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Background: Parkinson’s disease (PD) is the second most common 
neurodegenerative disease. An objective diagnosis method is urgently 
needed in clinical practice. In this study, deep learning and radiomics 
techniques were studied to automatically diagnose PD from healthy controls 
(HCs).

Methods: 155 PD patients and 154 HCs were randomly divided into a training 
set (246 patients) and a testing set (63 patients). The brain subregions 
identification and segmentation were automatically performed with a VB-
net, and radiomics features of billateral thalamus, caudatum, putamen and 
pallidum were extracted. Five independent machine learning classifiers 
[Support Vector Machine (SVM), Stochastic gradient descent (SGD), random 
forest (RF), quadratic discriminant analysis (QDA) and decision tree (DT)] 
were trained on the training set, and validated on the testing. Delong test 
was used to compare the performance of different models.

Results: Our VB-net could automatically identify and segment the brain into 
109 regions. 2,264 radiomics features were automatically extracted from 
the billateral thalamus, caudatum, putamen or pallidum of each patient. 
After four step of features dimensionality reduction, Delong tests showed 
that the SVM model based on combined features had the best performance, 
with AUCs of 0.988 (95% CI: 0.979  ~  0.998, specificity  =  91.1%, sensitivity 
=100%, accuracy  =  89.4% and precision  =  88.2%) and 0.976 (95% CI: 
0.942  ~  1.000, specificity  =  100%, sensitivity  =  87.1%, accuracy  =  93.5% and 
precision  =  88.6%) in the training set and testing set, respectively. Decision 
curve analysis showed that the clinical benefit of the line graph model was 
high.

Conclusion: The SVM model based on combined features could be used to 
diagnose PD with high accuracy. Our fully automatic model could rapidly 
process the MRI data and distinguish PD and HCs in one minute. It greatly 
improved the diagnostic efficiency and has a great potential value in clinical 
practice to help the early diagnosis of PD.
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Introduction

Parkinson’s disease (PD) is a complex and progressive 
neurodegenerative disorder characterized by an insidious onset, 
high incidence, and significant disability rate (1, 2). It poses a 
serious threat to the physical and mental health, as well as the 
overall quality of life, of middle-aged and elderly individuals (3). Its 
primary clinical manifestations include motor symptoms such as 
tremors, muscle rigidity, bradykinesia, postural instability; 
non-motor symptoms such as sleep disorders and olfactory 
dysfunction; autonomic nervous system dysfunction; cognitive 
impairment; and psychiatric disturbances (4). Currently, more than 
6 million people worldwide suffer from PD, and the number is 
expected to further increase, bringing a huge burden to families and 
the society (5).

The rapid and accurate diagnosis of PD is of great significance 
for targeted treatment, prevention of disease progression, 
improvement of quality of life and overall prognosis (6). At present, 
the diagnosis of PD still relies on subjective clinical symptoms (7). 
Objective diagnosis methods are urgently needed in clinical practice. 
As a medical imaging technique, MRI has the advantages of 
non-invasive, non-radiation exposure, and high-resolution 
capabilities, making it widely used in the diagnosis and staging of 
neurological diseases (8, 9). Previous studies have identified 
alterations in both the structure and function of the brain in 
individuals diagnosed with PD (10, 11). Vogt et al. (12) discovered 
that the cingulate cortex played a crucial role in identifying new 
biomarkers for patients with early PD. Nyberg et al. (13) found a 
significant increasing in the volume of bilateral hippocampal and 
right nucleus accumbens of PD patients. Kassubek et al. discovered 
a significant increasing in the gray matter volume of the ventral 
medial thalamic nucleus on the contralateral side of the tremor limb 
in patients with PD. Furthermore, they observed a positive 
correlation between changes in thalamic gray matter volume and 
tremor amplitude (14). However, these studies mainly focused on 
macroscopic changes of the brain of PD patients, but overlook the 
small structural changes.

