
TYPE Technology and Code

PUBLISHED 08 January 2024

DOI 10.3389/fmed.2023.1305415

OPEN ACCESS

EDITED BY

Elisio Costa,

University of Porto, Portugal

REVIEWED BY

Ana Corte-Real,

University of Coimbra, Portugal

Mert Gencturk,

Software Research and Development

Consulting, Türkiye

*CORRESPONDENCE

Sascha Welten

welten@dbis.rwth-aachen.de

RECEIVED 01 October 2023

ACCEPTED 14 December 2023

PUBLISHED 08 January 2024

CITATION

Welten S, Weber S, Holt A, Beyan O and

Decker S (2024) Will it run?—A proof of

concept for smoke testing decentralized data

analytics experiments.

Front. Med. 10:1305415.

doi: 10.3389/fmed.2023.1305415

COPYRIGHT

© 2024 Welten, Weber, Holt, Beyan and

Decker. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Will it run?—A proof of concept
for smoke testing decentralized
data analytics experiments

Sascha Welten1*, Sven Weber1,2, Adrian Holt1, Oya Beyan2,3 and

Stefan Decker2,3

1Chair of Computer Science 5, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen

University, Aachen, Germany, 2Institute for Biomedical Informatics, Faculty of Medicine and University

Hospital Cologne, University of Cologne, Cologne, Germany, 3Fraunhofer Institute for Applied

Information Technology FIT, St. Augustin, Germany

The growing interest in data-driven medicine, in conjunction with the formation

of initiatives such as the European Health Data Space (EHDS) has demonstrated

the need for methodologies that are capable of facilitating privacy-preserving

data analysis. Distributed Analytics (DA) as an enabler for privacy-preserving

analysis across multiple data sources has shown its potential to support data-

intensive research. However, the application of DA creates new challenges

stemming from its distributed nature, such as identifying single points of failure

(SPOFs) in DA tasks before their actual execution. Failing to detect such SPOFs

can, for example, result in improper termination of the DA code, necessitating

additional e�orts from multiple stakeholders to resolve the malfunctions.

Moreover, these malfunctions disrupt the seamless conduct of DA and entail

several crucial consequences, including technical obstacles to resolve the issues,

potential delays in research outcomes, and increased costs. In this study, we

address this challenge by introducing a concept based on a method called

Smoke Testing, an initial and foundational test run to ensure the operability of

the analysis code. We review existing DA platforms and systematically extract

six specific Smoke Testing criteria for DA applications. With these criteria in

mind, we create an interactive environment called Development Environment

for AuTomated and Holistic Smoke Testing of Analysis-Runs (DEATHSTAR), which

allows researchers to perform Smoke Tests on their DA experiments. We conduct

a user-study with 29 participants to assess our environment and additionally

apply it to three real use cases. The results of our evaluation validate its

e�ectiveness, revealing that 96.6% of the analyses created and (Smoke) tested

by participants using our approach successfully terminated without any errors.

Thus, by incorporating Smoke Testing as a fundamental method, our approach

helps identify potential malfunctions early in the development process, ensuring

smoother data-driven research within the scope of DA. Through its flexibility

and adaptability to diverse real use cases, our solution enables more robust and

e�cient development of DA experiments, which contributes to their reliability.
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1 Introduction

Data-driven analyses, such as basic statistics or Machine

Learning (ML)-based approaches, have been extensively used

for analyzing data in a variety of applications such as medical

diagnosis and treatment or financial business intelligence (1–

3). Traditionally, data is collected from several sources, stored

in a central location, and analyzed by scientists. However, data

centralization poses several challenges (4). For example, due to

the exponential growth of data, the gathered data volume might

not allow central storage, or in some cases, it would be too

expensive (5). Besides these technical challenges, regulations such

as the General Data Protection Regulation (GDPR) in the European

Union1 prohibit or limit the centralization of personal data due to

privacy concerns and its level of sensitivity. This issue is particularly

present in domains such as healthcare, where personal data is

protected (5). In the context of the European Health Data Space

(EHDS)2, the issue of accessing fragmented and silo-ed data is

intended to be resolved through the implementation of Federated

Health Data Networks (FHDNs) that consist of decentralized and

interconnected nodes, allowing data to be analyzed by participants

of the FHDNs (6). In order to enable data analysis across multiple

nodes, key technologies for DA [such as Federated Learning (FL)]

have been considered as indispensable and proposed as a solution

by omitting the need for data centralization (7, 8). Here, the

analysis code is executed at the data source(s), and only the

(intermediate) analysis results, such as aggregated statistics or, in

ML-terms, model parameters, are transmitted between the data

providers rather than sharing actual data instances. DA provides

solutions for several legal considerations such as patient data

ownership or data control (9). This includes compliance with

measures such as the GDPR. Furthermore, ensuring transparent

and accountable access to this data is crucial to uphold privacy

and security standards (9). Since it addresses challenges, such

as data privacy, high storage costs, or long transfer times,

Distributed Analytics (DA) has recently gained attention and has

found applications in various use cases, including skin cancer

classification, predictive modeling using radiomics for lung cancer,

brain tumor segmentation, and breast cancer detection (5, 10–

14).

Before analyses can deliver their full potential, several steps

must be taken to build an error-free and robust analysis

code. Among other steps, we recognize three essential phases:

Development, testing, and execution phase (Figure 1) (15). The

development phase involves implementing the code, covering a

data pre-processing routine and the analysis script. During the

testing phase, there may be two types of testing scenarios: one

is testing from a software perspective that ensures the code is

executable. The other is analysis validation using test data to assess

performance. The execution phase covers the application of the

analyses on real data to obtain actual analysis outcomes. At this

point, it becomes evident that these standard workflows assign an

1 GDPR: www.gdpr-info.eu.

2 https://www.europarl.europa.eu/RegData/etudes/STUD/2022/740054/

IPOL_STU(2022)740054_EN.pdf

essential role to the availability of data: Without sufficient data, fast

prototyping through, e.g., trial-and-error and software tests, can be

only conducted on a limited basis. Moreover, up to now and to the

best of our knowledge, how DA code is tested has been left to the

developer’s responsibility and intuition, showcasing a lack of clearly

defined testing criteria and capabilities in the domain of DA. This

circumstance entails a specific degree of uncertainty regarding the

analysis code during its execution: Will it run? The consequence

is that insufficiently tested analysis code is susceptible to single

points of failure (SPOFs) during the execution phase, such that

another development round is needed to fix the code (Figure 1).

