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Background: Venous thromboembolism (VTE) is characterized by high 
morbidity, mortality, and complex treatment. A VTE knowledge graph (VTEKG) 
can effectively integrate VTE-related medical knowledge and offer an intuitive 
description and analysis of the relations between medical entities. However, 
current methods for constructing knowledge graphs typically suffer from error 
propagation and redundant information.

Methods: In this study, we  propose a deep learning-based joint extraction 
model, Biaffine Common-Sequence Self-Attention Linker (BCSLinker), for 
Chinese electronic medical records to address the issues mentioned above, 
which often occur when constructing a VTEKG. First, the Biaffine Common-
Sequence Self-Attention (BCsSa) module is employed to create global matrices 
and extract entities and relations simultaneously, mitigating error propagation. 
Second, the multi-label cross-entropy loss is utilized to diminish the impact of 
redundant information and enhance information extraction.

Results: We used the electronic medical record data of VTE patients from a 
tertiary hospital, achieving an F1 score of 86.9% on BCSLinker. It outperforms 
the other joint entity and relation extraction models discussed in this study. In 
addition, we developed a question-answering system based on the VTEKG as a 
structured data source.

Conclusion: This study has constructed a more accurate and comprehensive 
VTEKG that can provide reference for diagnosing, evaluating, and treating VTE 
as well as supporting patient self-care, which is of considerable clinical value.
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1 Introduction

Venous thromboembolism (VTE) encompasses a spectrum of diseases, including Deep 
Vein Thrombosis (DVT) and Pulmonary Embolism (PE) (1), and its mortality is only second 
to cancer and myocardial infarction (2). Nevertheless, only a minority of patients have received 
the recommended medical treatment for VTE, which is even worse in remote areas (3). Thus, 
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there is an urgent need to enhance the ability of non-specialists to treat 
VTE in a timely manner and raise patients’ awareness of VTE risks.

Electronic medical records document patients’ comprehensive 
medical activities in hospitals and serve as a rich source of specialized 
medical knowledge. Knowledge graphs can effectively integrate 
medical knowledge from electronic medical records, improve the 
organization and management of medical knowledge, and support 
physicians in diagnosis while popularizing relevant medical 
knowledge to patients (4–6), which offers an alternative approach to 
improving the timely diagnosis and treatment of VTE by 
non-specialists and raises patients’ awareness of VTE risks. However, 
electronic medical record text data typically exists in an unstructured 
format, making it hard to extract helpful knowledge for constructing 
a knowledge graph. Information Extraction (IE) is capable of 
identifying specific named entities and relations from unstructured 
electronic medical records closely related to the patients, yielding 
valuable medical knowledge (7–9). Nonetheless, traditional methods 
for extracting information from electronic medical records depend on 
factors such as specific domains, languages, and text styles, resulting 
in limited system portability. Furthermore, these methods make it 
difficult to enumerate all the rules that need to be modeled (10).

Deep learning has been utilized to classify relations between 
medical entities in electronic medical records (11, 12), minimizing 
dependence on manual feature engineering and addressing issues 
associated with traditional information extraction methods. Among 
the deep learning-based information extraction techniques, pipeline 
approaches treat named entity recognition and relation classification 
as two distinct subtasks (13–15). It first performs named entity 
recognition followed by relation classification based on the results of 
named entity recognition. However, these approaches overlook the 
inherent connection between the two subtasks, and error propagation 
in named entity recognition can adversely impact the accuracy of 
relation classification (16).

To address these challenges, Miwa et al. (16) initially introduced 
a joint extraction model for entities and relations to obtain entities and 
relations between them through a unified architecture. Existing 
research typically divides joint extraction into several basic modules 
or subtasks to simplify complex tasks. Wei et  al. (17) introduced 
CasRel, which first identifies all potential subjects in a sentence and 
then applies relation-specific taggers for each subject to detect all 
possible relations and corresponding objects. Zheng et  al. (18) 
presented PRGC, decomposing joint extraction of entities and 
relations into three subtasks: Relation Judgment, Entity Extraction, 
and Subject-object Alignment to extract relations between entities in 
a stepwise manner. BiRTE (19) extracts all possible entity pairs from 
both directions and assigns all potential relations to each entity pair 
using a biaffine model. With the inherent connection between 
subtasks considered, these multi-module multi-step extraction 
methods use distinct modules and interrelated steps of processing to 
extract entities and relations sequentially. However, they remain 
susceptible to error propagation (20).

