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A multi-variable predictive 
warning model for cervical cancer 
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Introduction: Cervical cancer is the fourth most common cancer among female 
worldwide. Early detection and intervention are essential. This study aims to 
construct an early predictive warning model for cervical cancer and precancerous 
lesions utilizing clinical data and simple nucleotide polymorphisms (SNPs).

Methods: Clinical data and germline SNPs were collected from 472 participants. 
Univariate logistic regression, least absolute shrinkage selection operator 
(LASSO), and stepwise regression were performed to screen variables. Logistic 
regression (LR), support vector machine (SVM), random forest (RF), decision tree 
(DT), extreme gradient boosting(XGBoost) and neural network(NN) were applied 
to establish models. The receiver operating characteristic (ROC) curve was used 
to compare the models’ efficiencies. The performance of models was validated 
using decision curve analysis (DCA).

Results: The LR model, which included 6 SNPs and 2 clinical variables as independent 
risk factors for cervical carcinogenesis, was ultimately chosen as the most optimal 
model. The DCA showed that the LR model had a good clinical application.

Discussion: The predictive model effectively foresees cervical cancer risk using 
clinical and SNP data, aiding in planning timely interventions. It provides a 
transparent tool for refining clinical decisions in cervical cancer management.
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1 Introduction

In terms of incidence (6.5%) and mortality (7.7%), cervical cancer is the fourth most 
common cancer in women worldwide (1). The incidence (5.2%) and mortality (5.3%) of 
cervical cancer in China are much higher than in developed countries (2). Cervical cancer 
develops due to a complicated interaction between elements influencing the virus’s 
carcinogenic potential and host characteristics associated with susceptibility to chronic 
infection and tumor formation (3). Although persistent high-risk types of human 
papillomavirus (hrHPV) infection play a critical role in the development of cervical cancer, 
this alone cannot explain the malignancy (4). In addition to factors such as high-risk sex, 
sexually transmitted diseases, preterm births, multiple births, use of oral hormonal 
contraceptives and smoking that may affect human papillomavirus (HPV) infection (5, 6), 
numerous studies have demonstrated the association between simple nucleotide 
polymorphisms (SNPs) as genetic factor, which may have an impact on gene expression or 
protein function, and cervical carcinogenesis. The effectiveness of the immune response to 
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HPV antigens may be altered by genetic variations in human leukocyte 
antigen (HLA) molecules, which may retard the progression of 
cervical cancer (7). For instance, the HLA class II DRB1*1302 allele 
protects against the advancement of low-grade squamous 
intraepithelial lesion (LSIL) into grade 3 cervical intraepithelial 
neoplasia (CIN3) (8). Furthermore, cervical cancer has been 
associated with specific genetic SNPs crucial for DNA repair, 
apoptosis, and cell metabolism (9–11).

In addition to health education and HPV vaccine acting as 
primary prevention measures, the clinical screening and diagnosis of 
cervical cancer is primarily based on the three-step procedure (hrHPV 
test, Papanicolaou test, and colposcopy). Regular hrHPV test and 
Papanicolaou test are recommended for early cervical lesion detection 
of at-risk populations, and those with abnormal test results were 
referred to colposcopy to receive timely and reasonable treatment. In 
order to increase the risk awareness of individuals in the preclinical 
stage of cervical cancer, we developed a predictive warning model for 
clinical diagnosis of cervical cancer and precancerous lesions 
combining clinical and mutational features. We subsequently validated 
and evaluated these models, considering them as potential risk 
indicators and supplementary diagnostic tools. This approach may 
contribute to the development of a cost-effective screening test for 
early cervical cancer detection, ultimately benefiting public health.

