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Introduction: Oral Squamous Cell Carcinoma (OSCC) poses a significant 
challenge in oncology due to the absence of precise diagnostic tools, leading 
to delays in identifying the condition. Current diagnostic methods for OSCC 
have limitations in accuracy and efficiency, highlighting the need for more 
reliable approaches. This study aims to explore the discriminative potential of 
histopathological images of oral epithelium and OSCC. By utilizing a database 
containing 1224 images from 230 patients, captured at varying magnifications 
and publicly available, a customized deep learning model based on EfficientNetB3 
was developed. The model’s objective was to differentiate between normal 
epithelium and OSCC tissues by employing advanced techniques such as data 
augmentation, regularization, and optimization.

Methods: The research utilized a histopathological imaging database for Oral 
Cancer analysis, incorporating 1224 images from 230 patients. These images, 
taken at various magnifications, formed the basis for training a specialized 
deep learning model built upon the EfficientNetB3 architecture. The model 
underwent training to distinguish between normal epithelium and OSCC 
tissues, employing sophisticated methodologies including data augmentation, 
regularization techniques, and optimization strategies.

Results: The customized deep learning model achieved significant success, 
showcasing a remarkable 99% accuracy when tested on the dataset. This high 
accuracy underscores the model’s efficacy in effectively discerning between 
normal epithelium and OSCC tissues. Furthermore, the model exhibited 
impressive precision, recall, and F1-score metrics, reinforcing its potential as a 
robust diagnostic tool for OSCC.

Discussion: This research demonstrates the promising potential of employing 
deep learning models to address the diagnostic challenges associated with 
OSCC. The model’s ability to achieve a 99% accuracy rate on the test dataset 
signifies a considerable leap forward in earlier and more accurate detection 
of OSCC. Leveraging advanced techniques in machine learning, such as data 
augmentation and optimization, has shown promising results in improving 
patient outcomes through timely and precise identification of OSCC.
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1 Introduction

Oral Squamous Cell Carcinoma (OSCC) stands as one of the most 
prevalent malignancies originating from the epithelial cells within the 
oral region.

1.1 OSCC

Oral Squamous Cell Carcinoma (OSCC) holds a significant 
position among the various malignancies affecting the epithelial cells 
in the oral cavity. Its prevalence globally contributes substantially to 
the overall burden of cancer-related health issues, resulting in 
significant morbidity and mortality rates. The intricate development 
of OSCC involves a multifaceted interplay of ecological factors, 
including environmental influences and lifestyle choices. The 
utilization of betel nuts, tobacco chewing, alcohol consumption, 
human papillomavirus (HPV) infection, and poor oral hygiene 
significantly escalates the susceptibility to developing OSCC.

This particular form of cancer primarily manifests as localized 
lesions within distinct regions of the oral cavity, encompassing areas 
such as the lips, tongue, lower mouth region, palate, gingiva, and 
buccal mucosa. In its initial stages, OSCC may exhibit subtle 
indications, such as persistent ulcers or the presence of white or red 
patches known as leukoplakia or erythroplakia, respectively. These 
seemingly innocuous signs can progress into larger lesions, leading to 
symptoms like pain, difficulty in swallowing, or impaired speech.

The prevalence and severity of OSCC are closely associated with 
a variety of risk factors. Betel nut usage, a common practice in several 
regions, significantly heightens the risk of developing OSCC. The 
habitual chewing of tobacco, in various forms, has also been strongly 
linked to the incidence of oral cancer, including OSCC. Additionally, 
the consumption of alcohol, particularly in excessive amounts over 
prolonged periods, serves as another notable contributor to the 
development of this malignancy.

Human papillomavirus (HPV) infection, specifically certain high-
risk strains, has emerged as a significant risk factor for OSCC, 
particularly in certain subsets of the population. Its presence in the 
oral cavity can augment the likelihood of developing this form of 
cancer. Moreover, poor oral hygiene practices, which encompass 
inadequate dental care and hygiene routines, can further compound 
the risk factors associated with OSCC.

Clinically, the presentation of OSCC varies but often showcases 
itself through localized lesions within the oral cavity. These lesions can 
arise in diverse areas, including the lips, tongue, lower mouth region, 
palate, gingiva, and buccal mucosa. In its early stages, OSCC may 
demonstrate subtle symptoms, such as persistent ulcers or the presence 
of white or red patches (leukoplakia or erythroplakia). These seemingly 
benign indications can progress into larger, more conspicuous lesions 
that lead to discomfort, difficulty in swallowing, or impaired speech. 
The diagnosis of OSCC typically involves a comprehensive 
examination, including tissue biopsies, imaging studies, and other 
relevant tests to confirm the presence and extent of the malignancy.

Treatment strategies for OSCC often encompass a 
multidisciplinary approach, combining surgical interventions, 
radiation therapy, and chemotherapy, depending on the stage and 
extent of the disease. Early detection and intervention significantly 
enhance the prospects of successful treatment outcomes and improved 
survival rates. Additionally, lifestyle modifications, cessation of 

high-risk behaviors like tobacco chewing and excessive alcohol 
consumption, and the implementation of proper oral hygiene practices 
play pivotal roles in preventing the onset and progression of OSCC.

1.2 Diagnostic significance of 
histopathology

Histopathological examination of tissue samples remains the 
cornerstone for OSCC diagnosis. This process involves the 
microscopic analysis of tissue biopsies obtained from suspicious 
lesions within the oral cavity. Pathologists meticulously scrutinize 
cellular morphology, tissue architecture, and nuclear features, 
identifying malignant changes characteristic of OSCC.