Due to the decentralized nature of DA, any kind of errors during

the execution require the analysis code to be re-built, re-distributed

to the data holders, and re-executed (Figure 1). This re-distribution

is time-consuming and potentially involves multiple parties, e.g., in

the medical domain, where the analysis has to be verified before

interacting with data. Thus, there is a need for adequate testing

criteria and capabilities that identify potential malfunctions in the

code before its execution.

1.1 Objectives

To establish an initial foundation for testing in DA,

we derive requirements for DA code, which should be

fulfilled to ensure that the analysis code is operational.

We aim to define criteria for a testing approach called

Smoke Testing to support developers in their development

process (16, 17). These criteria constitute the minimum

requirements for DA code that must be guaranteed

before its execution. We hypothesize that without these

requirements the DA code will definitely fail or cause

undesired behavior. In summary, we evaluate the following

research question:

RQ1 What are suitable Smoke Testing criteria for DA

executions?

Secondly, we intend to develop a Smoke Testing suite as a Proof

of Concept (PoC), specifically designed to evaluate analysis code

according to our defined criteria. Since data is essential to test

data-driven analysis code properly, we aim for a Smoke Testing

suite capable of generating data instances that can be used for

Smoke Testing, making our approach less reliant on prior data-

sharing. Regarding this, we hypothesize that a simulation-based

Smoke Testing suite reduces the dependence on data providers.

One of our core assumptions is that data schema details are shared,

while actual sensitive data instances can be kept under seal by the

data providers. To reach this goal, we will evaluate the following

research questions:

RQ2What is necessary to enable Smoke Testing on DA code?

RQ2.1How can privacy-preserving testing of DA algorithms

be enabled?

RQ2.2 How can the execution of DA algorithms be (Smoke)

tested without a real DA environment?
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FIGURE 1

Proposed concept for local smoke tests. Up to now, the (smoke) testing phase of the analysis code has been postponed to the actual execution,

making it di�cult to di�erentiate between the testing and execution phases (left). As a result, any code errors can only be identified by running the

code at each data provider. This dependence on distributed data providers can make creating DA code time-consuming and cumbersome. Instead

of smoke testing during the execution phase itself, we propose DEATHSTAR to iteratively trial-and-error the analysis script locally (right).

1.2 Contributions and findings

Aligned with our objectives from the previous section, this

work presents the following contributions:

• We propose six criteria for Smoke Testing that we derive from

a literature review of DA infrastructure implementations.

Those criteria must be met by DA analyses in order to ensure

their operability.

• We developed and implemented a Smoke Testing suite,

called Development Environment for AuTomated and

Holistic Smoke Testing of Analysis-Runs (DEATHSTAR)3.

DEATHSTAR employs a testing-through-simulation approach

to identify potential malfunctions in the analysis code by

systematically validating our six criteria. This PoC, inspired

by Integrated Development Environments (IDEs), allows the

prototyping and simulation of DA experiments on synthetic

or (real) sample data.

• We conduct a User-Study with 29 participants to evaluate the

effectiveness of our criteria and the usability of DEATHSTAR.

• We lastly present a technical evaluation demonstrating the

flexibility and adaptability of our approach by successfully

repeating and reproducing three real-world use cases.

Overall, we find that almost all DA algorithms (96.6%),

developed and (Smoke) tested by participants of our User-Study

using our approach, terminated with no errors in a real DA

execution. These results suggest that the six criteria we proposed

are sufficient for ensuring the operability of the analysis code.

Additionally, we achieved a System Usability Scale (SUS) score of

88.3 in our User-Study, which is considered to be “excellent” (18).

The outcomes of the second part of our evaluation show that our

3 The code of the PoC is available as Open Source, including screenshots,

a screencast, examples, the developed data schema, and explanations

at: https://github.com/PADME-PHT/playground.

concept can support DA-driven research under real circumstances

and is flexible enough to serve various data types and sources.

2 Method

In the previous section, it became apparent that the essential

element of DA approaches is the analysis code. As these analyses

are executable software fragments, they can consequently be

vulnerable to unexpected failure during the execution, like any

software product (19). For example, the algorithm might not

be compatible with a specific data source version or contain a

logical error that needs to be resolved before the execution (see

Figure 1). As the most widespread method to verify software

quality, testing can prevent such failures (19). Moreover, the

importance of testing is also evident when reviewing so-called

Software Development Life Cycles (SDLCs) (20). These SDLC

models describe systematic processes on how software should be

developed and what steps should be taken in the SDLC (21).

Consequently, an SDLC model can control costs, reliability,

performance, and functionality of the developed software (21).

As a result, various SDLC models have been developed and

play a significant role in software engineering (15). It is worth

noting that each SDLC model embraces a testing phase, which

emphasizes that testing is indispensable in professional software

development (15). Specifically for DA, the necessity of testing

capabilities has already been formulated in work by Bonawitz

et al. who state that an environment for testing and simulation

of analysis algorithms is a requirement for DA platforms (22).

One specific testing method playing a major role in this work

is called Smoke Testing (16, 23, 24). This term stems from the

industry and includes an initial and fundamental test run to

ensure that a program—here: the analysis—is operational, executes

successfully, and does not end up in smoke. For example, Herbold

and Haar successfully applied Smoke Testing to find problems in

analytics software libraries and algorithms (16). Specifically, they
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designed a total of 37 Smoke Tests for classification- and clustering

algorithms (16).

The methodology of this paper is inspired by the work of

Cannavacciuolo and Mariani (17), who applied Smoke Testing to

cloud systems, intending to validate whether a system is operational

post-deployment, which helped to determine if more sophisticated

tests can be conducted. As part of their work, they propose several

Smoke Testing criteria that can be used as a foundation for

creating Smoke Testing suites in the scope of cloud systems (17).

Since the relevant DA platforms discussed in Section 2.2 are

typically not deployed in cloud systems, and our primary emphasis

is on (Smoke) testing analysis code rather than an entire

infrastructure, these criteria are not applicable to our specific

scenario. Nevertheless, they have specified three key characteristics

of Smoke Tests, that serve as an inspiration for our work. Those

characteristics define the way how Smoke Testing criteria should

be validated:

• Shallow: Smoke Tests should be kept at a higher abstraction

level and not overly detailed. This means that only a system’s

or software’s basic functionality and operability should be

validated. It is just serving as a prerequisite for more

sophisticated testing methods.

• Fast: Smoke Tests must be fast in their execution since they

are performed before other test runs or, in our scenario, the

analysis execution.

• Automatic: As an extension to the fast characteristic,

Smoke Tests should be fully automated to reduce

manual intervention.

To realize Smoke Testing suites, so-called playgrounds or

prototyping environments may provide a possible solution (22).

