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Sepsis is a systemic inflammatory disease caused by severe infections that involves 
multiple systemic organs, among which the lung is the most susceptible, leaving 
patients highly vulnerable to acute lung injury (ALI). Refractory hypoxemia and 
respiratory distress are classic clinical symptoms of ALI caused by sepsis, which 
has a mortality rate of 40%. Despite the extensive research on the mechanisms 
of ALI caused by sepsis, the exact pathological process is not fully understood. 
This article reviews the research advances in the pathogenesis of ALI caused by 
sepsis by focusing on the treatment regimens adopted in clinical practice for the 
corresponding molecular mechanisms. This review can not only contribute to 
theories on the pathogenesis of ALI caused by sepsis, but also recommend new 
treatment strategies for related injuries.
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1 Introduction

Sepsis is a systemic inflammatory response syndrome caused by bacteria, viruses and other 
pathogenic microorganisms in the body (1–3). It is also one of the most important causes of 
death of critically ill patients (4, 5). According to the version 3.0 Guidelines of International 
Consensus on Sepsis (Third Edition, 2016), sepsis is a multi-organ dysfunction caused by host 
inflammatory response disorders dominated by infections (6–8). The morbidity and mortality 
of sepsis remain high, moreover, the high hospitalization rate and the high mortality rate have 
pushed the health care cost of this disease to the top (8, 9). During the process of multiple organ 
dysfunction caused by sepsis, the lung is the earliest and most susceptible target organ (10, 11). 
Research indicates that 25 to 50% of sepsis patients experience acute lung injury (ALI), with a 
mortality rate of 40% (12, 13). Patients with sepsis-induced ALI (S-ALI) have weakened gas 
exchange function due to lung inflammation and tissue damage. Pathological processes include 
pulmonary vascular endothelial damage, reduced alveolar surface tension, inflammatory factor 
release and pulmonary interstitial fibrosis (14, 15). The clinical manifestations are systemic 
inflammatory response syndrome characterized by stubborn hypoxemia and respiratory distress 
(16, 17).

The occurrence and development of ALI caused by sepsis is a complex process involving 
multiple pathways and genes (18, 19). Previous studies have failed to elucidate the pathogenesis 
of this disease, and there are currently no effective treatment methods available. Therefore, 
exploring the pathophysiological mechanisms for and possible therapeutic interventions in ALI 
caused by sepsis is of great significance for clinical patients and prognosis. In this review, the 
research progress in pathogenesis of ALI caused by sepsis is summarized in terms of 
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inflammatory cell mechanisms (20), oxidative stress mechanisms (21), 
coagulation system mechanisms (22), pulmonary surfactant (23) and 
genetic mechanisms (24). The feasible therapy strategies regarding the 
variety of induced molecular mechanisms are also outlined.

2 Definition and epidemiology of ALI 
caused by sepsis

ALI caused by sepsis is a severe inflammatory response of 
infection that causes damage to the alveolar wall and pulmonary 
exudation, leading to impaired lung function. The clinical 
manifestations of patients with ALI caused by sepsis include difficulty 
in breathing, hypoxemia, cough, fever, and accelerated heartbeats. 
Severe patients may experience shock and multiple organ dysfunction 
(25, 26). Severe sepsis with ALI can endanger a patient’s life. S-ALI is 
different from acute respiratory distress syndrome (ARDS) in that the 
latter is caused by multiple factors, while the former is caused by 
infections (27–29).

The Institute for Health Metrics and Evaluation (IHME) of the 
University of Washington conducted a statistical analysis of the 
morbidity and mortality of sepsis in the world between 1990 and 2017. 
The results showed that in 2017 about 48.9 million cases of sepsis were 
recorded globally, 11 million of which died due to sepsis, accounting 
for 19.7% of the global death toll (30). The global incidence of sepsis 
is as high as 437 cases/100000 person years, and sepsis accounts for 
6% of the number of admissions in the United  States. An 
epidemiological study on the prevalence, prognosis, and treatment of 
severe sepsis in children was conducted in 128 institutions from 26 
countries worldwide for the first time. 6,925 patients were screened, 
and 569 developed severe sepsis (the prevalence rate was 8.2%, with a 
95% confidence interval of 7.6–8.9%). The age of patients averaged 
3.0 years old (the interquartile range was 0.7–11.0), and the hospital 
mortality rate was 25% (31). In 2017, an epidemiological survey based 
on population sepsis in China showed that the incidence of sepsis was 
461/100000, and the case fatality rate was 79/100000 (32). In addition, 
another survey in China showed that the mortality rate of sepsis was 
12.6%. An epidemiological survey of 2,322 sepsis patients from 44 
ICUs showed that 68.2% of sepsis patients had ALI, with a 90-day 
mortality rate of 35.5% (33).