Radiomics, proposed by Lambin et  al. (15), is a new field of 
computer-aided imaging diagnosis that assists in diagnosing and 
differentiating diseases by quantifying subtle information in medical 
images that is difficult to evaluate with the naked eye. Tupe-Waghmare 
et  al. (16) had extracted radiomic features from the subcortical 
structure, cerebellum, brainstem, and used a random forest machine 
learning model to identify PD and HCs with an accuracy of 70%. 
Tafuri et al. (17) used Freesurfer software to extract radiomics features 
from the subcortical nucleus and used SVM model to distinguish PD 
and HCs patients, achieving an AUC (area under the receiver 
operating characteristic curve) of 0.77. However, these methods 
mostly showed low accuracy and were time-consuming, taking 
approximately 4 h to process a patient. These shortcomings limited its 
clinical application. In our previous study, we  had developed a 
CNN-based artificial intelligence model for the automatic 
segmentation and measurement of the whole brain (109 brain 
regions), and the entire segmentation and reconstruction process took 
less than half a minute (18). In this study, we used this network to 
quickly segment and analyze the radiomics characteristics of the 
cerebral cortex and neuclei, and try to establish artificial intelligence 
models to help distinguish PD and HCs.

Materials and methods

Participants

All PD patients included in this study were sourced from the 
PD Progression Initiative (PPMI) database. The PD subjects in the 
PPMI were newly diagnosed patients who were not receiving any 
medication. The clinical diagnostic criteria for PD were based on 
the Movement Disorder Society guidelines. For the most up-to-
date information, please visit https://www.ppmi-info.org/. The 
T1-weighted MR images were obtained using a 3 T Tesla scanner 
manufactured by Siemens. The imaging parameters were as 
follows: Acquisition Type = 3D; Flip Angle = 9.0 degree; field of 
view (FOV) = 256 × 256; matrix = 256 × 256; TR = 2300.0 ms; 
TE = 3.0 ms; Slice Thickness = 1.0 mm; interslice gap = 0 mm. A 
total of 155 PD patients and 154 HCs were enrolled in the study. 
The HC subjects and PD patients were matched for age and sex. All 
patients were randomly assigned to a training set and a testing set 
in a ratio of 8:2.

Brain subregions segmentation

The brain subregions segmentation module was implemented 
using a deep learning algorithm based on a 3D VB-NET network. The 
data preprocessing module performed a series of operations, including 
rotation, resampling, resizing, skull stripping, image non-uniform 
correction, histogram matching, and gray-scale normalization, on the 
MRI images used for training and testing. All images are standardized 
to the size of 256*256*256*1 mm3 in the standard Cartesian LPI 
coordinate system, and the gray-scale range was within the interval 
(−1, 1). The network training module used an end-to-end deep 
convolutional neural network, taking each sample image and its 
corresponding brain substructure partition atlas as the training 
sample. The sample image was the network input, and the output label 
was the brain atlas correspondent to the sample image. The network 
parameters were adjusted according to the difference between the 
output brain division and the actual brain division, and the training 
continues until the network basically converges and the output label 
image was substantially consistent with the partition image 
corresponding to the sample. In the overall network training process, 
a coarse-to-fine cascading segmentation strategy was used, simplifying 
the complexity and difficulty of the brain segmentation problem by 
step decomposition, providing extra information to the lower level 
network by the upper level network to enhance the network’s 
segmentation performance, and achieving fine segmentation of the 
large brain region, medium brain region, and brain substructures on 
a stage-by-stage basis. The model was constructed based on 1,800 
subjects and evaluation showed an averaged 0.92 Dice overlap with 
ground truth on 295 subjects. Detailed segmentation process 
information was descripted in our previously published literature (18).

The entire brain was automatically divided into 109 subregions, 
which included 22 subregions in the temporal lobe, 20 subregions in 
the frontal lobe, 12 subregions in the parietal lobe, 8 subregions in the 
occipital lobe, 8 subregions in the cingulate gyrus, 2 subregions in the 
insula, 12 subcortical neuclei, white matter structures, ventricles, 
cerebellum structures and other structures (Supplementary material 1). 
The segmentation process took less than half a minute for each patient. 
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The flow chart of brain subregions segmentation was shown in 
Figure 1.