Multi-module one-step extraction methods address error 
propagation in joint models by extracting entities and relations at one 
time and combining them into triples. SPN (21) transforms joint 
entity and relation extraction into a set prediction problem and 
combines non-autoregressive parallel decoding with a bipartite 
matching loss to address the relational triples prediction issue. Shang 
et al. (22) presented OneRel, employing a score-based classifier to 

assess whether a token pair and a relation constitute a relational triple. 
GRTE (23) generates a table feature for each relation, explores the 
global association between the relations and token pairs, and integrates 
these into each relation’s table feature to extract relational triples. 
Huang et al. (24) combined BERT with a multi-head selection model 
and added soft label embedding to enhance the information extraction 
capabilities of the model. While these multi-module one-step 
extraction methods avoid error propagation, it suffers from excessive 
redundant information.

Consequently, we propose a joint extraction model of entities and 
relations, Biaffine Common-Sequence Self-Attention Linker 
(BCSLinker), for constructing a VTE knowledge graph (VTEKG). 
First, the Biaffine Common-Sequence Self-Attention (BCsSa) module 
is proposed to extract common features in the electronic medical 
record dataset utilizing the common-sequence self-attention 
mechanism. Additionally, the information interaction between 
medical entities in the electronic medical record text data is enhanced 
by a biaffine model, constructing global matrices and extracting 
entities and relations simultaneously to avoid error propagation. 
Second, the multi-label cross-entropy loss is employed to mitigate the 
impact of redundant information generated in the model and improve 
the information extraction. Finally, we construct the VTEKG using 
specialized medical knowledge extracted from the electronic medical 
records and develop a prototype of a question-answering system based 
on the VTEKG. Furthermore, we conduct experiments on the system 
and analyze the results.

2 Materials and methods

2.1 Data

The experimental data in this study, encompassing chief 
complaints, past medical history, test results, diagnoses, preoperative 
assessments, postoperative evaluations, and treatment plans, were 
sourced from the electronic clinical medical records of a tertiary 
hospital in Yunnan province. Access to the medical records was 
granted through patient consent and approved by the Ethics 
Committee. We collected 16,000 electronic medical records, from 
which 1,600 were selected based on whether there are risk factors 
associated with VTE. Data cleaning was conducted initially, including 
removing duplicate data, missing values, and outliers. After an 
extensive review of labeling specifications, we employed the labeling 
specifications provided by the Network Intelligence Laboratory of 
Harbin Institute of Technology University (25) to classify entities in 
the electronic medical records into diseases, symptoms, tests, and 
treatments. To accommodate the characteristics of VTE, 
we established additional entity labels based on the table attributes in 
the VTE-related risk assessment scale, as well as focusing on 
coagulation, liver function, and other relevant test indicators that can 
help further prompt physicians for VTE diagnosis and treatment. The 
entity types displayed in Table 1.

Entity relations are classified based on entity types. We established 
14 types of relations between entities upon the above-mentioned 
named entity types. The 14 relation types are displayed in Table 2. 
Subsequently, a professional doctor with 5 years of experience 
conducted manual labeling and another doctor with 10 years of 
experience performed reviews.
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After multiple iterations, 1,600 electronic medical records were 
labeled, with 9,977 sentences and 6,011 relational triples. The 1,600 
electronic medical records were divided into three data sets - training, 
validation, and test, with a ratio of 8:1:1. The distribution of relation 
quantities among the three data sets is presented in Table 3.

