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Background: Lymph node metastasis (LNM) is considered an essential 
prognosis factor for adenocarcinoma of the esophagogastric junction (AEG), 
which also affects the treatment strategies of AEG. We  aimed to evaluate 
automated machine learning (AutoML) algorithms for predicting LNM in 
Siewert type II T1 AEG.

Methods: A total of 878 patients with Siewert type II T1 AEG were selected 
from the Surveillance, Epidemiology, and End Results (SEER) database to 
develop the LNM predictive models. The patients from two hospitals in 
Suzhou were collected as the test set. We  applied five machine learning 
algorithms to develop the LNM prediction models. The performance of 
predictive models was assessed using various metrics including accuracy, 
sensitivity, specificity, the area under the curve (AUC), and receiver operating 
characteristic (ROC) curve.

Results: Patients with LNM exhibited a higher proportion of male individuals, 
a poor degree of differentiation, and submucosal infiltration, with statistical 
differences. The deep learning (DL) model demonstrated relatively good 
accuracy (0.713) and sensitivity (0.868) among the five models. Moreover, 
the DL model achieved the highest AUC (0.781) and sensitivity (1.000) in the 
test set.

Conclusion: The DL model showed good predictive performance among five 
AutoML models, indicating the advantage of AutoML in modeling LNM prediction 
in patients with Siewert type II T1 AEG.
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1 Introduction

The global incidence of adenocarcinoma of the esophagogastric 
junction (AEG) has been rapidly increasing (1–7). The incidence of 
AEG increased by 2.5 times between 1973 and 1992, according to the 
statistics from the National Cancer Institute’s Surveillance, 
Epidemiology, and End Results (SEER) program (4). A study in Japan 
showed that the proportion of AEG in patients with gastric 
adenocarcinoma increased from 2.3% (1962–1965) to 10.0% (2001–
2005) (2). Similarly, an increasing trend of AEG was observed from 
1988 to 2012 in a Chinese hospital (8).

AEG is commonly considered a separate digestive tract tumor 
(9–12). The Siewert classification categorizes AEG into three types 
based on the location of the tumor epicenter relative to the 
gastroesophageal junction (GEJ) (13–15). In Siewert type I AEG, the 
epicenter of the tumor is located 1 to 5 cm above the GEJ. For type II, 
the epicenter of the tumor is located 1 cm above to 2 cm below the 
GEJ. For type III, the epicenter of the tumor is located 2 to 5 cm below 
the GEJ. Among the three subtypes, Siewert type II is generally 
considered the true cardia carcinoma (13).

Due to its particular anatomical location, the treatment of Siewert 
type II AEG has been historically complicated. For locally advanced 
tumors, radical surgical resection is still the primary treatment for 
AEG (5, 11). However, with gastrointestinal endoscopy screening, 
patients with digestive tract cancer are diagnosed at an early stage, 
making it possible to treat early AEG without lymphatic and organ 
metastasis by endoscopy. The endoscopic resection of superficial AEG, 
such as endoscopic mucosal resection (EMR) and endoscopic 
submucosal dissection (ESD), is considered safe and effective (16–21). 
Endoscopic resection techniques are increasingly being employed for 
early AEG, leading to a reduction in the morbidity and mortality 
associated with gastrectomy or esophagectomy and an improvement 
in the quality of life (16).

Previous studies have shown lymph node metastasis (LNM) as an 
independent prognostic factor for AEG (9, 22, 23). In addition, some 
studies have constructed the prediction models for LNM of AEG 
using the traditional logistic regression method (24–27). However, 
machine learning-based models are increasingly used in the diagnosis, 
prediction, and prognosis evaluation of gastrointestinal diseases, such 
as inflammatory bowel disease and gastrointestinal tumors (28–31). 
In this study, we aimed to establish predictive models for LNM in 
Siewert type II T1 AEG using automated machine learning (AutoML) 
methods to help clinicians assess the availability of endoscopic 
treatment and individualize a suitable treatment for patients.