Features extraction and dimensionality 
reduction

The volume of 109 brain subregions of each patient was 
automatically extracted through the deep learning model. 2,264 
radiomics features were automatically extracted from the billateral 
thalamus, caudatum, putamen or pallidum of each patient. There were 
18 first-order statistics and 14 shape features, which reflect the shape 
and size of the region accurately. Texture features included 21 Gray 
Level Co-occurrence Matrix (GLCM) features, 16 Gray Level Run 
Length Matrix (GLRLM) features, 16 Gray Level Size Zone Matrix 
(GLSZM) features, 5 Neighbouring Gray Tone Difference Matrix 
(NGTDM) features, and 14 Gray Level Dependence Matrix (GLDM) 
features. The high level features were obtained through 24 filters 
(including Box Mean, additive Gaussian Noise, binomial blur, 
curvature flow, Box-Sigma, normalization, Laplace Sharpening, 
discrete Gaussian, mean, speck noise, recursive Gaussian, Shot Noise 
and LoG with sigma values of 0.5, 1, 1.5, and 2), as well as wavelet 
transformations (LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH). 
All radiomic features were then normalized using z-score 
normalization, and the reproducibility of these features was assessed 
using a pipeline that adheres to the recommendations of the Image 
Biomarker Standardization Initiative.

The relief and least absolute shrinkage and selection operator 
(LASSO) method were used to select the most robust features. 
Hyperparameter for LASSO was evaluated using stratified 5-fold 
cross-validation-based grid search method on the training set. The 
parameters that provided the highest cross-validation AUC 
was selected.

Models building and evaluation

Based on the retained features, five independent machine 
learning classifiers, including Support Vector Machine (SVM), 
Stochastic gradient descent (SGD), random forest (RF), quadratic 
discriminant analysis (QDA) and decision tree (DT) algorithm 
were trained on the training set, and validated on the testing set. 
The performance of classifier models on the test subset was 
evaluated by the mean and 95% confidence intervals (CI) of the 
accuracy, sensitivity/recall, specificity, and precision based on a case 
probability cut-off value of 0.5, as well as the F-score metric and 
area under the receiver operating characteristic curve (AUC). The 
calibration curve was used to evaluate the calibration of the model, 
and DCA was used to evaluate the clinical applicability of the 
predictive model. The flow chart of our study was shown in 
Figure 2.

Statistical analysis

Statistical analyses were performed with R (version 4.0.4) and 
Python software. Mann Whitney U test or Student’s t test was used for 
the continuous variables according to the test of normal distribution. 
The chi-square test was used to compare categorical variables. 
Statistical significance was indicated by a two-tailed p value <0.05. 
Delong test was used for the comparison of different models.

Results

A total of 155 PD patients were enrolled in the study, including 99 
males and 56 females. Meanwhile, 154 HCs were included, including 
99 males and 55 females. There was no significant difference in age 

FIGURE 1

The flow chart of Cascading neural network framework.
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and gender between the two groups. The demographic and clinical 
features of PD and HC were shown in Table 1.

In the training set, the volume of 109 brain subregions of each 
patient was automatically obtained. 100 radiomics features were 
selected from 4,528 radiomics features of the bilateral thalamus using 
the relief method, and then 16 optimal features were obtained using 
the LASSO method. According to the same method, 12, 15, and 10 
optimal features were obtained from the caudatum, putamen, and 
pallidum, respectively. Finally, feature selection of relief method and 
LASSO were performed again for all the above brain regions together, 
to obtain the 13 optimal combined features (Figure 3).