2.2 Methods

This paper proposes BCSLinker to extract VTE-related entities 
and relations from Chinese electronic medical records for constructing 
a VTEKG. The model comprises a BERT word embedding layer (26), 
a BiGRU context feature extraction layer (27), a Global Pointer layer 
(28), and the BCsSa layer. Figure 1 illustrates the overall structure of 
BCSLinker. First, the BERT word embedding layer transforms the 
input electronic medical record text into corresponding word vectors. 
Then, the word vectors acquire contextual semantic information 
through the BiGRU context feature extraction layer. Third, the BCsSa 
module constructs global matrices by incorporating common features 
of the electronic medical record dataset into contextual semantic 
information, enabling entity information interaction. The global 
matrices and global features obtained through the Global Pointer layer 
are fused to generate scoring matrices for entity recognition and 
relation extraction. Finally, we employ the multi-label cross-entropy 
loss (28) to mitigate the impact of redundant information generated 
in the model.

2.2.1 BERT word embedding layer
The BERT word embedding layer, depicted in Figure 2, transforms 

the electronic medical record text into word vectors that the neural 
network model can recognize and train effectively. This weight-
efficient network is obtained through pre-training on a large-scale text 
corpus. It allows for dynamic optimization for specific tasks and 
requires only fine-tuning with the small electronic medical record 
dataset, thus reducing the difficulty of medical information 
extraction tasks.

2.2.2 BiGRU context feature extraction layer
The structure of the BiGRU context feature extraction layer is 

illustrated in Figure 3. A BiGRU unit, consisting of a forward GRU 
unit and a backward GRU unit, extracts both forward and backward 
information from words in the electronic medical record text data, 
which enables the acquisition of semantic features and long-distance 
information while avoiding vanishing and exploding gradients. 

Additionally, compared with other models, the GRU model features 
relatively fewer parameters, which helps prevent overfitting and 
enhances training speed, especially when dealing with a small 
electronic medical record dataset.

2.2.3 BCsSa layer
To address error propagation, we propose the BCsSa module, 

which constructs global matrices and simultaneously extracts entities 
and relations. The process of this module is depicted in Figure 4. First, 
the common-sequence self-attention mechanism captures global 
information and common features from the contextual semantic 
information. Second, the obtained features are fed into two 
feedforward neural networks to acquire two different features 
representing the links between entity head and entity tail, subject head 
and object head, and subject tail and object tail. Lastly, a biaffine 
model (29) facilitates interaction between entity pairs in the electronic 
medical record text data, improving entity recognition and relation 
extraction. By constructing global matrices for identifying entities and 
relations between them, entity recognition and relation extraction are 
accomplished simultaneously in a single step, thereby avoiding 
error propagation.

2.2.3.1 BCsSa module
All electronic medical record text data in this paper is from the 

same hospital and contains entities and relations related to VTE, so 
common features exist among the data. To capture these common 
features, we  propose an improved self-attention mechanism that 
allows the neural network to capture long-term dependencies by 
computing correlations between every two positions in the text while 
also capturing additional common features of the electronic medical 
record text. Figure 5 illustrates the improved self-attention structure 
where we  establish an input-independent learning matrix jointly 
trained by all input data. The matrix captures common features of the 
input data and is added to the self-attention mechanism for operation.

For the input sequence X x x xn= …{ }1 2, , , , where x Ri
d∈  

represents the embedded vector at the position i in the input sequence, 

TABLE 1 Entity types of the dataset.

Entity type Meaning Example

Disease The name of the disease Hypertension

Symptom
Patient’s discomfort or unusual 

sensation
Lower extremity edema

Drug The drug used for treatment Warfarin

Factor The cause of a symptom or disease Bedridden

Treatment Treatments other than drugs Arthroscopy surgery

Test Medical examination items Electrocardiography

Matter Notes for patients Limb elevation

TABLE 2 Relation types of the dataset.

Relation type Specific relations between 
entities

Symbol

Treatment-disease The treatment of the disease TrAD

Treatment-symptom The treatment of the symptom TrAS

Test-disease The test confirmed the disease TeRD

Test-disease Because the disease takes the test TeBD

Test-symptom The test revealed symptoms TeRS

Test-symptom Because the symptom takes the test TeAS

Disease-symptom The disease causes symptoms DIS

Symptom-disease Symptoms diagnosed as a disease SDD

Factor-symptom Factors contributing to symptoms FCS

Drug-disease The drug is used to treat diseases DrAD

Drug-symptom The drug is used to treat symptoms DrAS

Drug-treatment The drug as a method of treatment DrTr

Disease-matter Advisories and precautions for the disease DM

Symptom-matter Advisories and precautions for the symptom SM
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three separate linear transformations are applied to transform the 
input embedding X  into query, key and value vectors Q, K , V . The 
specific calculations are as Equations (1–3).