Reportedly, 150,000 to 200,000 patients worldwide die annually of 
S-ALI caused by sepsis (5). S-ALI is one of the main causes of death 
in ICUs. The mortality rate of S-ALI patients is reportedly significantly 
higher than that of non-sepsis ones, with the 60 day mortality rates of 
the two as high as 38.2 and 22.6%, respectively (34). In addition, 
patients with underlying diseases such as diabetes, cardiovascular 
diseases, pulmonary diseases, and liver dysfunctions are more 
vulnerable to S-ALI (35, 36), especially the elderly and patients with 
low immune function, whose mortality are higher (37). Because of its 
high morbidity and mortality, this disease has become one of the 
targets of medical research in recent years.

3 The pathogenesis of S-ALI

The alveolar epithelial cells are composed of two types of cells: 
type I and type II. They combine with alveolar vascular endothelium 
to form a layer of alveolar wall capillary barrier, which can protect 

lung tissue from bacterial and viral infections under normal 
physiological conditions (38). Interestingly, type I alveolar epithelial 
cells exhibit plasticity during alveolar development and have a 
protective effect on lung barrier function (39). As a type of stem cell, 
type II alveolar epithelial cells can proliferate and differentiate into 
type I alveolar epithelial cells, and participate in the synthesis and 
secretion of surfactants that regulate alveolar surface tension. They 
play an essential role in enhancing alveolar fluid clearance and 
reducing pulmonary inflammatory response (40). Due to the 
protective effect of alveolar epithelial cells on the lung tissue barrier, 
the onset of ALI can manifest as apoptosis of alveolar epithelial cells 
and damage to the alveolar wall capillary barrier (41, 42). The 
mechanisms by which sepsis leads to the development of ALI are 
shown in Figure 1.

Regarding the mechanism of apoptosis of alveolar epithelial cells 
and damage to the alveolar wall capillary barrier, treatment measures 
include respiratory support therapy, lung protective ventilation, 
nutritional support and sufficient fluid management, use of 
antioxidants and anti-inflammatory drugs and immunotherapy (43–
46). It should be noted that due to the complex pathogenesis of ALI 
caused by sepsis, alveolar epithelial cell apoptosis and alveolar wall 
capillary barrier damage require individualized treatment.

3.1 Inflammatory response mediated injury

3.1.1 The impact of monocytes and macrophages 
on the process of ALI

Monocytes are mainly distributed in bone marrow and blood, 
and are important cells for innate immune response (47, 48). 
Monocytes can recognize and bind microbial components through 
the toll like receptor (TLR) on the surface, release a variety of 
inflammatory mediators and chemokines, and stimulate the further 
development of inflammatory response (49, 50). In addition, 
monocytes can also differentiate into macrophages and affect the 
function of other immune cells through the synergistic effect of 
cytokines released (51). In cases of inflammatory injuries in the body, 
monocytes can migrate to the infection site of inflammatory reaction 
and differentiate into residential tissue macrophages that contain 
multiple receptors on their surfaces and produce different 
polarization states under the stimulation of different microorganisms 
(52, 53). Among them, those polarized with pro-inflammatory 
phenotype are called classical macrophages (M1), while those 
polarized with anti-inflammatory phenotype are called substitute 
macrophages (M2) (54). Under the induction of cytokines which can 
be detected in tumor necrosis factor-α (TNF-α) and interferon-γ 
(IFN-γ), the release of pro-inflammatory cytokines such as 
interleukin-1 (IL-1), IL-6, and IL-8  in M1 exacerbates the body’s 
inflammatory response. M2 can inhibit the release of 
pro-inflammatory factors and promote the secretion of IL-10 and 
transforming growth factor-β (TGF-β), anti-inflammatory cytokines 
and effectively eliminate apoptotic cells. Research has shown that 
serum macrophage inhibitory factor (MIF), an important regulator 
of innate immunity, is closely related to ALI and the severity of the 
disease in sepsis patients (55, 56). Bacterial antigens stimulate white 
blood cells to release MIF, which binds to CD74 in other immune 
cells and triggers an acute immune response. Overexpressions of MIF 
can lead to excessive activation of inflammatory responses, leading 
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to lung injury and organ dysfunction (57). Inhibiting MIF can 
alleviate the severity of ALI caused by sepsis, reduce inflammatory 
response and cell apoptosis (58). In fact, macrophages are one of the 
most important cell types in the process of ALI caused by sepsis. 
When pathogens invade the lungs, macrophages can recognize and 
ingest microorganisms such as bacteria, and activate T and B cells 
through antigen presentation, thereby inducing and enhancing the 
body’s immune response (59). In the process of macrophage 
activation, the TLRs on its surface binds to the antigen, which can 
activate NF-κB signal and MAPK pathways lead to the release of 
various inflammatory mediators and chemokines, attract a large 
number of inflammatory and immune cells into the lungs, and cause 
lung inflammatory response and damage (60, 61). Research has 
shown that various types of TLRs, including TLR2, TLR4, TLR5, 
TLR9, are involved in the pathogenesis of ALI caused by sepsis (62, 
63). Therefore, inhibiting the TLR signaling pathway can alleviate the 
inflammatory response and severity of ALI caused by sepsis. For 
example, treatments targeting at TLR4 involve the use of TLR4 
antibodies, TLR4 antagonists, and TLR4 signal transduction 