2 Materials and methods

2.1 Data source

Relevant data from the SEER database were retrieved in our study. 
The SEER database of the National Cancer Institute, an authoritative 
source of information on cancer incidence and survival, contains data 
on various tumor sites and from sources throughout the United States.1 

1 https://seer.cancer.gov/

Currently, the SEER program collects and releases cancer data from 
17 population-based registries, covering approximately one-third of 
the U.S. population, which can be used to conduct population-based 
case–control studies that clarify the etiology of cancers, especially 
some uncommon ones (32, 33). By using SEER ∗ Stat 8.4.0.1 software, 
we obtained demographic information and cancer incidence data 
collected from the SEER 17 Registries, November 2021 Sub (2000–
2019 varying). To identify Siewert type II AEG, we  used two 
parameters in the SEER database. Cancers simultaneously satisfying 
two conditions [“TNM 7/CS v0204 + Schema” encoded 28 (Esophagus 
GE Junction) and “Primary Site-Labeled” encoded 160 (Cardia, 
NOS)] were extracted and classified as Siewert type II AEG (4, 34).

In addition, the patients with Siewert type II T1 AEG diagnosed 
in the First Affiliated Hospital of Soochow University and the Second 
Affiliated Hospital of Soochow University from April 2003 to October 
2022 were retrospectively selected as the research subjects.

2.2 Including criteria

The criteria for patient inclusion were as follows: (1) patients with 
available TNM stage information; (2) patients aged 18 years or above 
at diagnosis (in consideration of the tiny proportion of patients under 
18 years); (3) patients pathologically diagnosed as T1M0 Siewert Type 
II AEG; (4) patients with the first or only primary malignancy; and (5) 
patients with available information on differentiation, extension, 
and size.

2.3 The development of models

2.3.1 Variable selection and data pre-processing
Patient demographics (age, sex, race, year of diagnosis, and 

marital status) and tumor characteristics (tumor grade, tumor size, T 
stage, N stage, M stage, number of lymph nodes examined, and 
number of positive lymph nodes) were collected from the SEER 
database and the hospitals in Suzhou. We  finally obtained eight 
variables (age, race, sex, marital status, differentiation, extension, size, 
and LNM) for our analysis.

Missing values for variables can complicate data analysis and 
introduce potential bias into the final results. In this study, 
classification variables that could not be evaluated after missing 
value analysis were removed. Missing interpolation was 
performed on continuous variables, such as tumor size, using the 
multivariate imputation by chained equations package (MICE 
version 3.15.0) in R, version 4.2.2 (Institute for Statistics and 
Mathematics, Vienna, Austria; http://www.r-project.org), based 
on the random forest method (35). The SEER data were randomly 
divided into the training (n = 629) and validation (n = 238) sets in 
a ratio of 7:3. A total of 141 samples from Suzhou were used as 
the test set.

The distribution of LNM outcomes was imbalanced in the training 
and validation sets, leading to particular bias in modeling and 
evaluation of model performance. To address this issue, we used the 
SMOTE function in the DMwR package (version 0.4.1) in R to balance 
the training set and the validation set by applying undersampling and 
oversampling techniques. Finally, we got the balanced training set 
(n = 949) and validation set (n = 380).
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2.3.2 Modeling methods and evaluation
In this study, five algorithms—generalized linear model (GLM), 

gradient boosting machine (GBM), deep learning (DL), distributed 
random forest (DRF), and stacked ensemble (SE)—were provided by 
H2O2 to construct prediction models using the training set. Using the 
h2o package (version 3.38.0.4) in R, we set the response column and 
the predictor columns for the training, validation, and test sets, 
respectively. The H2O AutoML performs a hyperparameter search 
using a random grid search method over the five algorithms to deliver 
the best model automatically. Five predictive models were finally 
developed for this approach. We used the validation and test sets to 
score and rank models.

The models’ accuracy, misclassification, specificity, sensitivity, and 
precision (also named positive predictive value) were obtained by 
plotting the confusion matrix. To select the best model, the difference 
between the predicted and actual results was analyzed. The predictive 
ability of the models was evaluated using the receiver operating 

2 https://h2o.ai/

characteristics (ROC) curve and the area under the curve (AUC). The 
procedure of patient selection and modeling is shown in Figure 1.