Here, the term playground refers to services that allow users to

interact and play with software without prior complex setup or

configuration (25). Moreover, these playgrounds enable users to

iteratively (i.e., trial-and-error) develop and priorly test their entire

implementation or specific modules (25, 26). Because playgrounds

have successfully enabled testing approaches in other settings, our

work pursues a similar approach (25–28).

We begin the conceptualization of such a Smoke Testing

suite by abstracting and formalizing the scenario, focusing on the

relevant steps in which the analysis execution might fail based

on related works in the DA domain (Section 2.2). Moreover, our

approach aims for a user-centric design, so we initially describe

the problem statement from a user perspective (Section 2.1). The

outcome of this abstraction is a formal model that describes

the analysis process of the code, which is distributed within a

DA infrastructure. Based on the steps in the process model, we

derive our set of Smoke Test criteria that aim to ensure that

each step can be executed (Section 2.3). We aim to keep the set

of criteria as “shallow” as possible to comply with the defined

characteristics of Smoke Testing (see above). Subsequently, we

present a PoC implementation that can apply Smoke Tests to

analysis code based on our defined criteria (Section 2.4). We aim

for a “fast” and “automated” solution consistent with the Smoke

Testing characteristics. Lastly, we evaluate the effectiveness of our

solution, its usability, and we apply it to three distinct use cases as

part of our technical evaluation (Section 3). For the implementation

and evaluation, we use the DA platform PADME as infrastructure

to execute the analyses (7).

2.1 User-centered problem description

Initially, developers or scientists who intend to conduct a DA

experiment need to develop the code for the analysis, which is

designed to analyze data provided by decentralized data holders

(see Figure 1). The development process usually occurs locally or

on a machine the developer can access. It is vital to test the analysis

code to ensure its proper operation after the development (or

even during it, through a trial-and-error approach). While certain

parts and components of the code can be tested on a module-by-

module basis, the presented setting has a shortcoming: To conduct

a complete test of the code, the developer requires (sample) data

to execute the developed algorithms on. However, the availability

of sufficient and potentially sensitive data for testing purposes is

not guaranteed due to the mentioned data protection and privacy

regulations. As a result, researchers are left with two options. In

case sample data is available, following an ad hoc testing approach

might not cover all criteria that are needed to ensure the operability

of the code. Secondly, in the worst case, the developer is obliged

to submit the analysis script to each data provider and wait for

its execution on their data in order to identify potential issues in

the code. These circumstances result in an inefficient development

process since the developer is reliant on the data providers, and

even minor malfunctions (such as Index-out-of-Bounds,

Nullpointer, TypeCast exceptions) can cause a new

development round. From an abstract perspective on this scenario,

the testing phase is closely coupled with the actual execution phase,

which causes the mentioned inefficiency (see Figure 1). Usually, the

testing phase is designed to support the development phase to allow

for fast code updates and trial-and-error development. Therefore,

in this work, we aim to separate the testing and execution phases

and provide a solution that facilitates Smoke Testing during or after

the development phase (see Figure 1, right).

2.2 Abstract workflow

Our initial step involves examining how the analysis code

operates on a conceptual and abstract level. In general, two

execution policies exist that enable DA: A parallel and a

sequential approach (sometimes referred to as FL and Institutional

Incremental Learning (IIL), respectively) (13, 29). In IIL, the

data holders are arranged in a sequence, and the analysis code

is sent from institution to institution until the last institution

sends the final (and aggregated) results back. The procedure for

FL repeats the following steps: First, the analysis algorithm is

simultaneously distributed to all participating data holders. Then,

each data holder executes the analysis algorithm on the local data

and sends the result of this analysis back to the central component.

The central component aggregates all partial results, combining

the results of all participants. This aggregated result is either the

final or intermediate result for the next so-called communication

or federated round. The conduct of a DA experiment generally
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TABLE 1 Applicability of the six steps identified in this paper to di�erent

DA infrastructures.

References S1 S2 S3 S4 S5 S6

PHT (IIL) (7, 32, 33) X X X X X

DS (FL) (31) X X X X X X

Swarm Learning (P2P) (35) X X X X X X

SMPC (P2P) (36) X X X X X (X)

Steps required by an infrastructure (row) are shown as checkmarks in the respective column.

All infrastructures require connecting to a data source (S1), querying data (S2), loading

previous results (S3), executing the analysis (S4), and storing results (S5). Some infrastructures

require result aggregation (S6).

requires an infrastructure that orchestrates the analysis and

transmits the code to the data holder according to one of the

foundational execution policies mentioned above. In recent years,

several implementations of DA have been proposed. DataSHIELD

(DS) is an open-source solution that follows the FL approach and

uses the programming language R, often used in statistics4 (30, 31).

Another emerging concept is the Personal Health Train (PHT),

which follows the sequential paradigm. The PHT uses software

containers5 to distribute the analysis code to each data provider.

Some implementations following the PHT concept are Vantage6,

PHT-meDIC, and PADME by Welten et al. (7, 32, 33). Besides

FL and IIL, additional (hybrid) approaches for DA exist: Swarm

Learning (SL) and Secure Multiparty Computation (SMPC), which

use Peer-To-Peer (P2P) communication instead of relying on a

central component (34, 35). These infrastructures, founded on the

dispatching paradigms, such as IIL and FL, serve as the source for

our abstraction.

After systematically reviewing these infrastructures, studies

conducted with them, and our personal experiences from DA

experiments, we have identified six abstract steps (S1–S6) that the

analysis code performs during its execution, as shown in Table 1.

We transformed our findings into a process diagram for a better

overview of the abstract workflow (Figure 2). Despite how the

(intermediate) results are finally combined, the infrastructures do

not differ in their workflow on the conceptual level. First, the

developed code must establish a database connection (S1). Then,

the analysis queries the data (S2) and loads the intermediate

results (S3) from previous execution rounds. The queried data

from Step 2 and the previous results from Step 3 serve as the

input for a generic analysis code. During the data analysis (S4), the

queried data is used to compute updated analysis results. Once the

analysis terminates, the updated results are stored (S5). In the IIL-

setting, the results are stored in the analysis payload, which is then

transmitted to the next data provider. In contrast, for FL, the results

are directly transmitted to a central aggregation component, where

the intermediate results of all analysis replicas are aggregated into a

single global result (S6). As each approach we examined is round-

based, these six steps are repeated in each subsequent round. In the

IIL scenario, a new round starts after the analysis has been sent to

the next data holder. On the other hand, in the FL scenario, a round

begins after the aggregator has combined all results. Hence, the

4 Further DS studies are available at: www.datashield.org/about/

publications.