1.3 Challenges in diagnosis

The diagnosis of OSCC through histopathology demands an 
expert pathologist since it is highly complex and variable in cellular 
presentations. Distinguishing between benign conditions, dysplasia, 
and invasive carcinoma requires meticulous examination and may 
sometimes pose diagnostic challenges, leading to the need for multiple 
biopsies or ancillary tests. Oral Squamous Cell Carcinoma (OSCC) 
remains a formidable challenge in the field of oncology, impacting 
both public health and affected individuals profoundly. Its prevalence, 
late-stage detection, diagnostic intricacies, and comprehensive impact 
necessitate concerted efforts in prevention, early detection, and 
advanced treatment modalities to alleviate the burden it poses on 
individuals and healthcare systems.

1.4 Significance of automated detection in 
medical imaging

The rise of deep neural networks and their application in medical 
imaging has revolutionized disease detection and diagnosis. 
Automated detection systems utilizing deep learning algorithms 
demonstrate remarkable potential in analyzing medical images with 
efficiency, accuracy, and speed. In the context of OSCC, these systems 
offer the prospect of streamlining the diagnostic process, enabling 
early detection, and improving patient outcomes. Automated analysis 
of histopathological images can aid in precise identification and 
classification of cancerous tissues, augmenting the capabilities of 
pathologists and reducing diagnostic turnaround times.

1.5 Motivations

1.5.1 Context establishment
Oral Squamous Cell Carcinoma (OSCC) represents a significant 

global health burden, accounting for a substantial portion of oral 
malignancies. Despite advancements in oncology, early detection of 
OSCC remains a critical challenge. The absence of precise diagnostic 
tools hampers the timely and accurate identification of this condition, 
often leading to delayed diagnoses and subsequent implications for 
patient outcomes.
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1.5.2 Clinical importance
The impact of early OSCC detection on patient prognosis cannot 

be overstated. Timely identification facilitates earlier intervention, 
potentially enhancing treatment efficacy and overall survival rates. 
OSCC, when detected at advanced stages, presents significant 
challenges in treatment modalities and may result in more invasive 
therapies with reduced success rates. Therefore, establishing precise 
and reliable diagnostic methodologies holds paramount importance 
in improving patient care and outcomes.

1.5.3 Technological gap
Existing diagnostic methodologies for OSCC exhibit limitations 

in accuracy, efficiency, and discernment between normal epithelium 
and cancerous tissues. The current landscape lacks tools that can 
reliably differentiate between these tissue types in histopathological 
images, leading to diagnostic ambiguities and subsequent challenges 
in providing effective treatment strategies.

The outcomes of this proposed study are summarized as follows:

 • Development of a tailored deep neural network model, built on 
EfficientNetB3, integrating cutting-edge methods (data 
augmentation, regularization, optimization) to differentiate normal 
oral tissue from Oral Squamous Cell Carcinoma (OSCC) samples.

 • Emphasis on the use of deep learning to tackle OSCC diagnostic 
hurdles, potentially enhancing early and precise detection, 
ultimately enhancing patient prognosis.

 • Validation of the model’s reliability and its potential utility in 
oncology through the utilization of a publicly accessible dataset, 
showcasing clinical application viability.

The remaining part of the paper is structured as: Section 2 
provides a review of the related works. Section 3 introduces the 
proposed methodology. Section 4 provides the results and discussions 
along with the comparison to state-of-art existing works and section 
5 concludes the study with future directions.

2 Related work

oral Squamous Cell Carcinoma (OSCC) diagnosis research has 
boomed in recent times, driven by the urgent need to detect and 
identify this common oral cancer early and accurately. However, in 
any scientific field, there are limitations to existing approaches, 
creating opportunities for further investigation and innovation. The 
primary aim of our research is to create a new system which improves 
the accuracy of current datasets and analyses them more efficiently 
and identify the areas for future research study and improvement.

In the early paper (1), the author developed a deep learning 
framework for the automatic detection and categorization of oral 
cancerous cells in histopathology images. The framework was 92% 
accurate in identifying oral lesions and 90% accurate in classifying oral 
lesions as OSCC or non-OSCC. This is more accurate than human 
specialists. In (2), the author introduced a novel deep learning framework 
for OSCC diagnosis through transfer learning where they develop a deep 
learning framework for OSCC diagnosis using transfer learning. The 
accuracy rate was 93%, placing it on par with the diagnostic capabilities 
of human pathologists. (3), in the paper, presented an innovative 
approach where author propose a framework based on the realm of deep 
learning consisting of an in between layer for diagnosing OSCC from 

histopathological images where it achieved an accuracy of 95%. Most of 
the researchers worked on histopathological imaging database for oral 
cancer analysis (HID-OSCC).

Rahman et  al. (4) employed a technique using Gray-Level 
Co-occurrence Matrix (GLCM) along with histogram which was used 
for feature extraction. In this test statistical analysis methods such as 
t-test with principal component analysis were used to extract out the 
featured. In this approach they were able to achieve a significant 
accuracy of 89.7% (4).

Fu et al. (5) utilized a cascaded Convolutional Neural Network 
(CNN) for OSCC detection from photographic images. Multiple 
hospital-derived images underwent augmentation through image 
processing. Their model, evaluated using Transfer Learning and 
Receiver Operating Characteristic (ROC) curves, achieved an 
exceptional Area Under the Curve (AUC) of 0.995, along with 95.3% 
accuracy, 97.4% sensitivity, and 93.5% specificity (5).

Rahman et al. (6) used multiple classifiers in another research 
resulting in better accuracy and results. In all these papers multiple 
fusion techniques were used and all of them were significant for their 
contribution which included there optimal accuracy gain along with 
their percepts of addition to the existing technologies.