inhibitors (62). The treatment methods for TLR9 include the use of 
TLR9 antagonists (63). However, it should be noticed that since TLRs 
play an important role in the immune response of the body, inhibiting 
the TLR signaling pathway may affect the body’s immune defense 
ability, hence we need assess the safety and effectiveness of treatments. 
Also, macrophages can participate in the repair and regeneration 
process of lung injury by phagocytosing dead and fragmented cells, 
clearing inflammatory mediators, and secreting cell growth factors 
(64). The role and mechanism of mononuclear-macrophages in ALI 
are shown in Figure 2.

In summary, monocyte-macrophages play an important role in 
the pathogenesis of ALI caused by sepsis, and their abnormal 
activation and dysfunction can lead to excessive inflammatory 
response and extensive damage to lung tissue. The current treatment 
strategies for this mechanism are also a hot spot. It is found that 
inflammatory cytokines such as IL-1β and TNF- α can alleviate 
inflammatory reactions and tissue damage (42, 65). Anti-cytokine 
drugs such as tocilizumab, adalimumab and celastrol have been used 
clinically to treat ALI (66–68).

FIGURE 1

Acute lung injury in sepsis mainly causes alveolar damage through NF-KB, JAK2/STAT3, mTOR, Notch, and MAPK pathways, leading to impaired gas 
exchange function and inflammatory exudation.
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3.1.2 The impact of neutrophils and neutrophil 
extracellular traps on the ALI process

Neutrophils are briefly surviving granulocytes that are the initial 
defense against invading pathogens. They recruit other immune cells 
through phagocytosis, degranulation, and production of reactive 
oxygen species, chemokines, and cytokines to maximize the host’s 
immune response, thus achieving this goal (69). Abnormal activation 
of neutrophils is one of the hallmarks of ALI (70). In the process of 
ALI, neutrophils accumulate in the lungs, increasing the expression of 
inflammatory cytokines, damaging epithelial and endothelial integrity, 
expanding the alveolar arterial oxygen gradient and promoting the 
development of interstitial pulmonary edema. It is believed that a large 
number of neutrophils produced during the pathogenesis of S-ALI are 
mainly mediated by death. When the body gradually recovers, 
apoptosis is the main pathway for neutrophils. Studies by Lea F. et al. 
have shown that neutrophil apoptosis is inversely proportional to the 
severity of sepsis (71). Neutrophils enhance their antibacterial 
properties by releasing extracellular chromatin modified by histones 
and neutrophil extracellular traps (NETs) composed of many granular 
proteins (72), and are identified as part of the innate immune response, 
which may be beneficial or pathological. NETs have been a research 
hotspot in recent years. NETs components include histones, cathepsin 
G, neutrophil elastase (NE), myeloperoxidase (MPO), lactoferrin, 
antimicrobial peptide-LL37, all of which have bactericidal effects (73). 
The formation of NETs activates neutrophils by recognizing stimuli 
and activating the NADPH oxidase (NOX) complex through protein 
kinase C (PKC) - Raf/MERK/ERK, thereby activating myeloperoxidase 
(MPO), neutrophil elastase (NE), and arginine deaminase type 4 (74). 
Studies have shown that excessive NETs play a pathological role in 
diseases, infectious and not, but not limited to thrombosis, diabetes, 
vasculitis or cancer (75, 76). With the exploration of research, an 
increasing number of scholars have found that NETs may play a 
negative role in sepsis by promoting the occurrence and development 
of inflammation. A controlled experiment in acute respiratory distress 
syndrome (ARDS) patients with pneumonia or sepsis found that an 

increase in plasma NETs levels and the severity of ARDS were 
associated with an increase in mortality through ELISA technology 
detection. Furthermore, the use of DNase I  treatment in mouse 
models of severe bacterial pneumonia and acute lung injury reduced 
NETs and lung injury (77). A small cohort study of patients with septic 
shock in the intensive care unit found that an increase in levels of 
circulating NETs biomarkers (free DNA/myeloperoxidase complexes) 
was associated with the severity of organ dysfunction and 28 day 
mortality in patients with septic shock (78). Zhu S et al. found that 
NETs induced endothelial cell damage and produce a large number of 
tissue factors by stimulating the activation of interferon genes 
(STING). Amplifying the dysregulation between inflammation and 
coagulation leads to poor prognosis in S-ALI model mice, and 
disruption of NETs and inhibition of STING reduces inflammation 
and coagulation, thereby improving prognosis in sepsis mice (79). It 
can be seen that the increase in the level of NETs is related to the 
aggravation of S-ALI, and the mechanism of NETs in intravascular 
coagulation and intestinal inflammation in sepsis has attracted the 
most attention.