We selected a model with the best performance using the above 
indicators and further evaluated it with the calibration curve. The Brier 
score, a statistical metric to measure the accuracy of probabilistic forecasts, 
was used to assess the calibration degree of the models. The score ranges 
from 0 to 1; a model with perfect skill has a score of 0, and the poorest 
model has a score of 1 (36). The unreliability index and the p-value of the 
calibration curve were also used to evaluate the reliability of the model.

Finally, the results of the model are presented visually for better 
understanding. A variable importance plot was constructed to show 
the importance of different variables. A Local Interpretable Model-
Agnostic Explanations (LIME) Feature Importance Visualization plot 
was constructed using the lime package (version 0.5.3) in R to show 
the contributions of variables of samples to the outcome.

2.4 Statistical analysis

The statistical analysis and the modeling process were performed 
using R software. The package, tableone (version 0.13.2), in R was 

FIGURE 1

Flowchart of patient selection and modeling procedure.
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used in data analysis. We compared the baseline information and 
characteristics between different groups, including demographic and 
clinicopathological data. The normality of the quantitative data was 
evaluated using the Kolmogorov–Smirnov test. When the 
quantitative variables were normally distributed, they were 
represented by the mean and standard deviation (SD). However, 
they were represented by the median and interquartile range (IQR) 
when they were not. Student’s t-test was used for intergroup 
comparison of normally distributed quantitative variables, and the 
Mann–Whitney U-test was employed to compare non-normally 
distributed quantitative variables. The classification data were 
expressed by frequency and percentage, and the chi-squared (χ2) 
test was used for intergroup comparison.

3 Results

3.1 Characteristics

A total of 867 patients from the SEER dataset and 141 patients 
from Suzhou were screened for our study. After balancing the 
SEER dataset, 1,329 samples were collected in the SEER dataset. 
The patients’ demographics and clinicopathological baseline 
information in the SEER dataset after balancing and the test set 
are summarized, respectively, in Table  1. The baseline 
characteristic information based on LNM in the SEER dataset 
after balancing and the test set is summarized in Tables 2, 3, 
respectively. In the SEER dataset, the median sizes of the LNM 

TABLE 1 Baseline characteristics of patients from the SEER dataset after balancing and the test set.

SEER dataset The test set P-value

Age (year) 0.493

  Median 66.00 67.00

  Interquartile range 14.00 8.00

Race <0.001

  American Indian 5 (0.4%) 0 (0.0%)

  Asian or Pacific Islander 97 (7.3%) 141 (100.0%)

  Black 84 (6.3%) 0 (0.0%)

  White 1,134 (85.3%) 0 (0.0%)

  Unknown 9 (0.7%) 0 (0.0%)

Sex 0.062

  Female 340 (25.6%) 26 (18.4%)

  Male 989 (74.4%) 115 (81.6%)

Marriage <0.001

  Divorced 135 (10.2%) 0 (0.0%)

  Married 789 (59.4%) 140 (99.3%)

  Separated 8 (0.6%) 0 (0.0%)

  Never married 143 (10.8%) 0 (0.0%)

  Widow 205 (15.4%) 1 (0.7%)

  Unknown 49 (3.7%) 0 (0.0%)

Differentiation1 0.012

  1 (well) 163 (12.3%) 18 (12.8%)

  2 (moderately) 663 (49.9%) 87 (61.7%)

  3 (poorly) 503 (37.8%) 36 (25.5%)

Extension2 0.721

  Intramucosal 539 (40.6%) 55 (39.0%)

  Submucosal 790 (59.4%) 86 (61.0%)

Tumor size (mm) 0.584

  Median 20.00 20.00

  Interquartile range 19.00 17.50

LNM3 <0.001

  0 667 (50.2%) 131 (92.9%)

  1 662 (49.8%) 10 (7.1%)

1For the differentiation variable, well-differentiated is defined as 1, moderately differentiated is defined as 2, and poorly differentiated or undifferentiated is defined as 3. 2The variable extension 
refers to the depth of tumor invasion. 3For the LNM variable, those with lymph node metastases are defined as 1; the rest are defined as 0.
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and non-LNM groups were 25.00 and 15.00 mm, respectively, 
with statistical significance (p < 0.001). Patients with LNM had a 
higher proportion of poor degree of differentiation and 
submucosal infiltration, with statistical differences. In the test 
set, the average ages of the LNM and non-LNM groups were 
65.00 and 67.15 years, respectively, with no statistical significance 
(p = 0.344). Patients with LNM had a higher proportion of poor 
degree of differentiation, with a p-value of 0.051. Patients in the 
two groups showed statistical differences in the depth of 
tumor invasion.