2 Materials and methods

2.1 Study population

The 474 subjects were recruited from the cervical specialist 
outpatient and inpatient departments of the Department of Obstetrics 
and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong 
University of Science and Technology. There were 211 subjects in the 
patient group and 263 subjects in the control group. Inclusion criteria 
for the patient group were as follows: (i) age range of 18–75 years, (ii) 
Han Chinese ethnicity, (iii) no prior surgery, radiotherapy, 
chemotherapy, or other related treatment for cervical cancer or 
precancerous lesions, (iv) no previous personal history of other 
tumors, (v) pathology confirmed as CIN2, CIN3 or squamous 
carcinoma. All subjects in the patient group had their postoperative 
pathological results tracked, and the highest grade lesion was utilized 
as the final diagnosis. Inclusion criteria for the control group were as 
follows: (i) age range of 18–75 years, (ii) Han Chinese ethnicity, (iii) 
no prior history of cervical precancerous lesions or cancer, (iv) no 
previous family history of other tumors, (v) confirmed normal 
cervical findings through HPV and cytology screening at our hospital, 
or via cervical biopsy reviewed by two or more pathologists at our 
institution or through external biopsy review by a panel of two or 
more pathologists at our hospital. Exclusion criteria were as follows: 
Samples did not fit the aforementioned inclusion criteria and needed 
to be  excluded, and subjects who were pregnant, lactating or not 
having sex should also be omitted.

2.2 Data collection and sample collection

Information on education level, history of cervical surgery, HPV 
infection, delivery number, menarche, menopause, dysmenorrhea, 
history of sex life, and demographic characteristics were obtained for all 

participants through an on-site questionnaire survey. Some questions 
were not responded to due to patients’ privacy considerations, and 
missing values are addressed later in the data preprocessing. Four 
milliliters of peripheral venous blood were collected from each 
participant. Genomic DNA (QIAamp DNA Mini Kit (Cat. 51,306, 
QIAGEN)) was extracted from the hematocrit brown layer of blood 
samples. The selection of SNPs was based on preliminary experimental 
results and previously published literature (12). Following target region 
sequencing, the final set of 59 SNPs was determined using criteria such 
as a p-value of Trend-test <0.1 and the exclusion of linked loci 
(Supplementary Table S1). To construct the library for sequencing, the 
genome DNA of each sample was randomly interrupted into fragments 
(around 250 bp to 300 bp) and adaptors were ligated to both ends of these 
fragments. After purification, the library was amplified using LM-PCR 
and hybridized with SureSelect Biotinylated RNA Library (BAITS) for 
fragment enrichment. These enriched fragments were amplified again 
by LM-PCR. After the quality check, the DNA library was ultimately 
sequenced. The DNA library was sequenced using the Illumina 
HiSeq 2000 platform after the quality test.

Data quality control includes the removal of adaptor-contaminated 
reads and low-quality reads (defined as N proportion ≥ 10% or ≥ 50% 
of bases with Q ≤ 5). The accuracy of the clean data should be >90% 
for Q20 and > 85% for Q30.

2.3 Data preprocess

Among the clinical data acquired from the on-site questionnaire, 
variables with missing data rates of >15% and samples with missing 
data rates of >50% were removed. We  calculated the remaining 
missing data using the k-nearest neighbor (k-NN) imputation 
algorithm. SNPs with a mutation rate below 3% or above 97% were 
excluded. By incorporating the clinical information with SNPs, 
we acquired the final dataset as 9 clinical factors and 47 mutation 
variables for 464 samples.