 Q XWQ=  (1)

 K XWK=  (2)

 V XWV=  (3)

Where W W WQ K V  are d d×  weight matrices that need to 
be learned.

To obtain common features of the electronic medical record dataset, 
we set up a learnable shared matrix C with input-independent n d× , 
where n is a hyperparameter. The shared matrix C is incorporated into 
the key vector K via equation (4) to obtain KC, which is matched with the 
query vector Q to calculate the correlation between the two. The higher 
the correlation is, the greater the weight corresponding to VC will be. The 
specific equations are as Equations (4–6).

 
K

K
CC

T
=










 
(4)

 
V

V
CC

T
=









 
(5)

TABLE 3 Dataset relation statistics.

Relation type Training set Validation set Test set

TrAD 395 43 64

TrAS 1,406 217 207

TeRD 326 30 32

TeBD 151 19 19

TeRS 148 16 20

TeAS 706 121 103

DIS 271 33 23

SDD 188 24 29

FCS 95 16 18

DrAD 258 32 27

DrAS 269 28 33

DrTr 296 30 46

DM 88 10 10

SM 109 13 15

FIGURE 1

Example of the overall structure of BCSLinker. The input sequence is ‘肺栓塞表现为突发的胸痛’ (The common symptoms of a pulmonary embolism 
include sudden chest pain), and the output sequence corresponds to global matrices.
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output softmax QK

d
VC

k
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(6)

Where dk  is the dimension of the key vector K . Converting the 
attention matrix to a normal distribution through dk  makes the 
structure stable while balancing the back-propagation gradients.

Inspired by the dependency parsing model of Dozat and Manning 
(29), for sequences that contain common features of the electronic 
medical record dataset, we used two independent feedforward neural 
networks to create different representations (hs and hs) for the 
beginning and end of the span. The three types of global matrices are 
used to represent entity head and entity tail, subject head and object 
head, and subject tail and object tail, respectively, enabling the model 
to learn these different features separately and improve the precision 
of the extraction results. We use the biaffine model to create global 
matrices gm of c s s× × , where c is the subject and object entity or type 

of relation and s is the sentence length. We calculate the score for each 
span i by Equations (7–9).

 h i FFNNs s si( ) = ( )α  (7)

 h i FFNNs s si( ) = ( )α  (8)

 g i h i U h i bm s
T

m e m( ) = ( ) ( ) +  (9)

Where α  is the word representation, si  and ei  denote the start and 
end indices of span i , Um  is a learnable d c d+( )× × +( )1 1  tensor 
and bm is the bias.

2.2.3.2 Global matrix
Global matrices are employed for joint entity and relation 

extraction. We construct three global matrices for an input sequence 

FIGURE 2

Example of input and output of the BERT word embedding layer. The input sequence is ‘考虑肺栓塞，予抗凝药物治疗’ (Suspect a pulmonary embolism, 
treat with anticoagulants), and the output is sequence corresponds word vector.

FIGURE 3

Example structure of the BiGRU contextual feature extraction layer. The input is the word vectors corresponding to ‘肺栓塞表现为突发的胸痛’ (The 
common symptoms of a pulmonary embolism include sudden chest pain), and the output is contextual semantic information.
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to indicate the links between entity head and entity tail, subject head 
and object head, subject tail and object tail, respectively. For the 
sentence ‘Pulmonary embolism is characterized by sudden onset of 
chest pain, hemoptysis, and other discomforts’ we construct three 
matrices, as illustrated in Figure  6. Figure  6A represents the link 

between the head and tail of the entities through which the three 
entities of pulmonary embolism, chest pain, and hemoptysis can 
be identified. Figure 6B displays the link between the subject’s head 
and the objects’ head, revealing the relations between entities with 
specific head characteristics. The relation between the entity with ‘肺’ 

FIGURE 4

Flowchart of the BCsSa layer.