The clinicopathological features of the training set and the 
validation set obtained from the SEER dataset are presented in Table 4. 
In the balanced training set and validation set, the rate of positive 
events, just the LNM rate in the study, was 49.7% and 50%, respectively. 
There were no significant differences in gender, degree of 
differentiation, depth of tumor invasion, or tumor size between the 
two groups.

3.2 Performance of the models

To calculate the accuracy, sensitivity, specificity, and other 
indicators of the models in the validation set and the test set, the 
confusion matrices of the models are shown in Figures  2, 3, 
respectively. These indicators and the AUC of the five different models 
in the validation and test sets are shown in Table 5. The DL model has 
good sensitivity (0.868) and accuracy (0.713) in the validation set, 
which means that the model can accurately identify patients with 
positive lymph node metastases. The DL model exhibited a sensitivity 
of 100% in the test set, indicating that the model was able to screen 
out node-positive patients well and reduce missed diagnoses. The 
GBM model achieved an accuracy of 0.763, a sensitivity of 0.821, and 
a specificity of 0.705 in the validation set. The sensitivity (0.700) of the 
model in the test is lower than that of the DL model. The confusion 
matrix revealed that the model failed to correctly predict three patients 
with positive lymph nodes in the test set. Although the GLM model 

TABLE 2 Clinicopathological characteristics of patients from the SEER dataset after balancing.

Total Non-LNM LNM P-value

Age (year) 0.216

  Median 66.00 67.00 66.00

  Interquartile range 14.00 17.00 13.00

Race <0.001

  American Indian 5 (0.4%) 1 (0.1%) 4 (0.6%)

  Asian or Pacific Islander 97 (7.3%) 36 (5.4%) 61 (9.2%)

  Black 84 (6.3%) 25 (3.7%) 59 (8.9%)

  White 1,134 (85.3%) 601 (90.1%) 533 (80.5%)

  Unknown 9 (0.7%) 4 (0.6%) 5 (0.8%)

Sex 0.337

  Female 340 (25.6%) 163 (24.4%) 177 (26.7%)

  Male 989 (74.4%) 504 (75.6%) 485 (73.3%)

Marriage <0.001

  Divorced 135 (10.2%) 59 (8.8%) 76 (11.5%)

  Married 789 (59.4%) 436 (65.4%) 353 (53.3%)

  Separated 8 (0.6%) 6 (0.9%) 2 (0.3%)

Never married 143 (10.8%) 67 (10.0%) 76 (11.5%)

  Widow 205 (15.4%) 69 (10.3%) 136 (20.5%)

  Unknown 49 (3.7%) 30 (4.5%) 19 (2.9%)

Differentiation1 <0.001

  1 (well) 163 (12.3%) 116 (17.4%) 47 (7.1%)

  2 (moderately) 663 (49.9%) 364 (54.6%) 299 (45.2%)

  3 (poorly) 503 (37.8%) 187 (28.0%) 316 (47.7%)

Extension2 0.001

  Intramucosal 539 (40.6%) 300 (45.0%) 239 (36.1%)

  Submucosal 790 (59.4%) 367 (55.0%) 423 (63.9%)

Tumor size (mm) <0.001

  Median 20.00 15.00 25.00

  Interquartile range 19.00 17.00 18.00

1For the differentiation variable, well-differentiated is defined as 1, moderately differentiated is defined as 2, and poorly differentiated or undifferentiated is defined as 3. 2The variable extension 
refers to the depth of tumor invasion.
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exhibited the highest sensitivity in the validation set (0.916) and the 
test set (1.000), its specificity was lower than other models. This aspect 
suggests that the GLM model was less capable of predicting 
negative LNM.