2.4 Model building and statistical analysis

Figure 1 displays the comprehensive flowchart. After running 
each variable via univariate logistic regression, the variables with 
p-value <0.05 were selected for the subsequent analysis. The least 
absolute shrinkage and selection operator (LASSO) regression with 
ten-fold cross-validation was applied to dimensionality reduction. 
After further selection through backward stepwise regression, the 
retained features were modeled by using logistic regression (LR), 
support vector machines (SVM), random forests (RF), decision trees 
(DT), eXtreme Gradient Boosting (XGBoost) and neural network 
(NN). The initial cohort of 464 samples underwent a random split, 
resulting in two distinct datasets: a training set comprising 325 
samples and a test set consisting of 139 samples, with a partition ratio 
of 7:3. The training set underwent an internal 10-fold cross-validation 
process, employing nine folds for model building and reserving one 
fold for validation. Performance metrics for both the training and 
validation sets were averaged over iterations within the cross-
validation. Specifically, nine folds of the training set, were used for 
training the model, maintaining a sufficient event size (145 events) 
relative to the 14 variables included, as recommended by the 10-EPV 
(ten events per variable) guideline (13, 14). The optimal model was 
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selected based on these averaged metrics. Subsequently, the entire 
training set was utilized for final model training, while the test set 
served as an independent validation set. The model’s performance was 
evaluated based on the area under the curve (AUC), accuracy, 
sensitivity, and specificity. By computing the net benefit of the training 
and validation cohorts and plotting decision curve analysis (DCA), 
the clinical utility of the logistic regression model was judged. R 
software (version 4.1.1) was used for all statistical analyses. R packages 
“simputation,” “glmnet,” “caret,” “pROC,” “broom,” “forestplot,” “grid,” 
“magrittr,” “tinytex,” “checkmate,” “rmda,” “e1071,” “randomForest,” 
“rpart,” “rpart.plot,” “dplyr,” “xgboost,” “tidyverse” and “neuralnet” 
were used in this investigation. Statistical significance is indicated by 
bilateral p-value <0.05.

3 Results

3.1 Basic characteristics of the study 
subjects

The demographic details and clinical features of the population in 
this study are shown in Table 1. Regarding age, BMI, education level, 
history of prior cervical surgery, HPV infection, number of births, 
number of live births, number of transvaginal births, age of menarche, 
duration of menstruation, and dysmenorrhea, there were no 
statistically significant differences between the training set and 
validation set in both patient and control groups (p-value >0.05), 
indicating that the two sets were comparable.

3.2 Variable selection

Nine clinical variables (education level, history of prior cervical 
surgery, HPV infection, number of births, number of live births, 

number of transvaginal births, age of menarche, duration of 
menstruation, and dysmenorrhea) showed statistically significant 
differences in the univariate logistic regression analysis (Table 2). After 
data preprocessing, LASSO regression (Figure 2) was used to filter 
variables among the 47 mutant loci and the 9 clinical variables 
indicated above. 15variables (6 clinical variables +9 SNPs) with 
nonzero coefficients were obtained at lambda = 0.040. Stepwise 
regression was used to acquire 14 variables (5 clinical factors +9SNPs) 
to further minimize the variables and boost clinical utility.

3.3 Model construction and validation

Six models were developed using 10-fold cross-validation. 
Supplementary Table S2 displays the average evaluation metrics, 
demonstrating that the LR, XGBoost, and NN models outperformed 
the others.

Based on the 14 variables acquired above, we created a multivariate 
logistic regression model using the imputation approach, and the 
Akaike information criterion (AIC) was 363.82. Placing cut points at 
the maximum “Youden index” (0.288, which placed the best cutoff 
point with both high sensitivity and specificity), we divided samples 
into two groups (control, patient) to calculate confusion matrix 
according to yhat value. SVM has four widely used kernel 
functions-the linear function, polynomial function, sigmoid function, 
and radial basis function. By comparing the prediction accuracy of the 
four kernel function modeling in the e1071 package, the best SVM 
model—rbf kernel function model—was obtained at the cost of 1 with 
an accuracy of 0.645.

The error value of the RF model achieves the smallest when the 
number of decision trees is 16. As the number of decision trees rises, 
the model’s error steadily declines. The three most crucial factors are 
HPV, dysmenorrhea, and history of cervical surgery after rating the 
critical components of the RF model (Supplementary Figure S1).