FIGURE 5

Structure of the common-sequence self-attention.
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as the head of the entity and the entity with ‘胸’ as the head of the 
entity, and the entity with ‘肺’ as the head of the entity and the entity 
with ‘咳’ as the head of the entity can be  learned from 
Figure 6B. Figure 6C demonstrates the link between the subject’s tail 
and the objects’ tail, revealing the relations between entities with 
particular tail features. We can learn from Figure 6C that the relation 
between the entity with ‘塞’ as the tail of the entity and the entity with 
‘痛’ as the tail of the entity, and the entity with ‘塞’ as the tail of the 
entity and the entity with ‘血’ as the tail of the entity. By combining 
Figures 6B,C, we can learn the relations between pulmonary embolism 
and chest pain and pulmonary embolism and hemoptysis, with 
pulmonary embolism as the subject and chest pain and hemoptysis as 
the objects. This joint extraction method for entities and relations 
achieves simultaneous extraction while avoiding error propagation.

2.2.4 Global pointer layer
The Global Pointer layer constructs global features directly using 

word vectors and fuses the global matrices to enhance the performance 
of model. After the word vector sequence is obtained, two feedforward 
neural networks are employed based on the span’s beginning and end 
indices. Similar to the BCsSa layer, this span is treated as entity head 
and entity tail, subject head and object head, and subject tail and 
object tail. Span boundary information is incorporated into rotational 
position encoding (RoPE) (30) to construct the global features.

2.2.5 Multi-label cross-entropy loss
The electronic medical record dataset exhibits imbalances 

between positive and negative samples. The higher the degree of 
imbalance is, the more challenging it becomes to classify the data. In 
our joint extraction model, a large amount of redundant information 
is generated, exacerbating the degree of positive and negative sample 
imbalance and making data classification more difficult. Therefore, 
we employ the multi-label cross-entropy loss to mitigate the class 
imbalance problem and alleviate the effect of information redundancy 
on the model. The multi-label cross-entropy loss is expressed as 
equation (10).

 
Loss e e

i P

S

i N

Si i= +








 + +











∈

−

∈
∑ ∑log log1 1

 
(10)

Where P is the positive sample set, N is the negative sample set, 
and Si represents the scores of the i class.

3 Results

3.1 Experimental setting

All training process was completed on a Windows 10 64GB RAM 
computer with an Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz and 
a single RTX 3060 GPU 12GB RAM running on Python 3.7 and 
PyTorch 1.8.0.

In the experimental setup, we stipulated specific parameters to 
govern the training process. Specifically, we established a maximum 
sentence length of 256 tokens, a batch size of 16, a learning rate of 
0.0001, and conducted training for 100 epochs. These parameters were 

carefully chosen to optimize model performance and facilitate 
comprehensive learning within the defined computational constraints.

3.2 Evaluation

The three most prevalent standard evaluation metrics consist 
Precision (P), Recall (R), and F1 score (F1), mathematically defined 
as Equations (11–13).

 
P TP

TP FP
=

+  
(11)

 
R TP

TP FN
=

+  
(12)

 
F PR

P R
1

2
=

+  
(13)

Where, TP (True Positive) represents instances where the positive 
class is accurately predicted as positive; FP (False Positive) refers to 
cases where the negative class is incorrectly predicted as positive; and 
FN (False Negative) signifies instances where the positive class is 
incorrectly predicted as negative. The term (TP + FP) reflects the 
proportion of correct predictions within the positive class results, and 
(TP + FN) indicates the proportion of actual positive class samples that 
are correctly classified as positive.

3.3 Experimental results and analysis

3.3.1 Main results
To verify the performance of BCSLinker, we have the following 

four advanced baseline models involved in the comparison: SPN (21), 
CasRel (17), BiRTE (19), PRGC (18), OneRel (22), MultiHead (24), 
and GRTE (23).

Table 4 demonstrates that BCSLinker achieved an F1 score of 86.9%, 
outperforming the other models. Figure 7 highlights that BCSLinker’s 
Precision, Recall, and F1 score on the electronic medical record dataset 
are significantly enhanced compared to the baseline models.