3.1.3 The role of inflammatory cytokines in the 
ALI process

Inflammatory cells in the human body release a variety of 
cytokines, including pro-inflammatory cytokines that can cause 
inflammatory reactions and anti-inflammatory cytokines that can 
fight inflammatory reactions (80). The balance between 
pro-inflammatory cytokines and anti-inflammatory cytokines plays 
an important role in maintaining the stability of the internal 
environment. In case of imbalance, uncontrolled systemic 
inflammatory response syndrome (SIRS) will occur. The onset of SIRS 
is essential in the pathogenesis of ALI caused by sepsis (81). The 
pro-inflammatory cytokines and inflammatory mediators in the 
process of sepsis mainly include tumor necrosis factor-α (TNF-α), 
interleukin-1β, IL-2, IL-6, IL-8, platelet activating factor (PAF) and 
phospholipase A2 (82, 83). Among them, TNF-α is an important 

FIGURE 2

Monocytes recognize and bind microbial components through Toll-like receptors (TLR) on their surface, releasing a variety of inflammatory mediators 
and chemokines. Monocytes can also differentiate into macrophages, which are polarized into classical macrophages (M1) and alternative 
macrophages (M2). M1 and M2 promote the release of pro-inflammatory and anti-inflammatory factors, respectively, causing inflammatory response 
and injury in the lung.
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promoter of sepsis and sepsis associated ALI, inducing the production 
of pro-inflammatory factors such as IL-6 and IL-8 and is an important 
systemic reactive mediator (84). In addition, studies had shown that 
high levels of IL-1β in the body were associated with sepsis, the IL-1β 
levels in the dead were higher than that of survivors (85).

It is worth noticing that high levels of IL-6 can activate the 
coagulation system, increase vascular permeability, and provide 
conditions for the rapid spread of inflammation (86). High levels of 
IL-6 can trigger pro-inflammatory IL-6 mediated signaling cascades, 
and IL-6 binding to soluble interleukin-6 receptors (sIL-6R), which 
can bind to gp130 of membrane proteins, consecutively activating the 
JAK–STAT pathway (87). In addition, due to the widespread 
expression of gp130 in many effector cells, high levels of IL-6 can lead 
to stronger immune activations (88). Research had found that the 
average level of IL-6 in patients with severe sepsis was significantly 
higher than that in healthy individuals (<10 pg./mL), which is tens or 
even hundreds of times higher than that of normal individuals (89). 
Moreover, the release of platelet activating factor (PAF) is closely 
related to the formation of lung injury caused by sepsis. PAF is a type 
of lipid immune mediator that can cause platelet aggregation reactions. 
Neutrophils, mast cells, macrophages and monocytes can release PAF 
under the stimulation of specific antigens and endotoxin (90). PAF can 
cause symptoms such as constriction of the bronchus, airway 
hyperresponsiveness, and pathophysiological changes such as 
pulmonary edema and pulmonary hypertension, which further 
aggravate lung injury.

The onset of ALI caused by sepsis is related to the activation of 
complex inflammatory cytokine cascades. Various pro-inflammatory 
cytokines and inflammatory mediators interact and influence each 
other, promoting the development of lung injury. Treatment measures 
based on cytokine mechanism include glucocorticoid, cytokine 
interceptor and phosphodiesterase-4 inhibitor (91–94). In addition, 
alkaloids, intratracheal injection of epidermal growth factor, and 
alveolar lavage also have therapeutic effects, but more research is 
needed to confirm their effectiveness and safety.

3.2 The role of oxidative stress mechanism 
in ALI process

In ALI caused by sepsis, oxidative stress mechanisms also play an 
important role. Oxygen free radicals have physiological effects such as 
killing microorganisms, clearing necrotic or aging cells, and regulating 
inflammatory responses. Under normal physiological conditions, the 
oxygen free radicals produced in the lungs can be maintained in a 
balanced state of production and clearance, but excessive release or 
decreased clearance ability of oxygen free radicals can cause damage 
to lung tissue cells (95, 96). And microorganisms invade lung tissue, 
phagocytes and endothelial cells release a large number of 
inflammatory factors (97), which can activate effector cells such as 
alveolar macrophages and multinucleated leukocytes, release a large 
number of oxygen free radicals and (be reduced to O2

−, most O2
− is 

disproportionated to H2O2 under the action of superoxide dismutase), 
H2O2 combines with O2

− to form OH, and myeloperoxidase can 
oxidize H2O2 to produce hypochlorous acid and other toxic substances, 
it directly damages the alveolar epithelial cells and vascular endothelial 
cells, affects the gas exchange of the alveoli, and eventually leads to 
serious lung injury and pulmonary function decline (98). Zou et al. 

found that the use of oxygen free radical scavenger can protect lung 
tissue in the rat model of lipopolysaccharide induced ALI (99). 
Reduced expressions of NF-κB and TNF-α reveals a good inhibitory 
effect on pulmonary inflammatory response. Therefore, treatment 
strategies for oxidative stress have become one of the research hotspots.