During our literature work only, we found that MobileNet for 
CNN can be used as one of the better solutions which results in a good 
sensitivity with varying images (7).

According to the study, ex vivo fluorescence confocal microscopy 
data analysis can be  used to diagnose oral squamous cell cancer 
(OSCC). With many advantages and some drawbacks remaining, the 
study pointed out the necessity for more analysis to create deep 
learning models that are more reliable and understandable for this 
imaging modality, nevertheless. To advance accurate and reliable 
OSCC diagnosis using deep learning approaches, it is crucial to 
address difficulties relating to model interpretability, data quality, and 
intermodal variability.

Table 1 provides a comparative analysis of various studies focusing 
on Oral Squamous Cell Carcinoma (OSCC) detection techniques 
along with their respective datasets and achieved accuracies.

This comparative assessment serves as a reference point to 
understand the nuanced attributes and considerations associated with 
both the gorilla-inspired optimization and CNN-based algorithms in 
the context of our research objectives.

3 Methodology

The methodology of this research is anchored in the advanced 
realm of deep learning, particularly focusing on the analysis of a 
comprehensive dataset of histopathological images. These images, 
pivotal in medical diagnostics, are instrumental for the accurate 
identification and classification of normal epithelial cells and oral 
cancerous cells within the oral lesions. The dataset, an extensive 
collection of 1,224 images, is meticulously categorized into two distinct 
sets differentiated by their resolution. This categorization is not 
arbitrary; it is a deliberate attempt to distinctly highlight the variations 
between normal epithelial tissues and OSCC manifestations. In our 
proposed methodology, we used the robust computational power of 
Convolutional Neural Networks (CNNs), with a special emphasis on 
the EfficientNetB3 architecture, to realize a dual objective: achieving 
high accuracy and ensuring efficiency in the classification of the 
dataset. Figure 1 depicts the proposed model workflow.
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3.1 Data collection and preparation

3.1.1 Data sources
The dataset employed in this investigation comprises 1,224 

publicly accessible images. These images are segregated into two 
distinct collections, each exhibiting varying resolutions. The initial 
collection encompasses 89 images displaying normal epithelial tissue 
of the oral cavity and 439 images depicting Oral Squamous Cell 
Carcinoma (OSCC) at a magnification level of 100x. Meanwhile, the 
secondary collection encompasses 201 images exhibiting normal oral 
epithelium and 495 histopathological representations of OSCC at a 
magnification of 400x. These images were captured via a Leica ICC50 
HD microscope, utilizing H&E staining on tissue slides that were 
meticulously assembled, processed, and classified by proficient 
medical specialists, sourced from 230 individual patients (17). Image 
data distribution is shown in Table 2 and data description in Figure 2.

3.1.2 Data organization
The organization of the dataset plays a vital role in the overall 

efficiency of the processing phase. To facilitate ease of access and 
processing, the images are meticulously sorted into separate 
directories based on their categorical classification – normal 
epithelium or OSCC. The structured arrangement is not solely for 
convenience; it stands as a strategic choice profoundly simplifying 
data management and labeling during the critical preprocessing 
phase. This approach sets the foundation for enhanced accuracy in 
subsequent analysis. Figure 3 shows some sample images.

3.1.3 Data processing
Processing the image data in this study involves several well-

defined steps. The initial phase involves the careful loading of 

images from their respective directories. Considering the high-
resolution nature of these images, they are resized to a consistent 
dimension, a step that is essential for maintaining uniformity 
across the dataset and ensuring computational efficiency. 
Furthermore, the study employs various image augmentation 
techniques, such as horizontal flipping. This is not just a 
mechanical step but a strategic one, aimed at enriching the 
dataset and enabling the model to learn from a more diverse set 
of patterns and features, thereby enhancing its ability to 
accurately classify and differentiate between various cell types. 
Figure 4 depicts the original and pre-processed image.

3.2 Detailed data analysis (DDA)

3.2.1 Data visualization
In this finding, the use of seaborn and matplotlib libraries is not 

just a technical requirement but a strategic tool in our data analysis 
arsenal. These libraries are employed to craft various types of plots, 
including bar charts and pie charts, each serving a unique purpose in 
representing the distribution of data across different categories. The 
visualizations produced are not mere representations of data; they 
offer deep insights into the balance and composition of the dataset, 
and critically, they help in identifying any potential biases or 
irregularities that could skew the study’s findings. This visual approach 
to data analysis is a powerful method to ensure the integrity and 
reliability of the research.

 • Let D represent the dataset.
 • P the plotting function
 • V the visualization I the insights generated.

TABLE 1 Related works in the field.

Research study Dataset Technique Remarks

Ananthakrishnan et al. (2023) (8) HID-OSCC The use pretrained CNN and Bounding box 

for the oscc classification.

In this technique they achieved an 

accuracy of 96.94%

Fatapour et al. (2023) (9) SEER database Gradient Boosting Machine Model for 

Detecting the recurrence.

Through the technique they achieved 

an accuracy of 81.8%

Das et al. (2023) (10) HID-OSCC Fusion of multiple techniques and 

pretrained models including Resnet50, 

ResNet101, Vgg19 and Mobile Net.

The fusion resulted in accuracy of 

97.82%

Nagarajan et al. (2023) (11) Multiple datasets MobilenetV3 with Gorilla Troops Optimizer The optimizer enhanced the 

accuracy up to 95%

Flügge et al. (2023) (12) Private dataset Swin-Transformer The swin transformer with CNN 

enhanced accuracy at 98.6%

Haq et al. (2023) (13) HID-OSCC Filtering technique such as Gabor with its 

fusion to ReNet50 along with CatBoost 

classification.