For the DT model, 0.011 was the ideal cp value. The input 
variables for the DT model were HPV and history of cervical surgery, 
and the final number size was 3 based on the matching ordering of 
significant characteristics. The Supplementary Figure S2 displays the 
decision tree model and outcomes. In the training dataset, the model 
successfully categorized 71.8% of the samples.

In comparison, the XGBoost model and the NN model exhibited 
superior performance, closely trailing the predictive capacity of the LR 
model, achieving an AUC of 0.80. rs3741378, rs2274933 and 
dysmenorrhea were assessed as top 3 important variables in XGB 
model, while HPV, rs148927246 and rs141000672 ranks top  3  in 
NN model.

The discriminability of the six models in the training and 
validation sets was assessed using the ROC curve analysis, and the 
AUCs were established (Figures  3A,B). We  chose the logistic 
regression model as our final model for its relatively high performance, 
simplicity, and interpretability, making it practical for real-world 
applications (Table 3).

3.4 Evaluation of the LR model

The DCA analysis (Figures 3C,D) concluded a good performance 
of the LR model in terms of clinical applications. The forest plot for the 
LR model appears in Figure 4, rs141000672, rs2302694, rs77689370, 

FIGURE 1

Flow diagram of the whole research.
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TABLE 1 Demographic and clinical characteristics of patients between training and validation cohorts.

Controls Patients

Training set Validation set p.overall Training set Validation set p.overall

N =  180 N =  78 N =  145 N =  61

Education level 0.923 0.833

  Illiterate 2 (1.14%) 1 (1.32%) 8 (6.30%) 3 (5.45%)

  Primary school 20 (11.4%) 7 (9.21%) 24 (18.9%) 9 (16.4%)

  Junior high school 48 (27.3%) 18 (23.7%) 30 (23.6%) 17 (30.9%)

  High school/Junior 

college
40 (22.7%) 18 (23.7%) 25 (19.7%) 8 (14.5%)

  College/Vocational 

college or above
36 (20.5%) 15 (19.7%) 18 (14.2%) 6 (10.9%)

  University and above 30 (17.0%) 17 (22.4%) 22 (17.3%) 12 (21.8%)

History of cervical 

surgery
0.249 0.513

  No 153 (85.0%) 61 (78.2%) 136 (93.8%) 59 (96.7%)

  Yes 27 (15.0%) 17 (21.8%) 9 (6.21%) 2 (3.28%)

HPV infection 0.213 0.436

  No 56 (32.2%) 31 (41.3%) 6 (5.77%) 1 (2.13%)

  Yes 118 (67.8%) 44 (58.7%) 98 (94.2%) 46 (97.9%)

Number of birth 1 0.519

  NA 1 (0.56%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

  ≤2 170 (94.4%) 74 (94.9%) 126 (86.9%) 51 (83.6%)

  ≥3 9 (5.00%) 4 (5.13%) 19 (13.1%) 10 (16.4%)

Number of alivebirth 1 0.519

  NA 1 (0.56%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

  ≤2 170 (94.4%) 75 (96.2%) 126 (86.9%) 51 (83.6%)

  ≥3 9 (5.00%) 3 (3.85%) 19 (13.1%) 10 (16.4%)

Number of transvaginal 

births
0.874 0.751

  NA 2 (1.11%) 0 (0.00%) 1 (0.69%) 0 (0.00%)

  ≤2 171 (95.0%) 74 (94.9%) 127 (87.6%) 52 (85.2%)

  ≥3 7 (3.89%) 4 (5.13%) 17 (11.7%) 9 (14.8%)

Age of menarchea 13.5 (1.38) 13.6 (1.80) 0.777 13.8 (1.67) 14.1 (1.58) 0.194

Duration of menstrual 0.941 0.414

  NA 19 (10.6%) 8 (10.3%) 7 (4.83%) 6 (9.84%)

  >7 16 (8.89%) 8 (10.3%) 4 (2.76%) 2 (3.28%)

