expresses specific markers such as CD69, CD103, and CD49a. CD103, 
the α chain of integrin αEβ7, binds to KC E-cadherin, which facilitates 
the adhesion of TRM to the epidermis and allows the residency of 
TRM in the skin (174). CD69 also contributes to the residency of 
TRM by downregulating the lymphoid tissue emigration pathway 
mediated by sphingosine-1-phosphate reporter 1 (S1PR1). CD49a 
binds to type IV collagen and mediates TRM residence within the 
basement membrane (175). In addition, the chemokine receptor 6 
(CXCR6) C-X-C motif is expressed on human skin TRM cells, while 
its ligand CXCR16 is expressed on KCs, which enables the retention 
of TRM cells in the skin (176, 177). TRM cells are influenced by the 
epithelial immune microenvironment created by KCs and, in turn, 
activate and influence KCs. CD49−CD103+CD8+ TRM cells mediating 
KC activation and epidermal proliferation promote the production of 
chemokines and AMPs, which leads to inflammation and relapse in 
psoriasis (178).

While substantial evidence shows that DCs and TRM cells such 
as Th2/Tc2, Th22/Tc22, and Th17/Tc17 are present in large numbers 
in lesions after the subsidence of inflammation in AD, their specific 
mechanisms in the recurrence of AD require further investigation 
(179). Moreover, TRM can persist in skin tissues for months to years 
and is primarily regulated by the local microenvironment (IL-7, IL-15, 
and transforming growth factor-β) generated by KCs and fibroblasts 
(180, 181). To sum up, the interaction between TRM cells and the skin 
barrier plays a key role in the recurrence of psoriasis and AD 
(Supplementary Figure S2).

9 Acute and chronic phases of 
psoriasis and AD with their overlap 
and interconversion

Typically, AD has been viewed as a Th2-driven immune-
inflammatory disorder. However, emerging evidence indicates that 
AD involves activating multiple T-cell axes at different stages. During 
the chronic phase of AD, clinical and pathological features converge 
with psoriasis, which is attributed to the infiltration of similar 
subpopulations of Th cells. According to recent findings, the 
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heightened activation of Th2/Th22 occurs during the acute phase of 
AD, while the activation of Th1/Th17 progressively increases during 
the chronic phase (182). It is important to note that the transition 
from the acute to the chronic stage involves the persistent activation 
of Th2/Th22 and Th1/Th17 rather than a shift from Th2/Th22 to Th1/
Th17 (129, 182, 183) (Supplementary Figure S3). Although the level 
of IL-17-producing cells is slightly higher in psoriasis patients than in 
those with severe AD, the difference shows no statistical significance 
(182). The presence of Th1/Th17 cells in chronic AD suggests a shared 
effector pathway with psoriasis, contributing to some of their clinical 
features and pathological similarities.

Interestingly, disorders affecting skin barrier-related factors have 
been reported to influence the polarity of Th cells. For instance, 
abnormalities in FLG may lead to Th2 polarity (57), whereas those in 
Dsg 1 may result in Th17 polarity (85). Consequently, variations in 
skin barrier impairments or disease during the development of 
psoriasis and AD can result in shifts in the dominance of Th cells and 
perpetuate a vicious cycle of skin barrier damage and inflammation. 
Clinically, this manifests as transformation, overlap, or exacerbation 
between psoriasis and AD. Future studies could investigate the impact 
of skin barrier-related factors and impairments in psoriasis and AD 
on aspects such as the rate and extent of transition between acute and 
chronic phases. Moreover, exploring whether biologics can be tailored 
based solely on immunologic type and the impact of Th1 and Th17 
activation in the chronic phase of AD warrants investigation.

10 Conclusion

Skin barrier damage plays a crucial role in driving the progression 
of the spectrum of psoriasis/AD. Both psoriasis and AD involve skin 
barrier-inflammatory loops, contributing to disease exacerbation, 
overlap, and transformation. Various barrier factors, including keratin, 
CE, intercellular lipids, skin connective structure, and AMPs, 
participate in these inflammatory loops. It is speculated that the 
transition and overlap between psoriasis and AD are mediated 
through these skin barrier factors. Moreover, targeting skin barrier-
associated factors may offer a more effective approach to modulating 
disease progression and transformation than solely focusing on 
inflammatory cytokines and signaling pathways. In the future, drugs 
targeting these skin barrier-associated factors could serve as upstream 
therapeutic targets to disrupt the barrier-inflammatory loop and 
attenuate disease progression and transformation. Importantly, it is 
proposed that psoriasis and AD inherently belong to the same disease 
spectrum. Their differences in clinical features are attributable to the 

predominance of T-cell axis activation under the influence of 
numerous factors. Hence, future treatments of psoriasis, AD, and 
overlapping psoriasis–AD conditions may directly target the immune 
activation state to select appropriate drugs and treatment modalities.
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