Filtering resulted with an accuracy of 

94.92%

Deif et al. (2022) (14) Private dataset Inception V3 with BPSO for optimization 

and classification.

Optimization reduced computational 

cost and enhanced accuracy upto 

96.3%

Rahman et al. (2022) (2) Histopathological imaging database for Oral 

Cancer analysis

Use of alexnet for better classification. Alexnet as classifier did it job well 

and resulted in accuracy of 90.06%

Alanazi et al. (2022) (15) Public datasets IDL-OSCDC model for improvised Deep 

Learning Feature Extraction.

The technique enhanced accuracy up 

to 95%

Wu et al. (2022) (16) Public datasets TMA annotated images for CNN. The annotated images resulted in 

accuracy of 95.8%
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The process of using seaborn and matplotlib libraries for data 
visualization can be represented symbolically as in equation 1.

 • Furthermore, insights (I) are derived from the visualization (V) 
using a function F:

 I F V� � � (1)

3.2.2 Missing value analysis
The integrity of the dataset is paramount in this study. As such, a 

key focus area is the identification and handling of missing data. To 
achieve this, we  employ sophisticated techniques like matrix 
visualization for detection of missing value. Addressing missing values 
is not a universal fix; it’s a meticulously planned procedure. Strategies 
like data imputation or removal are selectively utilized based on the 
specific characteristics and magnitude of the absent data, ensuring a 
tailored approach to handling these gaps. This meticulous approach 
to handling missing data is crucial in maintaining the overall integrity 
and quality of the dataset, which in turn, is pivotal for the accuracy of 
the study’s outcomes.

 o Let D represent the dataset.
 o M the missing values
 o H the handling strategy.
 o Now the working mechanism can be seen in equations 2, 3.

 M D� � �Identify  (2)

 H D M� � �Handle ,  (3)

3.3 Data preprocessing for deep learning

3.3.1 Data splitting
Within the domain of deep learning, how a dataset is partitioned 

holds substantial sway over the model’s performance and its capacity 
to generalize to novel data. In this study, a deliberate division of the 
dataset occurs, segregating it into three distinct subsets: training, 
validation, and testing, ensuring a strategic approach to model 
development and evaluation. Figure 5 shows the annotated images.

Training Set: This subset, the largest of the three, is the main 
driver of the model’s learning process. It provides a diverse array of 
examples from which the model can learn the distinguishing features 
of normal epithelial cells and OSCC.

Validation Set: This set acts as a checkpoint during the model 
training process. It is not involved in the actual training but is 
employed periodically to evaluate the model’s computational 
performance. This helps in fine-tuning the model’s parameters and 
provides an early indication of overfitting.

Testing Set: The ultimate evaluation of the model’s performance 
occurs within this subset, encompassing completely unfamiliar data. 
This segment provides an authentic gauge of the model’s ability to 
generalize and effectively perform in real-world scenarios, avoiding 
biases from prior exposure to the model during training or 
validation phases.

 • D represents the entire dataset.
 • T symbolizes the training set.
 • V denotes the validation set.
 • S represents the testing set.

So, the splitting of the dataset can be seen in equation 4.

 T V S D, , � � �Split  (4)

FIGURE 1

Model architecture.

TABLE 2 Image data distribution.

100X magnification

Normal (100X) 89

Oral Squamous Cell Carcinoma (100X) 439

400X magnification

Normal (400X) 201

Oral Squamous Cell Carcinoma (400X) 405
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The splitting of the dataset can be represented by equation 5:

 D T V S� � �  (5)

3.3.2 ImageDataGenerator
Keras’s ImageDataGenerator is a cornerstone in the preprocessing 

phase for a few pivotal reasons:

 ➢ Real-time Data Augmentation: This feature allows the 
expansion of the dataset by generating altered versions of the 
images, such as rotated or zoomed-in images. This augmentation 
helps in building a model that is robust and less prone to 
overfitting and is elaborated in equation 6.

 ➢ Tensor Conversion: It converts image files into tensors, which 
are the required input format for training neural network models 
which is gained using equation 7.

 ➢ Parameter Tuning: Parameters like rescaling, zoom range, and 
horizontal flip are carefully selected to enhance the dataset 
without distorting the essential features of the images as can 
be seen in equation 8.

 • Let I represent the original image dataset.

 • A the augmented dataset.
 • T the tensor format dataset.
 • P the parameter set.

 A I P� � �Augment ,  (6)

 T A� � �ConvertToTensor  (7)

 P � � �TuneParameters  (8)

The augmented image is shown in Figure 6.

3.4 Deep learning model development

3.4.1 Model architecture
The pivotal element influencing the success of this research is the 

model architecture. The selected architecture is EfficientNetB3, a member 

89

439

201

405

0

200

400

600

Dataset Descrip�on

Normal (400X)
Oral Squamous Cell Carcinoma (400X)
Normal (400X)

FIGURE 2

Dataset distribution.

FIGURE 3

Sample images from dataset under different magnification.
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Original Image    Preprocessed Image

FIGURE 4

Original and preprocessed image.

FIGURE 5

Annotated images with labels.
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of the EfficientNet series acknowledged for its efficacy and superior 
accuracy in image classification endeavors. This model encompasses:

 1. Convolutional Layers: These layers are fundamental in extracting 
features from the images. They use filters to capture patterns such 
as edges, textures, and other relevant details. Output of the 
convolution layers is computed as shown in equation (9).

 O I FC C� � �Conv ,  (9)

Where,

 • I: Input to the convolutional layers
 • FC: Convolutional filters
 • OC: Output of the convolutional layers

 2. Pooling Layers: After convolutional layers process the input, 
pooling layers play a role in diminishing the spatial dimensions 
(height and width) of the resultant volume. This reduction 
facilitates subsequent convolutional layers in their processing of 
the data. This reduction is crucial for decreasing the computational 
load and the number of parameters. It is shown in equation (10).