  ≤7 145 (80.6%) 62 (79.5%) 134 (92.4%) 53 (86.9%)

Dysmenorrhea 0.41 0.17

  No 111 (68.5%) 44 (62.0%) 103 (74.6%) 50 (84.7%)

  Yes 51 (31.5%) 27 (38.0%) 35 (25.4%) 9 (15.3%)

AGEa 41.8 (10.6) 40.4 (10.2) 0.306 43.0 (10.8) 41.4 (9.64) 0.285

BMIb 0.198 0.845

  NA 13 (7.22%) 5 (6.41%) 13 (8.97%) 4 (6.56%)

  <18.5 12 (6.67%) 11 (14.1%) 14 (9.66%) 8 (13.1%)

  >24 48 (26.7%) 15 (19.2%) 28 (19.3%) 11 (18.0%)

  18.5–24 107 (59.4%) 47 (60.3%) 90 (62.1%) 38 (62.3%)

Unless otherwise indicated, values are number of patients with percentage in parentheses.
aValues are the mean with standard deviation in parentheses.
bBMI (body mass index) = weight (kg)/height2 (m2).
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rs2228600, rs148927246, rs2274933, history of cervical surgery, and 
HPV infection were independently associated with cervical 
carcinogenesis, where rs141000672, rs2302694, rs2228600, history of 
cervical surgery were protective factors, and rs77689370, rs148927246, 
rs2274933 and HPV infection were identified as risk factors.

4 Discussion

This research aimed to uncover factors associated with cervical 
cancer and precancerous lesions, considering both external factors 

(such as an individual’s education level, menstrual history, and marital 
status) and internal factors related to genetic susceptibility. 
We carefully analyzed mutations in 59 specific genetic markers (SNPs) 
and integrated these findings into our modeling approach. 
We explored several modeling methods and found that the XGBoost 
model, combining multiple factors, showed strong predictive abilities, 
making it our preferred choice for predicting cervical 
cancer development.

Several clinical diagnostic prediction models for cervical cancer 
have been developed recently. The study by Van den Helder et al. 
showcased the application of hrHPV DNA testing and DNA 

TABLE 2 Variate screening using univariate logistic regression.

Control Case p.overall

N =  258 N =  206

Education level 0.002

  Illiterate 3 (1.16%) 15 (7.28%)

  Primary school 27 (10.5%) 35 (17.0%)

  Junior high school 67 (26.0%) 52 (25.2%)

  High school/Junior college 59 (22.9%) 38 (18.4%)

  College/Vocational college or above 52 (20.2%) 28 (13.6%)

  University and above 50 (19.4%) 38 (18.4%)

History of cervical surgery <0.001

  No 214 (82.9%) 195 (94.7%)

  Yes 44 (17.1%) 11 (5.34%)

HPV infection <0.001

  No 92 (35.7%) 9 (4.37%)

  Yes 166 (64.3%) 197 (95.6%)

Number of birth 1.28 ± 0.82 1.54 ± 1.03 0.003

Number of alive birth 1.22 ± 0.81 1.52 ± 1.04 0.001

Number of transvaginal births 0.93 ± 0.94 1.27 ± 1.17 0.001

Age of menarche 13.6 ± 1.52 13.9 ± 1.65 0.033

Duration of menstrual 5.81 ± 1.99 5.31 ± 1.53 0.002

Dysmenorrhea 0.028

  No 177 (68.6%) 161 (78.2%)

  Yes 81 (31.4%) 45 (21.8%)

FIGURE 2

The dimensionality reduction of 9 clinical features and 59 mutation features by LASSO. (A) Selection of the tuning parameter (λ) via 10-fold cross-
validation based on minimum criteria. Binomial deviances from the LASSO regression cross-validation procedure were plotted as a function of log (λ). 
The optimal λ value of 0.014 was selected. (B) LASSO coefficient profiles of the 68 variables. As the value of λ decreased, the degree of model 
compression increased and the function of the model to select important variables increased.
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FIGURE 3

The receiver operating characteristic (ROC) curves and decision curve analysis (DCA). ROC for the (A) training sets and (B) validation sets. Based on the 
area under the decision curve, DCA was used to assess the clinical utility of the logistic model. The area of the (C) training set and (D) validation set is 
greater than the “treat all” (gray) or “no treatment” (black) strategy. This indicates that the logistic model has good utility in clinical decision making.