Twenty-five models were established based on algorithms of 
SVM, SGD, RF, QDA, DT and thalamus features, caudatum 
features, putamen features, pallidum feature and combined 
features. ROC curves of SVM, SGD, RF, QDA and DT models 
based on thalamus, caudatum, putamen, pallidum and combined 
features were shown in Table 2. It was found that the SVM model 
based on the combined features (5 features from pallidum, 4 
features from putamen, 4 features from caudatum) showed the 
best performance, with AUCs of 0.988 (95% CI: 0.979 ~ 0.998, 
specificity = 91.1%, sensitivity =100%, accuracy = 89.4% and 
precision = 88.2%), 0.976 (95% CI: 0.942 ~ 1.000, 
specificity = 100%, sensitivity = 87.1%, accuracy = 93.5% and 
precision = 88.6%) in the training set and testing set, respectively 
(Figure  4). The calibration curve showed a good agreement 
between the actual and predicted probabilities of the samples 
(Figure  5A). Decision curve analysis showed that the clinical 
benefit of the line graph model was high (Figure 5B).

Discussion

It is well known that PD is a complex progressive 
neurodegenerative disease with high incidence rate (19). Developing 
an objective, accurate, and effective method to distinguish PD and HC 
has become an urgent issue in clinical practice. The changes in the 
cerebral cortex, deep nucleus, cerebellum and ventricles were found 
closely related to the occurrence of PD (20). Traditional imaging 
diagnostic methods were time-consuming, subjective and unable to 
detect these subtle changes in brain structure (21). Deep learning and 
radiomics were new fields of computer-aided imaging diagnosis (22), 
which overcomed the limitations of visual diagnosis and could 
quantify the subtle information in medical images, providing new 
hope for the rapid and accurate clinical diagnosis of PD.

In this study, a VB-net network evolved from U-Net network was 
developed to automatically identify and segment the cerebral cortex, 
cerebellum, ventricle, and 14 subcortical nuclei in 3D-T1-weighted 
imaging sequences. 2,264 radiomics features were automatically extracted 
from each region of the bilateral thalamus, caudatum, putamen, or 
pallidum. Five machine learning algorithms were applied to classify PD 
and HCs automatically and an independent verification group was set up 
to verify the performance of the model. We found among SVM, SGD, RF, 
QDA and DT classifiers, SVM classifier had the highest classification 
performance, with an AUC of 0.988 in the training set and 0.974 in the 
testing set. Our results demonstrated that the application of artificial 
intelligence technology to analyze raw T1-weighted MRI images could 
accurately differentiation PD patients from HCs. As a completely objective 
method, it did not rely on patients’ personal history or doctors’ clinical 

FIGURE 2

The flow chart of brain subregions segmentation, features extraction, features dimension reduction and models construction.

TABLE 1 Clinical and neuropsychological characteristics.

Variable PD (n =  155) HC (n =  154) p

Age (years) 61.2 ± 9.4 70.5 ± 6.5 0.143

Gender (M/F) 99/56 99/55 0.110

Education (years) 15.3 ± 2.9 16.8 ± 2.2 0.109

UPDRS III_score 20.9 ± 9.1 /

MoCA_score 27.6 ± 2.0 /

Modified Hoehn and Yahr Scale 1.6 ± 0.5 /

Two-sample t test was used for continuous variable p-value and Chi-square test was used for discrete variable p-value. *p values less than 0.05 were considered statistically significant.
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FIGURE 3

Lasso algorithm for features selection of PD patients and HCs (A). The Lasso path displayed coefficient profiles for radiomic features across the entire 
range of possible values (B). Rad_Score distribution in the training sets (C) and testing set (D). “0” group represented HCs. “1” group represented PD.

TABLE 2 Results of DT, SVM, SGD, RF, and QDA models on training set and testing set.