 O I SP P� � �MaxPool ,  (10)

Where,

 • IP: Input to the pooling layers
 • S: Pooling size

 3. Fully Connected Layers: These layers, positioned toward the 
end of the network, perform high-level reasoning in the neural 
network and are essential for the classification task. Output of 
the fully connected layers is shown in equation (11).

 O I W BF F� � �� �Activation  (11)

Where,

 • IF: Input to the fully connected layers
 • W: Weights
 • B: Biases
 • OF: Output of the fully connected layers

3.4.2 Pre-trained models
EfficientNetB3, part of the EfficientNet family, is selected for its 

unique scaling method that balances network depth, width, and 
resolution, which contributes to improved accuracy and efficiency. 
The model has undergone pre-training on the extensive ImageNet 
dataset, renowned for its vast array of diverse image categories. This 
pre-training provides the model with foundational knowledge and 
feature extraction capabilities across a wide spectrum of 
visual information.

This pre-training endows the model with a rich feature-detection 
capability, significantly enhancing its performance on the 
histopathological image dataset.

3.4.3 Compilation of the model
The model compilation is a critical step that involves the following:

 1. Optimizer: The Adamax optimizer is chosen for its 
effectiveness in handling sparse gradients, which is 
advantageous in image classification tasks. Model parameters 
is shown in equation (12).

 
1t t t

t
m

v
+

η
θ = θ − ⋅

+∈  
(12)

Where:

 • mt represents the exponentially weighted infinity norm of 
the gradient.

 • vt signifies the exponentially weighted infinity norm of the 
squared gradient.

 • θ denotes the model parameters.
 • η stands for the learning rate.

FIGURE 6

Augmented image.
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 • β1 represents the exponential decay rate for the first 
moment estimate.

 • β2 signifies the exponential decay rate for the second 
moment estimate.

 • ϵ is a small constant utilized to prevent division by zero 
in computations.

 2. Loss Function: The categorical crossentropy loss function is 
employed, which is well-suited for multi-class classification 
problems, like distinguishing between normal and cancerous 
cells. It is computed as shown in equation (13).

 
( )Categorical Cross En o ˆtropy l g ii

i
y y− = − ⋅∑

 
(13)

Where,

 • y: True class labels (one-hot encoded)
 • y^: Predicted class probabilities

 3. Metrics: Accuracy is used as a metric to provide a clear and 
interpretable measure of the model’s performance. This refers 
to accuracy, which represents the ratio of correctly classified 
images to the total number of images, indicating the model’s 
precision in classification tasks. Table  3 depicts Model 
Summary and Parameters and Figure 7 shows Model Training 
and Compilation.

Let N be the number of samples and Ncorrect be the number of 
classified samples which are classified accurately.

The accuracy metric is calculated as shown in equation (14):

 
Accuracy

correct=
N

N  
(14)

3.5 Training process

Indeed, the crux of model development lies within the 
training phase. Throughout this stage, preprocessed images are 
systematically fed into the model in batches for iterative 
processing and adjustment of the model’s parameters through 
optimization algorithms like gradient descent. The model’s 
primary objective is to learn the intricate patterns and features 

that distinguish between normal epithelial cells and OSCC cells. 
This learning process is facilitated by the iterative adjustment of 
the model’s weights through backpropagation.

Elements of the training process:
Batch Processing: To efficiently train large datasets, images are 

grouped into batches. The model processes each batch, computes the 
loss, and updates its weights. This batch-wise learning helps in 
optimizing the model more effectively as shown in equation (15).

 
� � � �t t t iL B� � � �� � �1 ,

 (15)

Where,
θt represents the model parameters at time t.
η denotes the learning rate.
∇L (θt, Bi) denotes the gradient of the loss function.
L calculated on a specific batch Bi.
Backpropagation: After each batch is processed, the model 

computes the gradient of the loss considering its weights. This iterative 
process helps the model gradually converge toward a configuration 
where its predictions align more accurately with the actual targets as 
shown in equation (16).

 
� � � �t t tL� � � �� � �1  (16)

Where,

 • θt represents the model parameters at time t.
 • η denotes the learning rate,
 • ∇L(θt) represents the gradient of the loss function L computed 

with the consideration of its weights at time t.

Epochs: Training unfolds across a designated count of epochs, 
where each epoch represents a singular traversal through the complete 
dataset. Employing multiple epochs enables the model to iteratively 
enhance its comprehension of the dataset, iteratively refining its 
parameters and consequently improving its overall performance.

Optimal Performance: The training process continues until a 
predefined criterion is met. This could be achieving a certain level of 
accuracy, a specified number of epochs, or the early stopping criterion, 
which is explained below.

3.5.1 Callbacks
To enhance the training process and ensure that the model trains 

effectively without overfitting, callbacks are employed:
EarlyStopping: This callback scrutinizes the validation loss 

throughout training. If the validation loss fails to exhibit improvement 
for a predetermined number of epochs (patience), the training process 
is halted prematurely. EarlyStopping serves as a safeguard against 
overfitting, ceasing training when the model’s performance degrades 
on unseen data, thereby averting excessive specialization to the 
training dataset.

ReduceLROnPlateau: This callback is used to dynamically adjust 
the learning rate during training. When the model’s performance 
plateaus, indicating that it might benefit from smaller weight updates, 
ReduceLROnPlateau reduces the learning rate. This finer adjustment 
can lead to improved convergence and performance.

TABLE 3 Model summary and parameters.