TABLE 3 Performance of four models for predicting the occurrence of cervical cancer.

Model AUC Accuracy Sensitivity Specificity

Training Validation Training Validation Training Validation Training Validation

Logistic 

regression
0.813 0.772 0.712 0.688 0.907 0.870 0.616 0.598

Supportive 

vector 

machine

0.752 0.639 0.745 0.645 0.678 0.600 0.822 0.679

Random 

forest
0.671 0.703 0.663 0.696 0.745 0.778 0.597 0.627

Decisive tree 0.718 0.726 0.718 0.725 0.763 0.775 0.669 0.672

eXtreme 

gradient 

boosting

0.807 0.768 0.741 0.703 0.911 0.836 0.606 0.597

Neural 

network
0.812 0.772 0.712 0.688 0.931 0.902 0.536 0.519
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methylation analysis in urine for detecting CIN2, CIN3, and cervical 
cancer. Their findings, boasting an AUC of 0.84 along with high 
sensitivity and specificity, provide a promising perspective on 
detecting cervical cancer and precancerous lesions (15). Furthermore, 
an advanced Stacking-Integrated Machine Learning (SIML) model 
was developed to identify high-risk individuals for cervical cancer. 
This model achieved an AUC of 0.877, with a sensitivity of 81.8% and 
specificity of 81.9%, demonstrating its potential for accurate risk 
assessment based on demographic, behavioral, and clinical factors 
(16). Fu et  al. asserted that a colposcopy-based multi-image deep 
learning model that incorporates the results of both an HPV test and 
a cytology test would produce results with higher sensitivity and 
specificity than the cytology-HPV diagnostic model or the 
colposcopy-based multi-image deep learning model applied 
independently (17). Another study successfully stratifies high-grade 
cervical lesions employing sequencing and machine learning as a 
valuable addition to the current comprehensive triage method (18). 
However, none of the aforementioned studies highlighted the 

integration of germline mutations detected through SNP analysis as a 
pivotal aspect for the early warning of cervical cancer, which is the 
distinguishing feature of our model. Our model uniquely incorporates 
germline mutations detected through SNP analysis, highlighting the 
novel inclusion of genetic susceptibility factors for early detection of 
cervical cancer.

According to previous research, HPV is unquestionably the most 
significant risk factor for cervical carcinogenesis. Cervical 
precancerous and invasive carcinoma need ongoing high-risk HPV 
infection of cervical basal epithelial cells with the capacity to divide 
and differentiate as well as integration of viral DNA with the host 
genome (19, 20). As a result, high-risk HPV screening is especially 
relevant as a primary screening method for cervical cancer. The LR 
model considers a prior history of cervical surgery protective, which 
makes sense, given that this operation eliminates the anatomical 
components most likely to develop cervical cancer.

In the LR model, 6 SNPs in 5 genes were independently associated 
with cervical carcinogenesis, with each SNP exerting its slight effect. 