The ROC curve and AUC can evaluate the predictive ability of the 
models. Figures 4A,B show the ROC curves of the five models in the 
validation and test sets, respectively. The DL model achieved a good 
AUC (0.769) in the validation set, and it exhibited the highest AUC in 
the test set compared to other models. The Matthews correlation 
coefficient (MCC) score is a commonly used metric for evaluating 
binary classification models. The DL model achieved a MCC score of 
0.448. The MCC scores of the five predictive models on the test set are 
not high, which may be related to the small size of the test set.

Considering that the predictive model is a preoperative screening 
model, sensitivity should have a high weight on the selection of 
models. Hence, we believe that the DL model is the best model for 
predicting LNM in patients with AEG, with high sensitivity and 
reasonable specificity. The DL model consists of an input layer, two 
hidden layers, and an output layer. Dropout is applied in both hidden 
layers at a rate of 30%, which helps to prevent overfitting by randomly 
dropping out a percentage of units during modeling. The 
regularization terms are set to 0 for all layers. Rectifier (ReLU) 
activation functions are used in the hidden layers, while Softmax 
activation is used in the output layer for classification.

3.3 The performance of the deep learning 
model

3.3.1 Calibration curve in the datasets
The calibration curves are shown in Figures  5A,B, which is 

another way to evaluate the model. The calibration curve of the DL 
model in the validation set shows a high degree of fit. The Brier scores 
of the DL model in the validation and test sets were 0.213 and 0.228, 
respectively, indicating that the prediction results of the model were 
in good agreement with the actual outcome. The unreliability index of 
the model in the validation set was 0.070, which suggests that the DL 
model is reliable for predicting the LNM in T1 Siewert type II 
AEG patients.

3.3.2 Model visualization
The variable importance in the DL model is shown in Figure 6. 

According to this figure, tumor size is the most important predictor 
of LNM in T1 Siewert type II patients. Furthermore, we randomly 
selected four cases to plot the LIME feature importance visualization, 
as shown in Figure 7. Take the first case as an example, the tumor is 
moderately differentiated, and the white male married patient 
supports the lymph node without metastasis. In the third case, male 
married patients with moderately differentiated tumors contradict the 
result of LNM. However, other parameters, such as tumor infiltration 

TABLE 3 Clinicopathological characteristics of patients from the test set.

Total Non-LNM LNM P-value

Age (year) 0.344

  Average 66.48 67.15 65.00

  Standard deviation 10.87 6.98 5.75

Sex 1.000

  Female 26 (18.4%) 24 (18.3%) 2 (20.0%)

  Male 115 (81.6%) 107 (81.7%) 8 (80.0%)

Marriage 1.000

  Divorced 0 (0.0%) 0 (0.0%) 0 (0.0%)

  Married 140 (99.3%) 130 (99.2%) 10 (100.0%)

  Separated 0 (0.0%) 0 (0.0%) 0 (0.0%)

  Never married 0 (0.0%) 0 (0.0%) 0 (0.0%)

  Widow 1 (0.7%) 1 (0.8%) 0 (0.0%)

  Unknown 0 (0.0%) 0 (0.0%) 0 (0.0%)

Differentiation1 0.051

  1 (well) 18 (12.8%) 18 (13.7%) 0 (0.0%)

  2 (moderately) 87 (61.7%) 83 (63.4%) 4 (40.0%)

  3 (poorly) 36 (25.5%) 30 (22.9%) 6 (60.0%)

Extension2 0.007

  Intramucosal 55 (39.0%) 55 (42.0%) 0 (0.0%)

  Submucosal 86 (61.0%) 76 (58.0%) 10 (100.0%)

Tumor size (mm) 0.184

  Median 20.00 20.00 22.50

  Interquartile range 17.50 18.00 32.00

1For the differentiation, well-differentiated is defined as 1, moderately differentiated is defined as 2, and poorly differentiated or undifferentiated is defined as 3. 2The variable extension refers to 
the depth of tumor invasion.
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into the submucosa and patients from Asian or Pacific regions, 
support LNM. Under the comprehensive prediction, the probability 
of LNM in this patient was 61%. That is, the prediction result is the 
same as the actual outcome.