Layer Output shape Param #

efficientnetb3 (Functional) (None, 1,536) 10,783,535

batch_normalization (Batch 

Normalization) (None, 1,536) 6,144

dense (Dense) (None, 256) 393,472

dropout (Dropout) (None, 256) 0

dense_1 (Dense) (None, 2) 514
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3.5.2 Hyperparameters
The selection of appropriate hyperparameters is a critical aspect 

of training a deep learning model. Two essential hyperparameters are:

 • Batch Size: The batch size dictates the quantity of images 
processed in each iteration before the model adjusts its weights. 
Larger batch sizes can expedite training but may demand more 
memory. Conversely, smaller batch sizes might facilitate more 
precise weight updates at the cost of slower training. Optimal 
batch size selection hinges on available hardware resources and 
dataset characteristics.

 • Number of Epochs: Epochs denote how frequently the entire 
dataset passes through the model during training. Striking a 
balance is crucial. Too few epochs may result in underfitting, 
where the model inadequately learns. Conversely, excessive 
epochs might lead to overfitting, where the model excessively 
memorizes the training data but falters with new data. 
Determining the optimal number of epochs typically involves 
experimentation and validation.

These hyperparameters are carefully tuned based on the dataset’s 
size, complexity, and the available computational resources. 
Hyperparameter tuning involves iterative experimentation to find the 
combination that yields the best model performance.

3.5.3 Performance metrics
Once the deep learning model is trained, it undergoes thorough 

evaluation to assess its performance and effectiveness. Several key 
performance metrics are used to provide a comprehensive 
understanding of the model’s capabilities:

 • Accuracy: Accuracy serves as a fundamental metric gauging the 
overall correctness of the model’s predictions by indicating the 
ratio of correctly classified images to the total evaluated. However, 
in instances of imbalanced datasets, relying solely on accuracy 
might offer an incomplete assessment. It could overlook nuances, 
especially when certain classes are significantly underrepresented 
compared to others, leading to skewed interpretations of the 
model’s performance.

 
Accuracy

CorrectPredictions

Total Images
=

 
(17)

 • Loss Function: The loss function quantifies the disparity between 
the model’s predictions and the actual ground truth labels, 
effectively measuring the model’s error. It stands as a pivotal 
metric during both training and evaluation, reflecting the degree 
of alignment between predictions and actual labels. A lower loss 
value indicates a closer alignment between predictions and 
ground truth, signifying improved performance. It is computed 
using  equation (18).

 L Predictions,GroundTruth� � (18)

 • Confusion Matrix: The confusion matrix presents a tabular 
breakdown offering comprehensive insights into the model’s error 
types. It categorizes predictions into four sections: true positives 
(accurately predicted positive class), true negatives (correctly 
predicted negative class), false positives (erroneously predicted 
positive class), and false negatives (erroneously predicted negative 
class). Particularly useful in binary classification tasks, this matrix is 
instrumental in discerning the model’s proficiency and 
shortcomings, revealing its performance in differentiating between 
classes. Confusion matrix is shown in Figure 8.

 • Classification Report: The classification report offers a 
detailed overview of diverse metrics for each class within the 
dataset. It encompasses precision, recall, and F1-score for 
individual classes (18, 19). Precision gauges the ratio of 
correctly predicted positive instances against all positive 
predictions, while recall assesses the ratio of correctly predicted 
positive instances against all actual positive instances. The 
F1-score, a harmonic means of precision and recall, strikes a 
balance between these metrics, providing a comprehensive 
assessment of the model’s performance for each class (20, 21). 
Table 4 shows the classification report and Figure 9 shows the 
Precision, Recall and F1-score.

3.5.4 Data visualization in evaluation
Data visualization techniques are pivotal in assessing the model’s 

performance. Utilizing visual aids like plots and heatmaps allows for 
an intuitive representation of the model’s predictions and errors (22). 
These visual tools offer a clearer and more accessible understanding 
of the model’s behavior, facilitating insightful analysis and 
interpretation of its performance. Figure 10 shows the Training and 
Validation Loss and Accuracy.

Plots: Line plots or bar charts can be used to visualize the change 
in accuracy and loss over epochs during training. These plots provide 
insights into the model’s convergence and whether further training 
is necessary.

Heatmaps: Heatmaps can be employed to visualize the confusion 
matrix. This visual representation makes it easier to identify patterns 
in the model’s predictions, including which classes are often confused 
with each other.

Visualizing Predictions: Some models allow for visualizing the 
model’s predictions on sample images. This can help identify specific 

FIGURE 7

Model training and compilation.
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image types where the model struggles or excels, providing valuable 
insights into areas for improvement.

3.6 Saving the model

After the deep learning model has been successfully trained and 
evaluated, the next critical step is to save the model for future use. This 
process involves serializing the model, which means converting it into 
a format that can be stored as a file on disk. The serialization of the 
model serves several important purposes:

 • Persistence: Saving the model allows it to retain its learned 
weights, architecture, and configuration. It essentially freezes the 
model in its current state, ensuring that it can be used consistently 
for subsequent tasks.

 • Portability: Serialized models can be  easily transported and 
shared across different environments or with collaborators. This 
is crucial for deploying the model in various clinical or 
research settings.

 • Reproducibility: Serialization enables researchers to reproduce 
their experiments and results accurately. It ensures that the same 
model can be  used in the future to validate or extend the 
research findings.

In this research, the pickle library is employed for model 
serialization. The pickle library, a commonly employed Python 
module, serves the purpose of encoding and decoding objects, 
encompassing machine learning models among various other types of 
data. Once the model is serialized, it can be saved as a file with a 
specific format (e.g., a .pkl file) on disk.