Under normal circumstances, the body constantly generates 
oxygen free radicals (OFR) in metabolic reaction and enzyme 
catalysis. However, because of the existence of the OFR enzyme system 
in the body, OFR can be  cleared to achieve balance. Excessive 
production of reactive oxygen species (ROS) in the body or a decrease 
in enzymes that clear OFR can affect lipid, protein, and nucleic acid 
metabolism, leading to an imbalance between the oxidation and 
antioxidant systems and damaging the body. Research has shown that 
excessive ROS can cause ALI, leading to cell damage, activating 
pro-apoptotic signaling pathways, and ultimately leading to the death 
of alveolar epithelial and endothelial cells (96). Some researchers have 
also found that excessive production of ROS or reduced antioxidant 
capacity can further increase the level of oxidized phospholipids, 
which are closely related to lung injury, lung infection, and cell 
apoptosis (97). In addition, some scholars have found that excessive 
ROS may also activate NF-κB, thus inducing ALI (98). It is precisely 
because of the recognition of the role of oxidative stress response in 
the pathogenesis of ALI that researchers are committed to developing 
drugs such as perfluorocarbons (PFCs) that reduce ROS production 
or enhance antioxidant capacity as clinical treatments for ALI (99). 
The mechanisms of action of oxidative stress in the process of ALI are 
summarized in Figure 3.

After lung injury occurs, edema, ischemia and hypoxia can lead 
to mitochondrial dysfunction in cells, producing a large number of 
oxygen free radicals and generating active oxygen. The ability of the 
body to scavenge free radicals is limited. A large amount of active 
oxygen in the lung tissue is an important substance for the 
enhancement of pulmonary vascular permeability and cell damage, 
which ultimately causes pulmonary edema and lung injury (100). The 
clinical treatment strategies for antioxidant stress are currently 
N-acetylcysteine, ambroxol and some Chinese herbal ingredients, 
such as xiyanping, ferula and lycium barbarum. As the main drug for 
scavenging oxygen free radicals, ambroxol can avoid oxidative damage 
to cell lipids, thus inhibit TNF-α、IL-6, which can improve the 
expression of superoxide dismutase in patients’ serum and effectively 
alleviate hypoxemia. Some natural or synthetic antioxidants, such as 
vitamin C and vitamin E, glutathione and N-acetylcysteine, can 
neutralize free radicals, reduce oxidative stress and tissue damage 
(100–103). In addition, substances and enzymes that regulate the 
redox state are also important pathways for treating oxidative stress 
(104, 105).

3.3 The role of coagulation system 
mechanisms in the ALI process

In ALI caused by sepsis, the coagulation system also plays an 
important role. Along with inflammatory reactions and tissue damage, 
the coagulation system is also activated, leading to thrombosis and 
deposition of fibrin. Inflammatory reactions and tissue damage can 
lead to damage and activation of vascular endothelial cells, exposing 
coagulation factors on the surface of vascular endothelial cells. At the 
same time, inflammatory cells also release pro-coagulant substances 
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such as tissue factors and platelet activating factors, promoting platelet 
aggregation and thrombosis. ALI caused by sepsis will also lead to the 
imbalance of the anticoagulant system, which will increase the level of 
plasmin activator inhibitor (PAI-1) and decrease the level of 
antithrombin (AT). This imbalance will further promote thrombosis 
and fibrin deposition. Clinically, sepsis patients generally have 
abnormal exogenous coagulation pathways, exotoxin, endotoxin and 
various cytokines that can promote monocytes and endothelial cells 
to release tissue factor (TF) in large quantities, thus activating 
exogenous coagulation pathways and secreting thrombin (106). 
TNF-α inflammatory cytokines which also promote the inhibitor of 
plasmin activator. Under the combined action, the coagulation level 
increases and the fibrinolysis system is inhibited (107). Graf et al. 
reported that coagulation abnormalities commonly associated with 
infection and inflammatory reactions were due to tissue factor 
mediated thrombin production (108). With fibrinolysis and 
promotion of fiber proliferation, systemic inflammatory reactions lead 
to activation of the coagulation system, which can directly or 
indirectly affect the inflammatory response. In the pathological 
process of ALI caused by sepsis, dysfunction of the coagulation system 
can lead to thrombosis and fibrinogen deposition, exacerbating lung 

injury and dysfunction. Studies have shown that the use of 
anticoagulants such as tissue factor pathway inhibitor, antithrombin, 
heparin, activated protein C and plasmin activator, especially tissue 
type plasmin activator, can significantly improve lung function and 
increase oxygen supply in ALI and ARDS (109, 110). The mechanism 
of action of the coagulation system in ALI caused by sepsis is 
illustrated in Figure 4.