Models

AUC Sensitivity Specificity Accuracy

Training set Testing set
Training 

set
Testing set

Training 
set

Testing set
Training 

set
Testing set

Thalamus 

features

DT 0.975 (0.957–0.993) 0.892 (0.799–0.985) 0.992 0.968 0.902 0.871 0.947 0.919

SVM 0.967 (0.945–0.989) 0.970 (0.932–1.000) 0.967 0.968 0.894 0.903 0.931 0.935

SGD 0.890 (0.851–0.929) 0.903 (0.828–0.978) 0.846 0.903 0.927 0.903 0.886 0.903

RF 0.958 (0.934–0.981) 0.934 (0.870–0.998) 0.927 0.968 0.862 0.871 0.894 0.919

QDA 0.866 (0.817–0.916) 0.881 (0.787–0.976) 0.837 0.935 0.813 0.871 0.825 0.903

Caudatum 

features

DT 0.976 (0.961–0.992) 0.873 (0.772–0.973) 0.911 0.903 0.959 0.839 0.935 0.871

SVM 0.947 (0.917–0.977) 0.956 (0.907–1.000) 0.919 0.935 0.886 0.871 0.902 0.903

SGD 0.886 (0.846–0.926) 0.887 (0.807–0.967) 0.87 0.903 0.894 0.871 0.882 0.887

RF 0.957 (0.935–0.978) 0.937 (0.874–0.999) 0.886 0.903 0.878 0.871 0.882 0.887

QDA 0.876 (0.828–0.923) 0.921 (0.848–0.994) 0.878 0.968 0.813 0.871 0.846 0.919

Putamen 

features

DT 0.977 (0.959–0.995) 0.822 (0.699–0.994) 0.951 0.903 0.943 0.774 0.947 0.839

SVM 0.947 (0.917–0.977) 0.945 (0.885–1.000) 0.935 0.968 0.878 0.871 0.907 0.919

SGD 0.918 (0.883–0.952) 0.851 (0.762–0.940) 0.935 0.774 0.894 0.935 0.915 0.855

RF 0.957 (0.935–0.980) 0.939 (0.879–0.998) 0.886 0.935 0.878 0.871 0.882 0.903

QDA 0.867 (0.817–0.916) 0.912 (0.833–0.990) 0.878 0.935 0.821 0.871 0.85 0.903

Pallidum 

features

DT 0.958 (0.934–0.981) 0.841 (0.733–0.950) 0.951 0.839 0.886 0.839 0.919 0.839

SVM 0.941 (0.909–0.972) 0.924 (0.854–0.994) 0.886 0.839 0.87 0.871 0.878 0.855

SGD 0.849 (0.806–0.893) 0.900 (0.827–0.973) 0.943 1 0.756 0.806 0.85 0.903

RF 0.947 (0.92–0.973) 0.914 (0.836–0.991) 0.902 0.903 0.854 0.871 0.878 0.887

QDA 0.877 (0.831–0.923) 0.891 (0.801–0.980) 0.846 0.903 0.813 0.871 0.829 0.887

Combined 

features

DT 0.976 (0.957–0.996) 0.818 (0.702–0.935) 0.967 0.839 0.951 0.806 0.959 0.823

SVM 0.988 (0.979–0.998) 0.976 (0.940–1.000) 0.967 0.935 0.943 0.903 0.955 0.919

SGD 0.947 (0.919–0.975) 0.952 (0.897–1.000) 0.967 0.968 0.927 0.935 0.947 0.952

RF 0.980 (0.966–0.994) 0.960 (0.917–1.000) 0.959 0.935 0.894 0.871 0.927 0.903

QDA 0.963 (0.943–0.984) 0.969 (0.931–1.000) 0.927 0.968 0.878 0.774 0.902 0.871
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FIGURE 4

Receiver Operating Characteristic (ROC) curves for SVM, SGD, RF, QDA and DT models in training set (A) and testing set (B).

FIGURE 5

Calibration curves for nomogram goodness of fit (A). Decision curves of different models (B).