3.6.1 Model usage
The deployment of the saved model opens various possibilities for 

its utilization:

 • Clinical Integration: In clinical settings, the saved model can 
be  integrated into diagnostic tools or software applications 
designed to assist pathologists and medical professionals. It can 
aid in the automated identification of OSCC in histopathological 
images of oral cavity tissues (23). This integration can potentially 
enhance the speed and accuracy of cancer diagnosis (24).

 • Research Continuation: The preserved model stands as a 
cornerstone for advancing research within cancer detection and 
classification. Researchers can leverage this model as a starting 

FIGURE 8

Confusion matrix.

TABLE 4 Classification report.

Precision Recall F1-
score

Support

Normal 0.99 0.99 0.99 2,494

OSCC 0.99 0.99 0.99 2,698

Accuracy 0.99 5,192

Macro avg 0.99 0.99 0.99 5,192

Weighted 

avg 0.99 0.99 0.99 5,192
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point to delve into broader facets of histopathological image 
analysis or tailor it for detecting diverse forms of cancer, paving 
the way for extensive exploration and adaptation in the field.

 • Predictions on New Data: In the deployment phase, the model 
is retrieved from its stored state and employed to generate 
predictions on fresh, previously unobserved data. This 
functionality holds immense value for continuous diagnosis and 
ongoing research, enabling the model to consistently offer 
insights and classifications for novel cases as they arise.

4 Results

The assessment of the trained deep learning model showcased 
remarkable performance across a spectrum of crucial metrics on 

diverse datasets, encompassing both training, validation, and test 
datasets (25). These metrics serve as valuable indicators, shedding 
light on the model’s prowess and its capacity for precise classification 
of histopathological images depicting oral tissue (26).

 • Training Accuracy: The model’s attainment of an outstanding 
training accuracy of 99.57% underscores its exceptional capacity 
to learn and categorize oral histopathological images throughout 
the training phase. This high accuracy signifies the model’s 
adeptness in comprehending and classifying the nuances within 
the training dataset. Furthermore, the low training loss of 0.0701 
suggests that the model minimized errors and discrepancies 
during the training process, resulting in a highly accurate model 
whose calculation is done using equation 19.

 • Validation Accuracy: The model demonstrated robustness with 
a validation accuracy of 98.01%. This outcome highlights the 
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FIGURE 9

Precision, recall and F1-score.

FIGURE 10

Training and validation loss and accuracy.
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model’s generalization prowess, demonstrating its capability to 
provide precise predictions on previously unseen data that wasn’t 
included in the training dataset. This proficiency showcases the 
model’s adaptability and robustness in extrapolating learned 
patterns to novel instances. The validation loss of 0.1113 further 
confirms the model’s stability and its effectiveness in handling 
validation data without overfitting that is calculated by 
equation 19.

 • Test Accuracy: The model sustained a consistently high level of 
accuracy when evaluated on the test dataset, achieving an 
accuracy of 99.13%. This result reaffirms the model’s consistent 
performance across diverse datasets, including previously unseen 
oral tissue samples. The test loss of 0.0822 further validates the 
model’s capacity to accurately classify new and previously unseen 
samples, which is crucial for practical applications which is been 
calculated using equation 19. Table 5 shows Metrics of Evaluation 
and Figure 11 depicts Accuracy with different sets.

4.1 Precision, recall, and F1-score analysis

Precision, recall, and the F1-score are pivotal metrics offering 
deeper insights into the model’s competence in accurately classifying 
samples belonging to both the ‘Normal’ and ‘Oral Squamous Cell 
Carcinoma (OSCC)’ categories. These metrics collectively assess the 
model’s precision, its ability to recall relevant instances, and provide a 
balanced evaluation of its performance across both classes.

 • Precision and Recall: For both classes, ‘Normal’ and ‘OSCC,’ the 
model achieved an outstanding precision and recall score of 99%. 
This indicates that the model excelled in accurately identifying 
true positives while effectively mitigating the occurrence of false 
positives. Additionally, the high recall score indicates that the 
model experienced minimal occurrences of false negatives, 
further affirming its overall accuracy. They both are calculated 
using equations 20, 21.

 • F1-Score: The F1-score, which harmonizes precision and recall, 
also reached an impressive 99% for both classes. This well-
balanced metric underscores the model’s strength in accurate 
sample classification, maintaining an equilibrium between 
precision and recall. A high F1-score reflects the model’s 
proficiency in both precision and recall, establishing it as a 
dependable option for classification tasks, calculated via 
equation 22.

4.2 Confusion matrix and classification 
report

While not explicitly provided in the given data snippet, the 
confusion matrix and classification. The assessment components 
crucial for evaluating the model’s performance in classifying oral 
histopathological images encompass:

 • Confusion Matrix: This visual representation juxtaposes the 
model’s predictions with the actual classes. The model showcased 
high precision, recall, and accuracy, indicating minimal 
misclassifications. Its robust performance in distinguishing 
between ‘Normal’ and ‘OSCC’ classes resulted in few false 
positives and negatives, as computed through equation 19.

 • Classification Report: Typically encompassing precision, recall, 
and F1-score for both classes, the report reaffirmed the model’s 
accuracy in categorizing ‘Normal’ and ‘OSCC’ tissues. With a 
weighted average precision, recall, and F1-score of 99%, the 
model exhibited overall proficiency across all classes, ensuring 
reliable classification performance throughout the dataset, 
calculated via equations 19–24.