4 Discussion

In the study, we found that differentiation, the depth of invasion, 
the size of the AEG, and gender were related to LNM. Five predictive 
models were developed using AutoML. Among these models, the DL 
model is the most suitable for predicting and screening LNM in early 
AEG, with the highest sensitivity and AUC in the test set.

With the incidence rates rising, a series of problems in the 
treatment and prognosis of AEG have been gradually becoming global 
concerns. With the application of endoscopic screening technology, 
patients with digestive tract cancer (including AEG) are diagnosed at 
an early stage, making endoscopic treatment of superficial AEG 
possible. Because of the inherent differences in the anatomy of AEG, 
there are certain technical difficulties in treating AEG with ESD (37). 
Chen et al. (38) found that the procedure speed of ESD for early AEG 
is slower than that for early gastric carcinoma, possibly due to AEG 
extending beyond the cardia, including the angle of His. However, 
endoscopic treatment (including ESD) remains an effective alternative 
to surgery for the treatment of early AEG based on comparable long-
term outcomes (18, 20). With the advancements in endoscopic 

TABLE 4 Clinicopathological characteristics of patients from the training set and the validation set after balancing.

The training set The validation set P-value

Age (year) 0.014

  Median 66.00 66.00

  Interquartile range 13.00 17.00

Race <0.001

  American Indian 5 (0.5%) 0 (0.0%)

  Asian or Pacific Islander 45 (4.7%) 52 (13.7%)

  Black 63 (6.6%) 21 (5.5%)

  White 830 (87.5%) 304 (80.0%)

  Unknown 6 (0.6%) 3 (0.8%)

Sex 0.279

  Female 235 (24.8%) 105 (27.6%)

  Male 714 (75.2%) 275 (72.4%)

Marriage 0.007

  Divorced 80 (8.4%) 55 (8.4%)

  Married 582 (61.3%) 207 (54.5%)

  Separated 8 (0.8%) 0 (0.0%)

  Never married 98 (10.3%) 45 (11.8%)

  Widow 147 (15.5%) 58 (15.3%)

  Unknown 34 (3.6%) 15 (3.9%)

Differentiation1 0.569

  1 (well) 122 (12.9%) 41 (10.8%)

  2 (moderately) 472 (49.7%) 191 (50.3%)

  3 (poorly) 355 (37.4) 148 (38.9%)

Extension2 0.467

  Intramucosal 379 (39.9%) 160 (42.1%)

  Submucosal 570 (60.1%) 220 (57.9%)

Tumor size (mm) 0.491

  Median 20.00 20.00

  Interquartile range 19.00 19.00

LNM3 0.931

  0 477 (50.3%) 190 (50.0%)

  1 472 (49.7%) 190 (50.0%)

1For the differentiation variable, well-differentiated is defined as 1, moderately differentiated is defined as 2, and poorly differentiated or undifferentiated is defined as 3. 2The variable extension 
refers to the depth of tumor invasion. 3For the LNM variable, those with lymph node metastases are defined as 1; the rest are defined as 0.
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treatment, early AEG can be effectively resected by EMR/ESD with 
fewer complications, better preservation of gastric function, a shorter 
duration of hospital stay, and a lower cost compared with traditional 
gastrectomy or esophagectomy (16, 17). Endoscopic treatment is 
gaining acceptance because it is more tolerable, especially in elderly 
patients. Chen et al. (20) revealed that endoscopic treatment may 
be considered in patients aged 65 years or those with submucosal (T1b 
stage) cancer of the AEG.

It has been widely accepted that LNM is an important prognostic 
factor for patients with Siewert type II AEG. In the study of Wang et al. 
(22), a prognostic model for the outcome of patients with AEG based 
on a traditional algorithm was established. The positive lymph nodes 
and the ratio of metastatic lymph nodes were identified as two of the 
prognostic factors according to the univariate analysis. Naoki et al. 
(23) found that LNM was the only independent prognostic factor for 
AEG in their study. To achieve better endoscopic treatment effects, 
early AEG should meet certain standards (including no lymph node 
and distant organ metastasis) (12, 16, 18). In some studies, the location 
of the LNM has been found to have a significant impact on the surgical 
method and the scope of lymph node dissection (39–41).