5 Open Container Initiative: https://opencontainers.org.

approaches following the paradigm of parallel analysis executions

undergo an additional step.

2.3 Criteria definition

Now that we have our abstract workflow model, we define

six criteria that must be fulfilled to ensure that the analysis code

is operational in every of our derived execution steps. For each

requirement, we linked the corresponding step in our workflow.

Requirement A: Proper connection interface. The analysis

code should be able to establish a connection to the data

source without any issues. This necessitates that the algorithm’s

configuration is compatible with the data source’s connection

interface(s). Proper configuration implies that all connection

parameters (e.g., file path, hostname, port number, or database

type) are correct and available (S1).

Requirement B: Matching schema. The analysis code should

be able to send syntactically correct queries to the data store and

receive corresponding results in response. Hence, the expected data

schema of the analysis code must match the actual data schema of

the data source. Note that Requirement A focuses on the technical

aspect of connecting to the data source. Requirement B refers

to successfully establishing a connection based on data (schema)

compatibility (S2).

Requirement C: Load previous (intermediate) results.

Loading the (intermediate) results from previous executions into

the analysis code is necessary to enable result updates, representing

the core functionality of DA. In the first round, we require a

successful initialization if necessary (S3).

Requirement D: Analysis execution without errors. If the

Requirements A, B, and C hold, the actual DA algorithm should

run without encountering any errors. An error-free execution is

indicated by, e.g., the exit code 0 (S4).

Requirement E: Successful result storage. The analysis code

should save the analysis results in the appropriate location and

format. The term “correct location” refers to emitting the results

as either a file or a processable bit string for transmission. This

guarantees extractable analysis results, which the researcher can

inspect after the execution (S5).

Requirement F: Successful result aggregation. In aggregation-

based approaches (e.g., FL), we additionally require that the central

aggregation of the intermediate results computed and stored in

steps 4&5 terminates without an error (S6).

It is worth noting that we interpret these six requirements

as the root causes of SPOFs and as the fundamental factors that

must be met for an analysis to terminate properly. As such, these

requirements only represent a subset (see “shallow” criterion) of

potential additional criteria. To illustrate, it may be necessary to

ensure a reliable and low-latency connection between the entities

involved in DA to guarantee the proper transmission of the analysis

code. However, we argue that such criteria are mainly subject to

the responsibility of the DA infrastructure providers rather than

the developers of the analysis code. Consequently, we have only

considered requirements that developers and the analysis codes can

directly influence. Additionally, we do not check for the plausibility

of the results. Since DA can cover a wide spectrum of analysis types,

we argue that validating the result’s plausibility might contradict

the “shallow” and the “fast” criteria since possible tests might be
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FIGURE 2

Process diagram inspired by the business process model and notation, displaying the identified six steps performed in DA experiments. First, the

analysis code needs to connect to a data source and query analysis data (Steps 1 & 2). Simultaneously, the code can load results from previous

executions or initial models and weights (Step 3). Afterward, the analysis is executed, and the results are stored (Steps 4 & 5). The results must be

aggregated depending on the DA architecture (Step 6). Finally, either a new execution round is triggered, or the execution finishes.

too detailed in our DA setting. For example, Smoke Tests for

classification and clustering algorithms have already been proposed

by Herbold and Haar (16).

2.4 Implementation of DEATHSTAR

With the foundations established in the previous section,

we proceed to our PoC implementation that we refer to as

DEATHSTAR. This prototype evaluates the analysis code as per our

six criteria. According to the key characteristics of Smoke Testing,

DEATHSTAR should offer capabilities for “fast” and “automated”

Smoke Testing. To accomplish this, we adopt a testing-through-

simulation approach, which simulates an entire DA execution

with multiple rounds and data sources to detect possible non-

compliances with our six criteria. Beyond this aspect of fast test

automation, we also focus on a user-centric design that is inspired

by IDEs and playgrounds as common tools in software engineering.

To provide an overview, we have provided a top-level architectural

diagram in Figure 3.

We developed a containerized web application in Node.js,

using the client-server paradigm (see Figure 3), which enables the

integration into other ecosystems via the provided API (component

1 ). Through the use of containerization this application can be

run platform independent. Moreover, the provided API can also

be used in CI/CD pipelines and other IDEs, enabling developers

to integrate the functionalities of DEATHSTAR into broader

development processes. The User Interface (UI) includes elements

that support developers in writing code and monitoring the

simulations via log outputs. Our implementation is accessible

under theMIT license via the repository associated with this paper.

This repository offers technical descriptions, screenshots, and a

video demonstrating the described features. The following sections

provide a more detailed description of the architectural design.

2.4.1 Data schema model 2
We assume that the developer has access to the data schema

information and the technical details of the data sources. In

this work, we intend to replicate the real data sources of a DA

infrastructure for our simulation and fill each replicated data source

with synthetic data following the same schema and format. As

no real data is involved, we claim that this approach is privacy-

preserving and satisfies our aforementioned objectives. It should

be noted that we consider the term real to be associated with

sensitive and non-shareable data. In some instances, such as data

donations, the developermay have access to real sample data, which

can be used for our Smoke Testing scenario. In the latter case,

we also demonstrate that our targeted approach can handle real

sample data beyond the synthetic data we generate. Describing

the structure of data sources used for data analysis is challenging

because of the sheer amount of data storage technologies, data

types, and their combinations. For these reasons, our goal is to

find a solution that can enable the initialization of the database, the

management and creation of the data structure, and the insertion

of synthetic data while allowing extensions to support different data

sources and data structures in the future.

A common way of specifying data structures and data formats

are Data Schema Models (37, 38). We have decided to use the

widely used and well-established Resource Description Framework

(RDF) and its serialization Turtle6 (39). RDF is very flexible

regarding extendability, adaptability, and granularity level. By

utilizing RDF, we can model the hierarchical fashion of data

sources (see Figure 3), starting from the database technology, via

the inlying tables to the atomic data types of attributes. Moreover,

RDF’s graph-based nature enables us to model more complex

data structures with interconnections between data entities by

additional arcs and nodes added to the graph. Further, we used

RDF in conjunction with the Web Ontology Language (OWL) to

model and represent data structures, making it a versatile tool

that facilitates interoperability and reusability on data-level7. An

integral part of RDF are IRIs, which uniquely identify the entities

described in the RDF model. In our case, this means that data

sources or atomic data types are represented by an IRI. Two

example IRIs are depicted in the Data Schema Model in Figure 3.