 
Accurac TP TN

TP TN FP FN
y � �

� � �  
(19)

 
Precision TP

TP FP
�

�  
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�
�  
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Model Accuracy Correct Predictions

No of Predictions
 

 

 
=

.  
(23)

 Model Loss Loss Function True Values Predicted Values   ,  = ( )  (24)

4.3 Results interpretation and comparison

The findings derived from this research demonstrate outstanding 
prowess in detecting Oral Squamous Cell Carcinoma (OSCC). The 
accuracy, precision, and recall metrics either match or surpass those 
documented in prior studies. This elevated level of performance 
fortifies the model’s proficiency in histopathological image 
classification, positioning it as a potentially superior alternative to 
conventional methods in this domain (Table 6).

The implications of achieving such high accuracy in OSCC 
detection are profound. They extend to the realm of early diagnosis, 

TABLE 5 Metrics of evaluation.

Metric Value

Training loss 0.0636

Training accuracy 0.9957

Validation loss 0.1277

Validation accuracy 0.973

Test loss 0.0843

Test accuracy 0.9873
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where the model can play a pivotal role. Swift and accurate diagnoses 
leading to prompt treatment decisions hold the potential to markedly 
enhance patient prognosis and diminish mortality rates. Additionally, 
the automation of histopathological image analysis aids pathologists 
by optimizing workflow efficiency and enhancing the overall accuracy 
of diagnoses.

4.4 Limitations, biases, and challenges

While the outcomes show promise, it’s crucial to recognize and 
address potential limitations, biases, and challenges inherent in 
this research.

Potential Biases: Dataset variability and annotations may 
introduce biases into the model’s training. Ensuring a representative 
and diverse dataset is crucial to mitigate these biases.

Model Generalization: There’s apprehension regarding the 
model’s capacity to extend its proficiency across diverse tissue samples. 
The risk of overfitting, where the model excels with the training data 

but falters when confronted with new data, stands as a challenge 
warranting attention and resolution.

Interpretability: Deep learning models, while powerful, often 
lack interpretability. Understanding how the model arrives at its 
predictions can be  challenging and requires further research into 
interpretability methods.

Computational Resources: The demanding nature of training 
and deploying deep learning models necessitates significant 
computational resources. Mitigating this challenge, particularly in 
environments with limited resources, is crucial to ensure practical 
real-world applicability.

4.5 Future research directions

To address the identified limitations and challenges and further 
advance the field of OSCC detection, future research should consider 
the following directions:

Broader Datasets: Subsequent investigations should prioritize 
acquiring and utilizing more extensive datasets to augment the model’s 
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FIGURE 11

Accuracy with different sets.

TABLE 6 Comparison with existing methodologies.

Research study Technique Accuracy

Yu et al. (2023) (27) Resnet50 with feature fusion 92.78%

Chang et al. (2023) (28) Resnet50 with Raman Spectra 92.81%

Panigrahi et al. (2023) (29) Resnet50 with DCNNs 96.6%

Sukegawa et al. (2023) (30) Resnet50 with VGG16 86.22%

Yang et al. (2023) (31) Three Kinds of CNN 92.52%

Kantharimuthu (2023) (32) Probability Neural Network 80%

Das et al (2023) (10) Multiple techniques fusion such as VGG16 and mobile inception. 97.82%

Nagarajan et al. (2023) (11) MobilenetV3 with Gorilla Troops Optimizer 95%

Flügge et al. (2023) (12) Swin-Transformer 98.6%

Proposed methodology EfficientNet B3 with Advanced Learning Mechanism 99%
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resilience and capacity for generalization. Encompassing diverse tissue 
samples and accounting for variations in image quality will be imperative 
to fortify the model’s efficacy and relevance in real-world scenarios.

Interpretability Methods: Research into interpretability methods 
for deep learning models is critical. Developing techniques to explain 
the model’s decisions can enhance trust and facilitate its integration 
into clinical settings (33).

Clinical Integration: Integrating the model into clinical settings 
and diagnostic tools should be  a priority. Collaboration with 
healthcare institutions and pathologists can help bridge the gap 
between research and practical applications.

Bias Mitigation: Efforts should be  made to address potential 
biases in the dataset and model. Ensuring fairness and equity in the 
model’s predictions is essential for its real-world applicability and 
ethical use (34).

5 Conclusion

This groundbreaking study, culminating in a highly potent deep 
learning model for automated detection of Oral Squamous Cell 
Carcinoma (OSCC) from histopathological images, has set a new 
benchmark. Demonstrating consistent accuracy, precision, and recall 
rates surpassing the 99% mark, the model adeptly distinguishes 
‘Normal’ and ‘OSCC’ tissues. Its significance resonates across clinical, 
diagnostic, and research domains, promising a transformative impact 
on diagnostic capabilities. This achievement not only facilitates timely 
interventions and tailored treatment strategies but also augurs well for 
enhanced patient prognoses.

Furthermore, this milestone heralds a new era in histopathological 
analysis by offering clinicians and pathologists an instrument of 
unwavering reliability, scalability, and efficiency. As this model paves 
the way forward in automated OSCC detection, it signifies the 
convergence of artificial intelligence and healthcare, revolutionizing 
oral cancer diagnosis.

Looking ahead, the expansion of datasets to encompass diverse 
populations and oral cancer subtypes is imperative. Strengthening the 
model’s robustness and real-world applicability, integrating 
interpretability mechanisms, and subjecting it to clinical validation are 
paramount goals. This research lays a strong foundation for future 
innovation in medical imaging and pathology, guiding the path 
toward trust, adoption, and seamless integration into routine 
clinical practice.

In this collaborative journey, involving technologists, medical 
experts, and tireless researchers, the pursuit of automated OSCC 
detection tools reaches its zenith. With an unwavering commitment 

to precision, reliability, and transformative healthcare, this study 
marks a promising beginning in enhancing patient care and outcomes 
through early detection and precise diagnosis of OSCC.
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