Platelets play an important role in the process of lung injury. 
Nonsteroidal anti-inflammatory drugs play an anti-inflammatory role 
by inhibiting platelet aggregation. Aspirin should be used for primary 
and secondary prevention, achieving lung injury inhibition through 
inhibiting platelet aggregation and regulating immune function. 
Aspirin is used during the period of pathological change of lung tissue 
after paraquat poisoning. It can be converted into AT-RvD1 in the 
airway mucosa under the catalysis of acetylated cyclooxygenase-2, 
thus reducing the content of TNF- α and IL-1 β in lung tissue caused 
by paraquat. At the same time, aspirin can also reduce the degree of 
lung tissue damage and lung injury score by triggering lipoprotein A4, 
thereby reducing the concentration of white blood cells and proteins 
in bronchoalveolar lavage fluid (111). At the same time, the application 
of antiplatelet therapy in ALI patients can help reduce the levels of 

FIGURE 3

During sepsis, phagocytes and endothelial cells in the lung tissue release a large number of inflammatory factors, which activate alveolar macrophages, 
multinucleated leukocytes and other effector cells. Release a large number of oxygen free radicals and be reduced to O2

−, most O2
− is 

disproportionated to H2O2 under the action of Superoxide dismutase, H2O2 combines with O2
− to form OH, and Myeloperoxidase can oxidize H2O2 to 

produce hypochlorous acid and other toxic substances, it directly damages the alveolar epithelial cells and vascular endothelial cells.
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serum D-dimer, NT-pro BNP and platelets, promote the reduction of 
lung injury and the risk of ARDS. The current treatment strategy for 
the coagulation system is also one of the hot spots in the research and 
treatment of ALI caused by sepsis. The treatment methods include the 
use of anticoagulant, fiber solvents and platelet inhibitors (111, 112).

3.4 Role of pulmonary surfactant in ALI

Pulmonary surfactant (PS) is a complex mixture synthesized of 
lipids and specific surfactant binding proteins secreted by alveolar 
type II epithelial cells. PS forms a lining layer between the respiratory 
lining fluid and the inhaled air (113, 114). Pulmonary surfactant 
mainly exists on the surface of the alveoli, which can regulate the 
surface tension of the alveoli and prevent the collapse of the alveoli, 
and maintain the stability and elasticity of the lungs (113, 115, 116). 
In ALI caused by sepsis, inflammatory reaction and cytokine release 
will lead to lung injury and abnormal changes of alveolar surfactant, 
and the alveolar surface tension will increase, leading to alveolar 
collapse and ventilation disorder. The lack or abnormality of 
pulmonary surfactant will also aggravate this pathological process 
(114). What’s more, the damage to alveolar capillaries and the 
increased permeability of capillaries can also lead to the infiltration of 

pulmonary surfactant into plasma, which is expressed at a low level in 
alveolar lavage fluid (117). The research of Czyzewski et al. showed 
that the lack or decrease of pulmonary surfactant in the alveolar lavage 
fluid of patients with ALI would lead to more severe respiratory 
distress symptoms of patients (118).

The decrease in pulmonary surfactant content has the following 
reasons. Firstly, patients with ALI have varying degrees of type II 
alveolar epithelial cell damage and a large secretion of TNF-α and 
various interleukins, thereby inhibiting the synthesis of pulmonary 
surfactant. Secondly, the increase of protease activity in patients with 
ALI leads to increased degradation of pulmonary surfactant which is 
a lipoprotein complex. At the same time, the damage to alveolar 
capillaries and the increased permeability of capillaries can also lead 
to the infiltration of pulmonary surfactant into the plasma, leading to 
it is expression at a low level in alveolar lavage fluid (119). Pulmonary 
surfactant proteins have the function of regulating local immunity and 
inflammatory responses. Pulmonary surfactant protein A (SP-A) and 
pulmonary surfactant protein D (SP-D) can attenuate 
lipopolysaccharide induced apoptosis and increase of caspase3 and 
BAX/Bcl-2 in intestinal epithelial cells (IEC), which confirms that 
SP-A and SP-D have protective effects on apoptosis (119). By means 
of supplementing pulmonary surfactant, lung function can 
be improved and inflammatory reaction can be alleviated (120, 121). 