FIGURE 4

Forest plots based on the p-value, HR values (95% CI) of the 14 variables of the LR model. HR, hazard ratio; CI, confidence interval.
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We  found formerly published evidence on several of these SNPs 
associated with cancer. HSPG2 (rs141000672) encodes the perlecan 
protein, and SNPs of HSPG2 (rs12034979, rs6697265, rs6680566, and 
rs878949) had previously been identified as potential risk factors for 
the advancement of cervical lesions caused by HPV types 16, 18, and 
52 infections (21). In our model, HSPG2 is thought to be a protective 
factor against cervical cancer. Multiple studies have shown that small 
structural differences in HSPG2 across diseases have antagonistic 
effects on tumor formation and metastasis; intact perlecan promotes 
the development of a vascular supply that supports tumor cell 
proliferation and the development of a variety of cancers, whereas 
bioactive perlecan fragments inhibit tumor development by targeting 
its vascular supply (22, 23). LRP2 (rs2302694) mutations were 
detected in a range of cancers, with melanoma (28.18%), uterine 
sarcoma (17.99%), and lung squamous cell carcinoma (16.32%) with 
the highest mutation rates (24). A pan-cancer study found that LRP2 
mutations were linked with increased immune cell infiltration, 
immune checkpoint gene expression, and significant enrichment of 
immune-related signaling pathways, as well as a better prognosis, 
compared to individuals who did not have LRP2 mutations (24). 
Depletion of Lama5 (rs148927246, rs2274933) in lymph node stromal 
cells controls immunological responses to T cell migration and 
function, encourages branching angiogenesis, and modifies Notch 
signaling, which facilitates colorectal cancer spread to the liver (25, 
26). This raises the possibility that it could impact cervix cellular 
immunity and angiogenesis and encourages cervical carcinogenesis. 
HPV infection type is connected with polymorphisms in HLA-DRB1 
(rs77689370), which ultimately affects how quickly high-risk 
HPV-infected cervical lesions develop into invasive cervical cancer 
(27). The clockican family member NCAN (rs2228600) is primarily 
expressed in neural tissue. The carcinogenesis and malignancy of 
neuroblastoma (NB) are influenced by NCAN, which also promotes 
the growth and invasion of glioma cells (28, 29).

Among the six warning models, the decision tree model is 
clinician-friendly and has high clinical tractability for making 
decisions from root to leaf nodes, while it exhibited instability in 
generalization. NN showed competitive performance but slightly 
lower accuracy compared to LR. On the other hand, the diagnostic 
performance of the RF, SVM and XGB models was mediocre, and 
their “black box” characteristics limited clinical interpretability 
marginally. Relatively, the multivariate LR model is more interpretable 
and can assist physicians in anticipating the occurrence of cervical 
cancer. The 8 variants in the LR model were proven to be risk factors 
of statistical significance, including 2 clinical features and 6 SNPs. 
Advanced techniques like XGBoost and neural networks demonstrated 
superior predictive capabilities. Their outperformance in accuracy and 
AUC proves their ability to handle complex relationships in data, 
making them promising models that balance interpretability 
and performance.

All in all, our model is positioned as a valuable complement to 
established screening methods like the ThinPrep Cytology Test 
(TCT) and HPV testing, especially beneficial for individuals 
exhibiting positive HPV results alongside normal TCT findings. 
The potential lies in enhancing both sensitivity and specificity in 
clinical screening, facilitating the identification of high-risk 
individuals who might otherwise be overlooked. To ascertain its 
precise application in clinical practice, rigorous empirical research 
and thorough clinical validation are imperative. Despite these 

promising aspects, the present study has certain limitations. 
Primarily, the retrospective collection of clinical variables through 
self-reported data in a case–control setup may introduce 
measurement errors and recall biases, potentially impacting the 
predictive accuracy of the data. Additionally, the study’s limited 
sample size significantly reduces statistical power within both the 
training and validation cohorts. Despite this limitation, we have 
endeavored to emphasize the robustness of our internal validation 
procedures, including the use of 10-fold cross-validation, to 
mitigate potential biases and enhance the reliability of our findings 
within the scope of available resources.

In summary, our model incorporating both clinical features and 
SNPs contributes valuable insights toward predicting cervical 
carcinoma. While showing promising predictive ability, further 
refinement and validation are essential to ascertain its full 
clinical utility.
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