experience, making it more subjective. To the best of our knowledge, this 
study achieved the first fully automatic differentation of PD and HCs with 
high accuracy. Previously, Liu et al. (23) had used a radiomic model based 
on T2-weighted images of caudate nucleus and putamen to distinguish 
between PD and HCs, and the AUCs in the training set and testing set 
were 0.8767 (95% CI: 0.8066 ~ 0.9469) and 0.7143 (95% 
CI:0.5540 ~ 0.8746), respectively. Their results showed low accuracy and 
the manual brain segmentation took a long time, greatly reducing its work 
efficiency and clinical value. Adeli et al. (24) had utilized MRI and Single-
Photon Emission Computed Tomography (SPECT) data from 538 
subjects in the PPMI database to establish a classification framework, 
achieving a diagnostic accuracy of 97.5% for distinguishing between PD 
and HCs. However, the accuracy of their study mainly depended on the 
SPECT data, while the MRI data only made a small contribution to 
diagnostic ability. Additionally, the SPECT examination was expensive 
and involved radiopharmaceuticals that were not easily acceptable by 
patients (25). In our study, conventional MRI T1 weighted images were 
used, and all processes were fully automated, resulting in significant 
clinical significance. Our study was the first to use a deep learning model 

to automatically detect and segment brain subregions and extract valuable 
information. Our model could identify PD patients within 1 min and 
provided high accuracy. With this artificial intelligence system, doctors 
could quickly and accurately diagnose PD and perform early treatment 
timely, which could significantly improve prognosis. On the other hand, 
it could improve medical efficiency, shorten patient waiting time and 
reduce medical labor costs.

In the optimal model of this study, 13 radiomics features were 
retained, including 5 features from pallidum, 4 features from 
putamen and 4 features from caudatum. The 5 features from the 
pallidum included one Gray-level dependence matrix (GLDM) 
feature, one Gray-level run length matrix (GLRLM) feature, one 
first-order feature and two GLDM features. The pallidum receives 
afferent fibers from the subthalamic nucleus and is the primary 
region of the basal ganglia that emits efferent fibers (26). It could 
continuously release inhibitory neurotransmitter γ-aminobutyric 
acid (GABA), which may cause tremors (27). Hutchison et al. (28) 
had discovered the presence of neurons that exhibit tremor 
frequency activity ranging from 4 to 6 Hz in the pallidum, thus 
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supporting the significant role of the pallidum in generating resting 
tremors in patients with PD. The first-order feature of it reflected 
changes in the shape and volume of the pallidum (29). Previous 
studies had demonstrated significant alterations in pallidum 
volume between PD patients and HCs (30, 31). The loss and 
degeneration of pallidus neurons, as well as the proliferation of glial 
cells, could lead to texture changes in MRI images, which were 
reflected in GLDM and GLRLM. The four features of the putamen 
were all first-order characteristics, including Mean Absolute 
Deviation, Kurtosis, Energy, and Minimum. Previous studies had 
indicated that the putamen appeared to be the first region affected 
in PD (32). The four features of the caudatum included one first-
order feature, one GLCM feature and two GLRLM features. The 
caudatum is a key substructure of the unique basal ganglia circuit 
associated with emotional and psychomotor fatigue. It plays a 
crucial role in the pathological and physiological regulation of PD 
(33). Previous studies had proved that dopaminergic dysfunction 
could lead to damage in the caudatum of PD patients, resulting in 
morphological and pathological changes (34, 35). The first-order 
features reflected the asymmetry and flatness of the morphology of 
the caudate nucleus, while the features of GLCM and GLRLM 
reflected the roughness and heterogeneity caused by pathological 
changes in the internal structure of the caudate nucleus.

Our study had several limitations. Firstly, this was a retrospective 
cross-sectional study that did not reflect the dynamic changes of the 
brain in PD. A prospective longitudinal follow-up study was needed in 
the future. Secondly, the sample size of PD patients was relatively small 
and all data were obtained through 3 T Siemens scanners; therefore, the 
generalization of the model needed to be further verified. In the future, 
images from multiple research centers were required for independent 
external validation, so that it could be adapted to a wider range of 
clinical scenarios. Finally, although we had confirmed that radiomics 
features have high accuracy in distinguishing PD from HCs, the 
pathological basis behind them still needed to be further revealed.

Conclusion

In this study, we established an AI model which could distinguish 
PD and HCs accurately. It was fully automated and could quickly 
process the routine MRI data within one minute to obtain accurate 
results. Our research results have greatly improved the diagnostic 
efficiency and had a great potential value in clinical practice to help 
the early diagnosis of PD.
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