Preoperative diagnosis of LNM mainly relies on computed 
tomography (CT), endoscopic ultrasound, and magnetic resonance 
imaging (MRI), which are primarily based on the size of the lymph 
nodes. The preoperative prediction of LNM using the CT criteria has 
high specificity (23). However, the diagnostic accuracy of LNM 
prediction using these methods is not particularly high, as the 

evaluation of the lymph node size is greatly affected by other factors 
and thus heavily relies on the physician’s evaluation (26). In addition, 
detecting LNM in a narrow space (such as the diaphragm, aorta, and 
pericardium) by contrast-enhanced CT before surgery is more 
complex than in lymph nodes around the stomach or colon (23). 
Moreover, not all patients have access to contrast-enhanced CT for 
diagnosing clinical LNM.

Several studies have constructed LNM predictive models of AEG 
until now. However, most studies only used traditional logistic 
regression analysis for risk factors and did not perform independent 
external validation. Chen et  al. (25) used the logistic regression 
method to predict the LNM risk in early AEG patients, and the AUC 
of the prediction model is 0.742. Feng et al. (26) provided a detailed 
explanation of the correlation between tumor size and LNM in AEG 
and used logistic regression to plot a nomogram, which can predict 
the LNM risk. Zheng et al. (24) used small samples to explore the risk 
factors for LNM in AEG while showing the specific groups of lymph 
nodes. All of these studies are consistent with our findings, but the 
predictive performance of their models is weaker than that of ours, 
indicating that machine learning has good advantages in the 
establishment of LNM predictive models.

In the present study, a SEER-based case–control analysis has been 
conducted. We found that most AEG patients (approximately 71.2%) 
with LNM had a submucosal invasion. Approximately 53.9% of 
patients without LNM had submucosal infiltration. Given the key role 
of LNM in the selection of endoscopic or surgical resection, we built 

FIGURE 2

Confusion matrices of five models in the validation set. In this figure, 1 of target represents lymph node metastasis in the population, while 1 of 
prediction represents the positive prediction of lymph node metastasis by the model. (A) Confusion matrix of the DL model in the validation set. 
(B) Confusion matrix of the GBM model in the validation set. (C) Confusion matrix of the SE model in the validation set. (D) Confusion matrix of the 
DRF model in the validation set. (E) Confusion matrix of the GLM model in the validation set.
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predictive models of LNM using AutoML methods on data from the 
SEER database and validated the models with independent data. 
Among the five models, the DL model is highly sensitive to predict 
LNM in early AEG patients. A consistent performance of our new DL 
model across the datasets with different baseline characteristics 
provides evidence of its robustness and generalizability.

In our study, we found that the degree of tumor differentiation, 
the depth of tumor invasion, and gender were related to LNM. Lower 
degrees of differentiation have higher incidences of LNM. Higher 
incidences of LNM are observed in less differentiated tumors due to 
higher heterogeneity and more aggressive biological characteristics 
compared to other histological types. The risk of LNM is higher for 

FIGURE 3

Confusion matrices of five models in the test set. In this figure, 1 of target represents lymph node metastasis in the population, while 1 of prediction 
represents the positive prediction of lymph node metastasis by the model. (A) Confusion matrix of the DL model in the test set. (B) Confusion matrix of 
the GBM model in the test set. (C) Confusion matrix of the SE model in the test set. (D) Confusion matrix of the DRF model in the test set. 
(E) Confusion matrix of the GLM model in the test set.

TABLE 5 Performance of models in the dataset.