FIGURE 4

In sepsis, the coagulation system is activated, the damage of vascular endothelial cells leads to thrombosis and fibrin deposition, and the disorder of 
anticoagulant system, which aggravates lung injury and dysfunction.

https://doi.org/10.3389/fmed.2023.1289194
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Sun et al. 10.3389/fmed.2023.1289194

Frontiers in Medicine 08 frontiersin.org

However, further research is needed to determine the optimal 
therapeutic dose and time to give pulmonary surfactant.

3.5 The role of genetic mechanisms in the 
ALI process

Although the relationship between genetic inheritance and ALI 
caused by sepsis has not yet been fully established, it is obvious that 
predisposing genetic constitution contributes to the occurrence and 
severity of ALI caused by sepsis (122). Bime et  al. said that the 
expression of selectin P ligand gene in the mouse lung injury model is 
related to ethnic groups, suggesting that gene differences may be the 
reason for the differences in the body’s responses to inflammatory 
response regulation (123). It is believed that ALI caused by sepsis is a 
multipathway and multi gene regulatory process, in which noncoding 
RNA (ncRNA) plays an important role. NcRNA is a type of RNA that 
cannot encode proteins, but can regulate gene expressions at the 
genomic and chromosomal levels, determine cell differentiation fate, 
and participate in the occurrence and development of various diseases 
(124). MicroRNAs (miRNAs) are a type of noncoding RNA encoded 
by endogenous genes with a length of approximately 22 nucleotides, 
which inhibits the expression of target genes by directly binding to 
their mRNA. Research has shown that microRNAs participate in the 
occurrence and development of ALI caused by sepsis through 
mediating the release of inflammatory factors, expression of 
pulmonary vascular endothelial related proteins, and cell apoptosis 
which can affect downstream targets (125, 126). Claudia et al. pointed 
out that inhibiting microRNA-193b-5p (miRNA-193b-5p) in vivo can 
alleviate ALI caused by sepsis (124). Jiang et al. found through in vivo 
experiments that intravenous injection of serum extracellular vesicles 
obtained from ALI mice can increase the number of M1 macrophages 
in the lungs of young mice and cause lung inflammation (127). The 
serum extracellular vesicles of ALI mice transmit miR-155 to 
macrophages, stimulating nuclear factors κB (NF-κB) activation, 
resulting in the production of tumor necrosis factor α (TNF-α) and 
IL-6. Research has found that miR-155 released from serum 
extracellular vesicles promotes macrophage proliferation and 
inflammation by targeting SHIP1 and SOCS1, respectively; suggesting 
that the miR-155/SHIP1/SOCS1 axis of serum extracellular vesicles 
was one of the pathogeneses of ALI caused by sepsis, and miR-155 
may become a potential target for preventing and treating ALI. In 
addition to the association between microRNAs and ALI caused by 
sepsis, research has found that the levels of long chain noncoding 
RNAs (lncRNAs) are significantly elevated in the plasma of patients 
with ALI caused by sepsis, and can predict the risk of ALI caused by 
sepsis and evaluate the condition and prognosis of patients (128). 
LncRNA plays an important role in LPS induced pulmonary 
endothelial inflammation and barrier dysfunction, which further 
confirms the role of lncRNA in the pathogenesis of acute ALI caused 
by sepsis (53). Unfortunately, there is not any finding on the 
application of lncRNA in ALI targeted therapy so far. Wang et al. 
found that lncRNA may be a potential preventive and therapeutic 
target for ALI by using techniques such as microarray analysis, 
bioinformatics analysis, and real-time quantitative PCR (129). 
Research on the expression change of circular RNA in human 
umbilical vein endothelial cell (HUVECs) caused by hypoxia, the 
impact of circular RNA on proliferation, migration and apoptosis of 

HUVECs showed that circular RNA played a role in the endothelial 
barrier function, suggesting that it might play a role in the pathogenesis 
of ALI caused by sepsis (130). Scholars have studied the effect of 
circRNA knockout on LPS induced ICAM-1 expression, and found 
that knocking down the expression of circRasGEF1B can reduce LPS 
induced ICAM-1 expression. At the same time, circRasGEF1B 
regulates the stability of mature ICAM-1 mRNA, suggesting that 
circRasGEF1B may play an important role in the pathogenesis of acute 
lung injury caused by sepsis (129). Although some studies have not 
specifically analyzed the role of circRNA in endothelial barrier 
disruption caused by ALI, they do reflect that circRNA may contribute 
to pathogenesis of ALI. It is worth noticing that epigenetic changes in 
patients with ALI caused by sepsis may lead to abnormal reactions of 
the immune system and the intensification of inflammatory reactions 
(131, 132). Epigenetics is based on the chromatin level, involving the 
regulation of chromatin related molecules such as DNA, noncoding 
RNA and histone, and plays a vital role in various physiological and 
pathological processes (133). Overall, research on noncoding RNA in 
ALI caused by sepsis mainly focuses on miRNA, but there is relatively 
little research on lncRNA and circRNA, and there is a lack of in-depth 
functional exploration. The pathogenesis of ALI caused by sepsis can 
be  analyzed from the perspectives of lncRNA and circRNA. In 
addition, there is currently limited research on drug intervention 
regarding the involvement of noncoding RNA in the pathogenesis of 
ALI caused by sepsis, for most of the related studies focus on the 
effects of drugs on related inflammatory factors and pathways. This 
suggests that we can study the role of drugs targeting noncoding RNA 
from the perspective of noncoding RNA participation in order to 
provide more effective treatment measures for clinical practice. The 
impact of genetic mechanisms on ALI caused by sepsis is complex, and 
more research is needed to explore its mechanisms and influencing 
factors in order to provide more accurate and individualized guidance 
for clinical treatment.