IRI A represents the identifier for a specific data source technology,

whereas IRI B refers to the atomic data type double. For the sake

of simplicity, Figure 3 only shows the model for one specific data

source, i.e., a data provider. To represent multiple data providers,

whichmight participate in a DA execution, additional Data Schema

Models in the same format can be added. The Data Schema

6 Terse RDF Triple Language: www.w3.org/TR/turtle/.

7 Schema and examples: https://github.com/PADME-PHT/playground.
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FIGURE 3

Overview of the DEATHSTAR architecture, containing a web application following the client-server paradigm. The server is a monolithic application

that implements each sub-component as a library. Moreover, the overview depicts the process of generating simulated data sources. This process

leverages Internationalized Resource Identifier (IRI) to find and query plugins that generate synthetic data and the data source instances. After the

simulated data sources have been setup, the Simulation Engine 4 simulates a distributed execution of the provided code.

Model is usually specific for one DA use case involving multiple

data sources. Therefore, it is mandatory to initially model each

data provider manually or with semi-automated means. While our

schema as mentioned above only models the structure of the data

source, we further need a mechanism to instantiate actual data

sources and generate data.

2.4.2 Plugin system 3
We decided to leverage a module-based plugin system with

standardized interfaces to handle the instantiation and generation

of multiple data sources and synthetic data (see Figure 3). There

are two general types of plugins: The first type, called Database

Plugins (DB Plugins), manages the data sources (e.g., PostgreSQL)

and their underlying structures (e.g., tables and columns). The

second type, the Data Plugins, produces new data instances of a

specific data type. Both types of plugins are available and provided

as Node.js modules within the DEATHSTAR server and loaded

when the application starts. Therefore, the benefits of using IRIs

have become apparent at this point: Each modeled data source and

type is linked to exactly one instantiation function of a plugin via

an IRI.

Consequently, we can explicitly define how to instantiate a data

source or generate a data instance. Developers can leverage the

flexible plugin system to establish databases according to the “mix-

and-match” principle, allowing them to combine complementary

data plugins to populate the database. Our collection of 30 plugins

for the most common atomic data types are available open-source8

8 Plugins: https://github.com/PADME-PHT/playground/tree/main/src/

backend/src/lib/data-generator/plugins.

for reuse or can be used as templates for the development of

new plugins.

To manage the various types of storage technology, we rely on

software containers, more specifically Docker containers9, to create

a new instance of a data source through our DB plugins mentioned

above. This approach allows us, for example, to instantiate a

separate container for each required data source using a single

Docker API call. Moreover, most data sources like PostgreSQL,

MongoDB, MinIO, or Opal already provide images of various

versions for the Docker environment that can be used as a

starting point. Further, containers provide standardized connection

interfaces, which facilitate the insertion of data instances into the

database.We argue that this approach is versatile enough to support

highly-customized storage technologies since containers can also be

pulled from private repositories. Additionally, developers are also

able to use real data samples with DEATHSTAR by using a custom

plugin that either provides a proxy for the connection to an already

existing data source or creates a data source that uses the real data

samples instead of the generated ones.

2.4.3 Simulation engine 4
The task of the Simulation Engine is to take analysis code and

simulate a DA execution on the data sources, which have been

introduced in the previous sections. At this point, we face another

challenge regarding the analysis code that could range from basic

statistics to even complex code for ML model training, including

a data-preprocessing pipeline, and can be written in different

programming languages. Hence, our solution must be independent

of the analysis complexity and the technology stack used. In

9 Docker: www.docker.com.
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order to achieve this goal, we make use of the containerization

technology again and containerize the analysis code before the

actual simulation. This means that the developer has all the

necessary degrees of freedom to develop the analysis code with

DEATHSTAR. For example, our concept is compatible with all

widely used ML frameworks such as PyTorch10 or Scikit-Learn11.

Apart from the analysis code, we only need the image building

file (e.g., Dockerfile), which gives the instructions for building

the container. To simplify this process, we offer Dockerfile

templates for the most popular programming languages used in

data science, such as Python12 and R13.

We chose to implement the IIL and FL paradigm in our

Simulation Engine, giving us one representative of DA approaches

with and without aggregation. Moreover, we argue that the

implementation can be extended, if needed. For the simulation

of the IIL paradigm, the developer has to provide the mentioned

Dockerfile and the analysis code. In the FL scenario, we

additionally require code for the aggregation component. The

Simulation Engine manages the simulation process, which builds

the analysis container(s). The simulation proceeds as follows: Upon

building the analysis container, the engine injects DB-plugin-

provided connection credentials through environment variables

into the container. It then launches the analysis container, which

executes the analysis code. It should be noted that in FL, these

preliminary steps may occur simultaneously for each replica of

an analysis container. The analysis itself adheres to the abstract

workflow presented in Figure 2. It takes the received credentials

and establishes a connection to the simulated data source (S1).

The analysis code queries the data (S2), loads previous results

if available from the filesystem of the analysis container (S3),

processes, and analyzes the queried data (S4). The computed

analysis results are saved in the container, which is then stopped

by the Simulation Engine. A new container is instantiated from

the stopped container, which carries out steps S1–S5 using the

previous results and the next data source. This represents

the transfer from one data source to the next, enabling us to

simulate the IIL paradigm. On the other hand, in the FL case,

the engine initiates a container containing the aggregator code,

which has to be provided by the developer. This container

gets the intermediate results produced by each replicated analysis

container from the Simulation Engine, which extracts them from

a pre-defined path. The aggregation container then combines the

provided intermediate results into a single global result (S6) before

a new analysis round begins. It is important to mention that

each data source is simulated within its own virtual network.

This approach prevents any side effects, like duplicated hostnames

between institutions, and ensures the simulation accurately reflects

the real execution environment. Moreover, using virtual networks,

the Simulation Engine can be adjusted for the FL case to exchange

intermediate results trough the network.

10 PyTorch: https://pytorch.org/.

11 Scikit-Learn: https://scikit-learn.org.

12 Python: https://www.python.org/.

13 R: https://www.r-project.org/.

3 Results

In order to evaluate our Smoke Testing approach, we divided

our evaluation into two parts to assess different aspects of

our concept. First, we invited potential users and conducted a

User-Study with an accompanying survey (Section 3.1). Through

this User-Study, we investigate the effectiveness of our criteria.

Secondly, as part of a technical evaluation, we replicate several real-

world use cases to evaluate the fitness of our realization in operando

(Section 3.2)14.