The outstanding performance of BCSLinker can be attributed to 
two main advantages: First, we  extract entities and relations 
simultaneously using a multi-module one-step extraction method, 
effectively alleviating error propagation. Second, we adopt the multi-
label cross-entropy loss to mitigate the impact of negative samples, 
which widely exist in multi-module one-step extraction methods.

Baseline models, such as CasRel, BiRTE, and PRGC, extract 
entities and relations separately through multiple steps, essentially 
following pipelined extraction patterns and facing error propagation. 
As shown in Table 4, compared to the typical multi-module multi-step 
method PRGC, BCSLinker improves Precision, Recall, and F1 score 
on the electronic medical record dataset by 17.8, 6.6, and 12.4%, 
respectively, which suggests that simultaneously extracting entities 
and relations can mitigate error propagation.

SPN, OneRel, MultiHead, GRTE, and BCSLinker simultaneously 
extract entities and relations in one step. Although this method avoids 
error propagation, it generates substantial redundant information, leading 
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to excess negative samples. The electronic medical record dataset 
inherently contains more negative samples, exacerbating the imbalance 
between positive and negative samples. Moreover, SPN exhibits a bias 
exposure problem. Table 4 reveals that BCSLinker, compared to the GRTE 
model, improves Precision, Recall, and F1 score by 8.2, 7, and 7.5%, 
respectively, on the electronic medical record dataset, which indicates that 
utilizing the multi-label cross-entropy loss suppresses the impact of 
information redundancy on the model, enhancing its performance.

3.3.2 Ablation study
To evaluate the efficacy of each component, we remove particular 

component(s) at a time to assess the impact on the model. Table 5 reveals 
that: (1) Precision remains virtually unchanged when the common-
sequence self-attention module is removed, while Recall and F1 score 

decrease by 1.1 and 0.5%, respectively, suggesting that common-
sequence self-attention plays an essential role in extracting common 
features from the electronic medical record dataset. (2) When the 
BiGRU module is removed, the F1 score decreases by 1.2%, indicating 
that BiGRU’s extraction of contextual features significantly affects the 
performance of subsequent modules. (3) When both the BiGRU and the 
BCsSa are removed, the F1 score decreases substantially. Combined with 
the previous observations, this indicates that the BCsSa module 
effectively enhances feature interactions between medical entities in the 
electronic medical record text, thus improving the performance of 
BCSLinker. (4) When the Global Pointer module is removed, the F1 
score decreases by 1.1%, suggesting that global features constructed by 
the Global Pointer module, combined with positional encoding, can 
compensate for shortcomings in the BCsSa module to some degree.

FIGURE 6

Global matrices. (A) The link between the head and tail of the entities. (B) The link between the subject’s head and the objects’ head. (C) The link 
between the subject’s tail and the objects’ tail.
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To evaluate the efficacy of the multi-label cross-entropy loss in 
dealing with imbalances between positive and negative samples, 
we performed an ablation study using the electronic medical record 
dataset. In this study, we substituted the multi-label cross-entropy loss 
with binary cross-entropy loss (BCE) and compared the respective 
performance outcomes, as shown in Table 6. The results clearly indicate 
that the model’s performance, specifically with respect to Recall and F1 
score, was compromised when the BCE was used. This establishes the 
superior effectiveness of the multi-label cross-entropy loss.

3.3.3 Storage and application of the knowledge 
graph

In this study, we employ the Neo4j graph database to store entities 
and relations and to map the VTEKG. The graph database differs from 
traditional relational databases because it stores ontologically 
structured knowledge and visualizes relations between entities. After 
extracting all relational triples in the electronic medical records using 
BCSLinker, we import the relational triples in batches from CSV files 
into the Neo4j graphical database, query the imported data using the 
Cypher language, and visualize the results. The Neo4j graph database 

enables searching and inference within the knowledge graph. Figure 8 
demonstrates a small portion of our knowledge graph containing 
information about various types of medical entities and illustrating 
their semantic relations.