With the rapid development of intelligent medicine, new discoveries 
have been made to explore the pathogenesis of acute lung injury caused 
by sepsis through big data, artificial intelligence, and machine learning. 
Zheng Y et al. collected data from the Gene Expression Comprehensive 
Database (GEO) and ArrayExpress databases, and used four machine 
learning algorithms to identify 52 genes as putative biomarkers before 
screening out five genes of ARHGDIB, ALDH1A1, TACR3, TREM1 
and PI3 for predicting acute lung injury with high accuracy, and 
screened out small molecule compounds (Curcumin, Tretinoin, 
Acetaminophen, Estradiol and Dexamethasone) as a potential 
treatment for acute lung injury caused by sepsis (134). Zhang Z et al. 
found that miR-335-5p exerts anti-inflammatory effects in sepsis and 
plays an important role in sepsis mortality through gene-related 
network analysis (135). Bioinformatics analysis can be performed from 
nucleic acid and protein sequences to analyze the biological and clinical 
information of the structure and function expressed in the sequences 
(136). Big data artificial intelligence technology has been widely used in 
the exploration of disease biomarkers, discovering potential therapeutic 
targets for diseases, and providing new ideas for clinical practice.

4 Conclusion (prospect)

Sepsis is a systemic inflammatory response that occurs during the 
process of trauma, infection, burns, and other diseases. It is the 
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developmental basis of multiple organ dysfunction syndrome, and the 
lung is the most susceptible organ in the multiple organ damage 
caused by sepsis. The pathogenesis of ALI caused by sepsis is very 
complex, involving inflammation, coagulation, oxidative stress and 
genetics. During the onset of ALI caused by sepsis, the release and 
activation of multiple pro-inflammatory cytokines such as TNF-α, 
IL-1, IL-2, IL-6, and IL-8, as well as abnormalities in systemic 
coagulation function can accelerate the development of the disease 
and cause a cascade reaction of systemic inflammatory, leading to 
immune dysfunction and worse lung injury, which is not conducive 
to patients’ prognosis. There has been some progress in the study of 
the pathogenesis of ALI caused by sepsis in clinical practice, but the 
research on the deep and specific pathogenesis is not detailed, and a 
large number of studies are mainly based on animal experiments. The 
pathogenesis in human still needs further verifications. Therefore, the 
treatment of ALI caused by sepsis is rather difficult.

The treatment of ALI caused by sepsis is a multi-target, multi-
level, and comprehensive treatment process that requires multi-
disciplinary cooperation and comprehensive treatment methods. 
Although there are many therapeutic drugs and methods available, 
none of them is specific. The innovation of therapeutic drugs and 
methods is based on a profound understanding of the pathogenesis. 
Drug development can start from the blocking of signal 
transduction pathways, apoptosis factors, vascular endothelial 
contraction factors, and the promotion of growth factors for 
epithelial cell repair in the pathogenesis. Precision medicine is 
based on the basic characteristics of diseases and the high precision 
of drugs, forming high level medical technology based on deep 
understanding of patients, diseases, and drugs. With the deeper 
discovery and exploration of the mechanism of ALI caused by 
sepsis, it is believed that more and more effective therapeutic drugs 

and methods will emerge in the future, greatly improving the rate 
of successful treatment and patient survival.
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Glossary

ALI Acute lung injury

S-ALI Sepsis induced acute lung injury

ARDS Acute respiratory distress syndrome

TLR Toll like receptor

TNF-α Tumor necrosis factor-α

IFN-γ Interferon-γ

IL-1 Interleukin-1

IL-6 Interleukin-6

IL-8 Interleukin-8

IL-10 Interleukin-10

TGF-β Transforming growth factor-β

MIF Macrophage inhibitory factor

SIRS Systemic inflammatory response syndrome

PAF Platelet activating factor

OFR Oxygen free radicals

ROS Reactive oxygen species

SP-A Surfactant protein A

miRNAs MicroRNAs

lncRNAs Long chain non coding RNAs

circRNA Circular RNA

LPS Lipopolysaccharide
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