3.1 Evaluation of the e�ectiveness

This part of our evaluation has two goals. Firstly, we want

to determine the effectiveness of our defined criteria through

DEATHSTAR by conducting an exemplary DA use case (called

User-Study, see Figure 4). Besides this, we want to assess the

contribution of our concept to the development phase of DA

experiments from a user perspective and surveyed the users after

their development. It should be noted that the scope of this User-

Study is limited to the development of a basic statistical query rather

than a complexMLmodel. This is due to the potential difficulty and

complexity of conducting a User-Study for the latter. However, we

argue that the six criteria established in this study remain relevant

and applicable, regardless of the level of complexity involved in the

analysis, or more specifically, in S4 (Figure 2). In either scenario,

data must be queried and processed, and the results must be stored.

3.1.1 Setup
We designed an exemplary use case that might occur in a

real clinical study15. The use case aims to determine the number

of patients in two hospitals that are at least (≥) 50 years old.

Since we assume that these two hospitals, i.e., data providers,

exist in our real ecosystem, we consequently need to re-model

these, called Hospital A and Hospital B, with DEATHSTAR.

Both offer a relational PostgreSQL database that provides patient

information. The database at Hospital A contains data on patients

and their treatment history, while Hospital B provides data on

patients and their insurance information. At this point, it is worth

mentioning that we explicitly introduce data heterogeneity and

schema mismatches as potential sources of error in DA. The

idea behind introducing those differences has been to investigate

DEATHSTAR’s capabilities to aid users in detecting potential

malfunctions in the code. In our case, both relations about the

relevant patient information have different names (patients on

Hospital A, patient_info onHospital B) and offer varying additional

attributes. Participants are expected to identify these differences

and adjust their code accordingly to pass the evaluation.

14 Detailed results and resources for replicating the evaluations to

are provided at: https://github.com/PADME-PHT/playground/tree/main/

evaluation.

15 For a video demonstration of the use case task see https://github.com/

PADME-PHT/playground.
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FIGURE 4

Our evaluation involved RDF data structures in the user-study and three application scenarios: ISIC-GEN, ISIC-SAMPLE, and the BC use case. The

user-study used two distributed data sources with synthetic data, while ISIC-GEN used three data sources with synthetic data, and ISIC-SAMPLE used

one data source with real sample data (13). Lastly, the BC use case leveraged six data sources with real sample data (14).

3.1.2 User task description and survey
All participants were provided with a task description

document to implement the DA code for this use case with

the programming language Python and the query language

SQL16. The programming and query language has been selected

arbitrarily as our concept leverages programming language-

agnostic containers. After a short oral tutorial explaining the

interaction with DEATHSTAR, participants were asked to develop

the analysis code for the scenario mentioned above. Alongside this

main task, users were encouraged to explore the DEATHSTAR’s

features and functionalities. However, no further guidance or

hints have been provided regarding possible issues during the

development and the participants are unrestricted in how they

fulfill the task. Especially, the intentionally introduced mismatch

problem needs to be identified by the participants only with the

help of DEATHSTAR. After the development was completed, we

asked each participant to submit the code. The submitted code was

then distributed and executed within the actual infrastructure. We

also aimed to assess the quality of our solution from the users’

perspective. Therefore, we conducted a survey upon completion of

the use case implementation. The survey consisted of three parts

and was conducted via an anonymous online questionnaire. The

questionnaire is based on the SUS as a metric to measure the

usability of a system (18, 40). The SUS consists of ten questions that

are answered on a scale ranging from 1 (Strongly Disagree) to 5

(Strongly Agree) (40). From the answers to these questions, a score

is calculated that ranges from 0 to 100 and indicates the system’s

usability, with 100 being the best reachable score (40). The final

part of the evaluation consisted of six custom questions regarding

the comprehensiveness and usefulness of DEATHSTAR, using the

same scale as the SUS.

In total, the evaluation involved 29 participants17 from diverse

backgrounds, such as researchers, developers, and those with

experience in DA algorithm development. The evaluation sessions

16 PostgreSQL Syntax: https://www.postgresql.org.

17 Raw data and details about the evaluation: https://github.com/PADME-

PHT/playground/tree/main/evaluation/user_study.

lasted 30–60 min on average, and the study was completed

within one month. Of the participants, 11 (37.9%) reported

prior experience with DA, while 18 (62.1%) stated having no

prior experience. Of the 29 code submissions, 28 were executed

successfully (96.6%) in the real ecosystem. All participants found

the intentionally introduced schema mismatch at the two data

providers and adjusted their code accordingly. However, one

submission failed to establish a connection to the database since

a connection parameter had been misconfigured (non-compliance

with Requirement A). We have received 28 survey submissions—

one submission was invalid. Based on these, we calculated the

SUS according to Brooke (40). Overall, we reached a SUS

score of 88.3, indicating a high level of usability. Moreover, the

question, stating “The playground solves the problem of [Smoke]

testing distributed analysis algorithms”, has an average of 4.11.

Tables 2, 3 provide an overview of the user ratings. Additionally,

the supplemental material18 provide the raw data and scripts to

calculate the ratings.

3.2 Real-world use cases

In order to showcase the adaptability and flexibility of our

approach, we intend to technically evaluate it further by replicating

three real-world application scenarios with more complex data

structures, schemas, and data types (see Figure 4).We aim to collect

performance benchmarks of DEATHSTAR, assessing its suitability

for a range of scenarios with varying complexity levels of the

analyses involved, usage of data instances, and (simulated) data

sources. We further demonstrate the compatibility of our PoC to

various underlying hardware options and perform the Smoke Tests

using the CPU or the GPU. The selected use cases were previously

conducted byMou et al. andWelten et al. (13, 14).We refer to these

cited references for further details about the DA experiments.

ISIC-GEN (Summary: 10 synthetic data instances per source,

three data sources, GPU only). The open-source dataset used for

18 Supplemental material can be found here: https://github.com/PADME-

PHT/playground.
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TABLE 2 Average (Avg) and standard deviation (SD) per statement of the

System Usability Scale (SUS) (n = 28).

Question Avg SD

I think that I would like to use the Playground frequently 4.21 ±0.79

I found the Playground unnecessarily complex 1.43 ±0.50

I thought the Playground was easy to use 4.57 ±0.69

I think that I would need the support of a technical person

to be able to use the Playground

1.57 ±0.84

I found that the various functions in the Playground were

well integrated

4.64 ±0.56

I thought that there was too much inconsistency in the

Playground

1.14 ±0.36

I would imagine that most people would learn to use the

Playground very quickly

4.46 ±0.74

I found the Playground very awkward to use 1.79 ±1.10

I felt very confident using the Playground 4.54 ±0.58

I needed to learn a lot of things before I could get going

with the Playground

1.18 ±0.48

Each question could be answered on a scale from 1 (strongly disagree) to 5 (strongly agree).