Upon completing the construction of VTEKG, we developed a 
question-answering system for VTE based on VTEKG, which 
supports queries for 14 types of questions. This system can serve as 
reference for VTE-related disease diagnosis, treatment, and patient 
self-care. The system first analyzes user questions, extracts relevant 
entities, and classifies the questions based on feature words. Then, the 
question is transformed into Cypher to find answers within the Neo4j 
graph database. Finally, the answers are combined with answer 
templates for related questions and returned to the user, facilitating 
human-computer interaction. Example sentences for three types of 
questions are shown in Figure 9.

TABLE 4 Precision, recall and F1 score of our proposed BCSLinker and 
baselines.

Model Relation

Precision Recall F1

SPN 71.5 60.9 65.7

CasRel 73.6 65.3 69.2

BiRTE 65.0 76.6 70.3

PRGC 70.8 78.6 74.5

OneRel 78.4 74.8 76.6

MultiHead 79.3 77.9 78.6

GRTE 80.8 78.2 79.4

Ours 88.6 85.2 86.9

The bold values represent the best results of the experiment.

FIGURE 7

Histogram of the main results.

TABLE 5 An ablation study of BCSLinker on the dataset.

Model structure Relation

Precision Recall F1

Ours 88.6 85.2 86.9

Remove common-sequence self-attention 88.5 84.3 86.4

Remove Global Pointer 87.7 83.9 85.8

Remove BiGRU 86.4 85.0 85.7

Remove BiGRU and BCsSa 86.6 82.3 84.4

The bold values represent the best results of the experiment.

TABLE 6 The comparative evaluation of sample imbalance loss on the 
dataset.

Model structure Relation

Precision Recall F1

Multi-label cross-entropy loss 88.6 85.2 86.9

BCE loss 87.9 78.3 82.8

The bold values represent the best results of the experiment.
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FIGURE 8

Part of the knowledge graph. To make them more understandable, we have provided the corresponding English explanations below each Chinese 
entity.

FIGURE 9

Example sentences from the question-answering system section. To make them more understandable, we have provided the corresponding English 
explanations below each Chinese sentence.
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In practical application, when a user inputs “What are the 
symptoms of pulmonary embolism?” into the VTE question-
answering system, the system automatically identifies and extracts the 
entity “pulmonary embolism.” Furthermore, the system classifies the 
question under the DIS type based on the feature word. The question 
is subsequently translated into Cypher to search for nodes associated 
with a DIS relation to the “pulmonary embolism” node. As illustrated 
in Figure 8, nodes linked to “pulmonary embolism” via a DIS relation 
encompass “chest pain,” “shortness of breath,” “hemoptysis,” 
“respiratory failure,” and “cough.” Ultimately, leveraging predefined 
question-answering templates, the system responds: “Clinical 
manifestations of pulmonary embolism are chest pain, shortness of 
breath, hemoptysis, respiratory failure, and cough.”

4 Conclusion

In this study, we propose a joint entity and relation extraction 
model for constructing a VTE knowledge graph. This model utilizes 
the Biaffine Common-Sequence Self-Attention module to create 
global matrices, thus avoiding error propagation, and employs the 
multi-label cross-entropy loss to minimize the impact of redundant 
information. The experimental results show that Biaffine Common-
Sequence Self-Attention Linker achieves a superior F1 score on the 
experimental dataset and more accurately and comprehensively 
detects patterns related to VTE and its associated diseases. Moreover, 
we use the VTEKG as a structured data source to develop an intelligent 
question-answering system, providing reference for diagnosis, 
treatment, and patient self-care for VTE and its related diseases.

In future research, we intend to augment the dataset size, thereby 
enhancing the efficacy of our model. Additionally, we will endeavor to 
incorporate a greater wealth of a priori information gleaned from medical 
guidelines. Furthermore, meticulous manual scrutiny and rectification 
of the knowledge graph will be  undertaken to mitigate potential 
inaccuracies. Moreover, leveraging the VTE knowledge graph in tandem 
with the expansive language model, we aim to refine and extend the VTE 
question-answering system. This integration aims to ameliorate the 
interpretability shortfall inherent in large language models, thereby 
enhancing their utility, convenience, and precision in clinical contexts.
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