Accuracy Misclassification Sensitivity Specificity Precision AUC

The validation set

  DL 0.713 0.287 0.868 0.558 0.663 0.769

  GBM 0.763 0.237 0.821 0.705 0.736 0.840

  SE 0.784 0.216 0.732 0.837 0.818 0.836

  DRF 0.661 0.339 0.784 0.537 0.629 0.718

  GLM 0.634 0.366 0.916 0.353 0.586 0.752

The test set

  DL 0.220 0.780 1.000 0.160 0.083 0.781

  GBM 0.674 0.326 0.700 0.672 0.140 0.726

  SE 0.816 0.184 0.300 0.855 0.136 0.633

  DRF 0.433 0.567 0.800 0.405 0.093 0.582

  GLM 0.128 0.872 1.000 0.061 0.075 0.766

DL, deep learning; GBM, gradient boosting machine; SE, stacked ensemble; DRF, distributed random forest; GLM, generalized linear model.
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AEG that invades the submucosa. The reason behind this observation 
may be due to the presence of substantial lymphatic capillaries in the 
submucosa and the large gap between adjacent endothelial cells. If the 
tumor infiltrates the submucosa or deeper, cancer cells could invade 
the lymphatic capillaries, resulting in LNM (24). In terms of gender, 
the exact reason remains unknown. However, several studies have 
shown more prolonged survival in female individuals than in male 
counterparts with esophageal cancer (42–45), which is attributed to 
both sex itself (sex hormones and reproductive factors) and other 
extrinsic risk factors (43).

The predictive model we  have established can help clinicians 
predict the LNM risk of early AEG while combining imaging findings, 
thus helping us make better clinical decisions and personalized 
treatment plans for early AEG patients. Of note, the prediction model 

was developed using postoperative pathological data, which can also 
be obtained from endoscopically resected pathological specimens. 
Hence, we investigated LNM predictive models for T1 AEG. However, 
certain limitations still exist in our study. First, the inherent limitations 
of retrospective and non-randomized studies may lead to unavoidable 
bias. Second, the prediction model was based on postoperative 
pathological data, and therefore, further studies combined with 
preoperative data are needed to validate our model. Third, the patient 
data from AEG were collected from two hospitals in Suzhou to 
validate our prediction models. Due to the low rate of LNM in the 
population, the test set is highly imbalanced, with positive cases 
representing less than 10% of cases, which makes it less credible to 
validate the models’ predictive performance in the test set. That is why 
the precision of the model in the test set is not ideal, which means data 

FIGURE 4

ROC of predictive models in the sets. (A) ROC of predictive models in the validation set. (B) ROC of predictive models in the test set.

FIGURE 5

Calibration curves of the DL model in the sets. (A) The calibration curve of the DL model in the validation set. (B) The calibration curve of the DL model 
in the test set.

https://doi.org/10.3389/fmed.2024.1266278
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Lu et al. 10.3389/fmed.2024.1266278

Frontiers in Medicine 11 frontiersin.org

from different hospitals in different regions need to be  further 
collected to expand the sample size. Lymphovascular invasion has 
been repeatedly demonstrated as the most crucial risk factor for LNM 
(46). The esophageal invasion length is thought to be associated with 
mediastinal LNM (39, 47, 48). However, due to the limited data 

available in the SEER database, certain tumor characteristics (such as 
lymphovascular invasion, esophageal invasion length, and the groups 
of LNM), blood index, and imaging data were missing. Therefore, 
we cannot further improve the performance of the LNM predictive 
model in a multimodal way.

FIGURE 6

Variable importance in the DL model. In this figure, “Race.AI” means patients’ race is American Indian; “Race.W” means patients’ race is white; “Race.B” 
means patients’ race is Black; “Differentiation.1” means well-differentiated tumors; “Differentiation.3” means poorly differentiated tumors.

FIGURE 7

LIME feature importance visualization. In this figure, “Race  =  W” means patients’ race is white; “Race  =  API” means patients’ race is Asian or Pacific 
Islander; “Differentiation  =  2” means tumor is moderately differentiated.
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5 Conclusion

In summary, in this multicenter-based case–control study, 
we report that the degree of tumor differentiation, tumor size, gender, 
and depth of tumor invasion are correlated with the LNM of Siewert 
type II T1 AEG. Using AutoML algorithms, we built five models to 
predict LNM in the early AEG. The DL model is the best model for 
predicting LNM in patients with AEG, with high sensitivity and 
reasonable specificity. This model should be further applied in clinical 
practice, and the predictive performance of this model should 
be prospectively explored in further clinical follow-up.
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