TABLE 3 Average (Avg) and standard deviation (SD) per question

regarding the Playground’s comprehensiveness and usefulness (n = 28).

Question Avg SD

The Playground offers the relevant tools needed to test

distributed analysis algorithms

4.50 ±0.75

The schema information provided in the Playground offers

all the needed information to develop an analysis task on

the described data before its actual execution/deployment

4.54 ±0.69

The Playground facilitates access to the schema

information, which is usually sealed within the institution

4.82 ±0.39

Using the Playground improves the development

process—compared to deploying the analysis algorithms

without the Playground

4.50 ±0.75

The Playground helps with discovering possible problems

in the execution, like differences in data schemas between

Stations, before the execution

4.64 ±0.73

The Playground solves the problem of testing distributed

analysis algorithms

4.11 ±0.79

Each question could be answered on a scale from 1 (strongly disagree) to 5 (strongly agree).

the skin lesion analysis is sourced from the ISIC19 and comprises

image and patient metadata. Mou et al. distributed this data

across three institutions in a real DA setting and conducted

an experiment. In our scenario, we aim to re-model the data

provision. However, this use case presents a challenge as we need

to model two interlinked data sources for each data holder: A Fast

Healthcare Interoperability Resource (FHIR)20 server for patient

data and an object storage system for the skin images (as shown

in Figure 4). We first developed the plugin for the FHIR server

instance, and, secondly, we modeled a basic file dump to store

image data. Finally, we need plugins for each modeled data type.

We have decided to create plugins that generate random data,

19 ISIC Challenge: www.isic-archive.com.

20 FHIR standard: https://hl7.org/fhir.

including random strings or integers, datatypes according

to the FHIR standard, and even images with no semantics. Our

plugins support the FHIR resource types Patient, Media, and

ImagingStudy required in this use case, which are randomly

filled. The chosen data type for dermoscopic images is jpeg, as

it matches the format of the original images. For the jpeg-plugin,

we obtained 70 placeholder images from an external service used

for websites21. After the plugin is instantiated, these images are

stored in the file dump mentioned earlier. Revisiting our main

objective, we strive to offer a concept that enables Smoke Testing of

algorithms. Therefore, we consider the synthetic data instances as

placeholders that can be queried and processed to test the analysis,

but it is not intended for producing plausible analysis results.

ISIC-SAMPLE (Summary: 8,444 sample data instances, one

data source, GPU only). To demonstrate that DEATHSTAR is

capable of managing real) sample data and custom data sources, we

replicated the ISIC-GEN use case using actual plausible sample data

obtained from the ISIC repository mentioned earlier. To achieve

this, we set up an external data source similar to the real setting

by Mou et al. in a network accessible from DEATHSTAR’s host

machine instead of using our provided mechanism for data source

replication.

BC (Summary: 539 sample data instances, six data sources,

CPU only).We conducted another use case with real data samples

about BC characteristics, following a similar approach as in the

previous use case. In their work, Welten et al. distributed CSV data

across six institutions in a real DA setting and conducted a DA

experiment on this BC dataset. We set up external storage for the

CSV data, which is accessible to DEATHSTAR.

After re-modeling the required data sources, we need to

develop the analysis code with DEATHSTAR. For the ISIC use

cases, we developed the same image classification model, which

classifies the images into benign andmalign. In contrast, for BC, we

implement code that trains a logistic regression model to predict

BC. We implemented the analyses according to both executions

paradigms, i.e., one IIL and two FL versions. Note that, regarding

the FL paradigm, we implemented one fully parallelized version

(original version) and one version, called FL-INC, which executes

at most one analysis simultaneously. In other words, FL-INC

performs IIL but updates the analysis results at the end of the

round. At this point, we have provided all necessities to perform

Smoke Tests on each use case. We choose three, one, and six

instances for each respective scenario (as shown in Figure 4) and

start the simulation. Once we successfully executed the code in

the simulated environment, indicating a successful Smoke Test, we

ran the DA algorithms in the PADME platform to evaluate their

operability in a real-world setting. We state that all executions were

as expected and successful.

4 Discussion

The outcomes of our first evaluation (see Section 3.1) show the

effectiveness of our criteria. We observed that almost all executions

of the participant’s algorithms were successful. Overall, the high

number of successful executions shows that our solution can

21 LoremFlickr CC): www.loremflickr.com.
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indeed provide Smoke Testing capabilities for DA. The outcomes

of our survey further reinforce this claim: The participants rated

DEATHSTAR positively and acknowledged that it effectively “solves

the problem of [Smoke] Testing DA algorithms” and “offers the

relevant tools needed to [Smoke] Test” (Table 3). Beyond the

results about the effectiveness, the accompanying user survey

demonstrates that our realization was well-received by our study

group. This result is also reflected in the SUS score of 88.3

(Table 2), placing our realization clearly above the mean score

of 68 (41). Moreover, according to Bangor et al. this score can

be described with an adjective rating of “excellent”, placing it in

the highest out of four quartiles (18). When we investigate the

cohorts, including participants with and without prior experience,

only a small difference in the SUS score is visible: Participants

with a background in DA rated our concept with a score of

86.6 compared to a rating of 89.8 by the unfamiliar users. All

participants have been able to “discover possible problems in the

execution, like differences in data schemas, before the execution” with

DEATHSTAR. Additionally, the participants appreciated the ability

to employ a trial-and-error approach during development.

In the second and more technical evaluation, we assessed

the flexibility of our approach by applying it to real-world use

cases. We have been able to use DEATHSTAR for generating data

and creating complex, interlinked data sources, indicating that its

concept is capable of working with very distinct settings such as

structured data, images or textual data. We would like to emphasize

that the same code used for ISIC-GEN also worked for ISIC-

SAMPLE, indicating that our approach involving synthetic data

was able to successfully replicate data sources used in the real-

world use case (ISIC-SAMPLE). During our technical evaluation,

we additionally measured the duration of each Smoke Test (i.e.,

simulation). Note that each analysis code has to be containerized

before the simulation. As this factor might also count as part

of the Smoke Test, we also measured the image-building time

(see Table 4). All builds have been executed without pulling the

overarching Python image for the analysis container, and the

needed dependencies have been downloaded with a connection

speed of 900 MBits. In the scope of this technical evaluation,

DEATHSTAR has been deployed on a server with 4×3.60 GHz

CPU, 128 GB RAM, and a TITAN XP GPU.

Based on these measured times, we can derive three factors that

influence the Smoke Tests:

1. Analysis complexity: While the Smoke Test of the User-Study

case terminates almost immediately, the more complex data

analyses ISIC-GEN, ISIC-SAMPLE, and BC need more time

since these involveMLmodel training, whose duration is usually

influenced by the number of epochs or the complexity of the

to be trained model itself. Additionally, we can identify another

effect, which is the number of required dependencies used for

the analyses. Due to our design based on containerization,

DEATHSTAR builds an image for each analysis. Hence, each

dependency has to be included. This results in the BC analysis

image needing more time to be built than the ISIC images since

the BC image covers more packages. However, note that many

packages can be cached once an image has been built. This

caching reduces the build times to >2 s.

2. Dataset size: Similar to the analysis complexity, the number of

used data instances for the Smoke Tests influence its duration.

While the analysis code for User-Study and ISIC-GEN only

processes 10 instances per provider (fastest), BC processes 539

instances, and the ISIC-SAMPLE analysis queried 8,444 images

(slowest).

3. Number of simulated data sources: The more providers are

involved in the Smoke Test, the longer the duration. This can

be explicitly seen in ISIC-GEN and BC, where we involved three

and six providers, respectively. Thus, the simulation duration is

directly influenced by a factor proportional to the number of

data sources.

Regarding the three characteristics of Smoke Testing, we

can derive the following connections and conclusions from our

evaluation results. By simulating the analyses, DEATHSTAR

can identify potential issues and problems in the algorithm’s

functionality without having to perform an exhaustive and

extensive test. This contributes to the “shallow” characteristic, and

the high number of error-free executions underpin the effectiveness

of our criteria. Regarding the “fast” characteristic, we face a trade-

off between the duration of the Smoke Tests and three factors

that influence the simulation, as discussed above. At this point, we

argue that the Smoke Test can be optimized, for example, by using

fewer data sources (e.g., in the case of homogeneous data sources)

or fewer data instances. For example, the ISIC-SAMPLE use case

also works using a fraction of the 8,444 images, which might

reduce the Smoke Test duration significantly (see ISIC-GEN).

Furthermore, there is potential for improvement in implementing

the FL paradigm. While executing the fully parallelized version

(FL) in the BC use case, we encountered a slowdown of the

Smoke Test due to the increased loads produced by the parallel

execution. An alternative that circumvents the concurrency issues

and therefore offers faster Smoke Testing could be FL-INC,

which exhibits similar performance to IIL. Finally, regarding the

“automated” characteristic, we found that through our simulation-

based approach, we enable a fully automated Smoke Test with

minimal manual intervention. Each Smoke Testing criterion

mentioned above is automatically validated by our Simulation

Engine, contributing to a seamless use of DEATHSTAR, partially

shown by our survey results.

4.1 Threats to validity

Some limitations have become apparent that can be attributed

to our design decisions. While DEATHSTAR fully automates

the Smoke Tests, some prior efforts still have to be devoted to

collecting the schema information from each data source, which

could pose a bottleneck. This especially holds for the creation

of plugins and the data re-modeling in case sample data is

unavailable for Smoke Testing. Although we included the aspect

of reusability in our design decisions (“mix-and-match”) and our

already developed assets can be used as foundations, the aspect

of re-modeling data sources might still be a time-consuming and

error-prone factor. Since our main objective has been the definition

of Smoke Testing criteria for DA analyses, wemainly focused on the

effectiveness of our criteria. Hence, our evaluation does not cover

the aspect of data re-modeling, and this question remains open.

The second threat is our implementation as such. Our simulation

might produce an overhead in the Smoke Testing strategy that
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TABLE 4 Each row represents the measured duration for the building times of the images, the time for one single provider, and the time for a complete

Smoke Test.

Use case Build
One Data
Source

Smoke Test
IIL

Smoke Test
FL

Smoke Test
FL-INC

User-study 23 s 6 s 12 s 15 s 17 s

ISIC-GEN 1 m 39 s 24 s 1 m 6 s 56 s 1 m 15 s

ISIC-SAMPLE 1 m 39 s 4 m 31 s – – –

BC 6 m 6 s 48 s 4 m 33 s 11 m 53 s 4 m 51 s

Note that the ISIC-SAMPLE use case has only been conducted on one data source.

might validate additional requirements implicitly, which influences

the effectiveness of our approach. The defined criteria can be

tested through another approach beyond simulation that tests

each criterion individually. This threat has also been analogously

stated in work by Cannavacciuolo and Mariani (17). We have

chosen a testing-through-simulation approach to comply with the

“automated” characteristic and the iterativemanner of DA analyses.

Hence, we argue that our approach provides the flexibility tomaster

the sheer amount of data source technologies, schemas, or analysis

types. Validating each criterion separately for each DA scenario

might impede this flexibility. However, the benchmarking of our

concept against other similar approaches remains open.

In summary, in this work, we addressed the issue of lacking

Smoke Testing criteria for the validation of DA code. We have

pointed out that insufficiently tested analysis code is susceptible

to SPOFs, which causes a complicated and time-consuming

development process due to the inherently decentralized nature

of DA infrastructures and the dependence on the data providers

during development. In order to tackle this issue, we propose

six criteria that must be guaranteed to ensure the operability of

the analysis code, representing a successful Smoke Test (RQ1).

Based on these criteria, we developed a PoC, called DEATHSTAR,

that locally performs Smoke Testing on DA code following a

testing-through-simulation approach by simulating an entire DA

experiment (RQ2). Since the application of Smoke Testing to data

analyses is dependent on the availability of sufficient sample data,

we leveraged a flexible and adaptable plugin system, which allows

the semi-automated creation of synthetic test data, which can be

used for Smoke Testing (RQ2.1 & RQ2.2). Hence, we developed

a solution that allows users to develop iteratively (i.e., trial-and-

error) and (Smoke) test their analysis code by simulating its

execution on re-modeled data sources. We evaluated DEATHSTAR

in a two-folded evaluation. First, we conducted a User-Study

with 29 participants to evaluate the effectiveness of our criteria.

We found that 96.6% of all developed DA analyses that were

initially Smoke Tested could be successfully executed in a real DA

environment. Furthermore, our accompanying survey resulted in

a SUS score of 88.3, giving DEATHSTAR an “excellent” usability

rating. Secondly, we applied DEATHSTAR to three real-world

use cases in the scope of a technical evaluation. The technical

results of our evaluation show that our concept is flexible enough

to serve for different use cases and complies with the three

characteristics of Smoke Testing: Shallow, Fast, and Automatic.

In conclusion, within the scope of our work, the contribution

of our PoC fuels research by reducing obstacles in conducting

DA studies.
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