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Introduction: Computer vision extracts meaning from pixelated images and 
holds promise in automating various clinical tasks. Convolutional neural networks 
(CNNs), a deep learning network used therein, have shown promise in analyzing 
X-ray images and joint photographs. We studied the performance of a CNN on 
standardized smartphone photographs in detecting inflammation in three hand 
joints and compared it to a rheumatologist’s diagnosis.

Methods: We enrolled 100 consecutive patients with inflammatory arthritis with 
an onset period of less than 2  years, excluding those with deformities. Each 
patient was examined by a rheumatologist, and the presence of synovitis in each 
joint was recorded. Hand photographs were taken in a standardized manner, 
anonymized, and cropped to include joints of interest. A ResNet-101 backbone 
modified for two class outputs (inflamed or not) was used for training. We also 
tested a hue-augmented dataset. We reported accuracy, sensitivity, and specificity 
for three joints: wrist, index finger proximal interphalangeal (IFPIP), and middle 
finger proximal interphalangeal (MFPIP), taking the rheumatologist’s opinion as 
the gold standard.

Results: The cohort consisted of 100 individuals, of which 22 of them were men, 
with a mean age of 49.7 (SD 12.9) years. The majority of the cohort (n  =  68, 68%) 
had rheumatoid arthritis. The wrist (125/200, 62.5%), MFPIP (94/200, 47%), and 
IFPIP (83/200, 41.5%) were the three most commonly inflamed joints. The CNN 
achieved the highest accuracy, sensitivity, and specificity in detecting synovitis in 
the MFPIP (83, 77, and 88%, respectively), followed by the IFPIP (74, 74, and 75%, 
respectively) and the wrist (62, 90, and 21%, respectively).

Discussion: We have demonstrated that computer vision was able to detect 
inflammation in three joints of the hand with reasonable accuracy on standardized 
photographs despite a small dataset. Feature engineering was not required, and 
the CNN worked despite a diversity in clinical diagnosis. Larger datasets are 
likely to improve accuracy and help explain the basis of classification. These 
data suggest a potential use of computer vision in screening and follow-up of 
inflammatory arthritis.
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Introduction

Artificial intelligence is rapidly changing the landscape of 
healthcare in general and offers promising applications in automating 
screening and follow-up of chronic diseases (1). Deep-learning 
methods encapsulate the use of artificially created neural networks to 
learn functions that describe them (2). Specifically, computer vision 
focuses on the extraction of meaning from pixelated images and 
videos. A convolutional neural network (CNN) is a type of deep-
learning neural network designed specifically for computer vision 
tasks. Using the mathematical operation called convolution enables a 
CNN to extract image features that are essential for image recognition, 
classification, and segmentation (3). Transfer learning is a technique 
that adapts a network which has previously been trained on a large 
dataset to effectively train that network on the images at hand.

CNNs are relatively recent but already offer the potential to 
automate various human tasks in healthcare. Most commonly, CNNs 
have been used to classify radiological images into different patterns 
(image classification) that allow faster and more accurate diagnoses 
(4). A CNN (CheXNet) successfully detected cases of pneumonia on 
chest radiographs (5). In addition, CNNs are useful in segmenting 
medical images, helping doctors identify important features such as 
malignant tumors and inflammatory lesions. A CNN to help diagnose 
diabetic retinopathy recently received Food and Drug administration 
(FDA) approval (6). As computer vision techniques become more 
refined, each field of medicine and healthcare is likely to benefit.

The application of computer vision in inflammatory arthritis is 
nascent and has mainly focused on imaging results, such as predicting 
erosive arthritis on X-rays, thus taking strides in automating scoring used 
in clinical trials (7). It has successfully been applied to augment imaging-
based diagnosis in rheumatology, including the detection of 
spondyloarthritis on sacroiliac joint MRI (8). It has also been utilized to 
automate disease activity scoring on joint ultrasound in RA (9). They are 
particularly useful in measuring structures, such as the median nerve 
area in carpal tunnel syndrome (10) and cartilage thickness in joints (11).

Inflammatory arthritis presents with joint pain and swelling and 
is typically diagnosed by a physician through medical history and 
examination during a visit. Detecting and recording the number of 
swollen joints is included in most classification criteria and disease 
outcome measures in these diseases (12, 13). Apart from deeply seated 
joints such as the hip, most joints with synovitis do have visible signs 
of inflammation, including redness and swelling. We believed that 
these features would be amenable to detection by computer vision on 
standardized mobile phone photographs of joint areas. A recently 
published CNN could distinguish inflammation in the proximal 
interphalangeal (PIP) by recognizing the obliteration of creases on the 
joint (14). Our ongoing study evaluates standardization methods for 
photography as well as the accuracy of computer vision in identifying 
inflamed joints. Subject to further validation, such approaches could 
be valuable digital additions for screening programs in communities 
with limited access to rheumatology specialists, in addition to 
longitudinal follow-up studies and clinical trials (15).

We present preliminary data on the performance of a CNN in 
detecting synovitis in a few selected joints for our ongoing study. 
We expanded our analysis to three joints, the wrist, the second/index 
finger proximal interphalangeal (IFPIP), and the third/middle finger 
PIP (MFPIP), and selected them based on a relatively higher 
prevalence of involvement in the dataset. We  evaluated the 
performance of this CNN without incorporating feature engineering.

Methods

Patient selection

We enrolled patients from the rheumatology department’s 
outpatient clinic located at KEM Hospital in Pune as well as from a 
private rheumatology practice in Pune, India. We included consecutive 
patients with inflammatory arthritis involving the hand joints for less 
than 2 years since symptom onset. Cases of long-standing arthritis 
were excluded from this dataset to prevent confounding with joint 
deformities. Permissible clinical diagnoses included but were not 
limited to rheumatoid arthritis (RA), psoriatic arthritis (PsA), 
systemic lupus erythematosus (SLE), Sjogren syndrome (SS), and 
chronic viral arthritis. RA was classified according to the American 
College of Rheumatology/European Alliance of Associations of 
Rheumatology (ACR/EULAR) 2011 criteria (12), PsA according to 
the Classification for Psoriatic Arthritis (CASPAR) criteria (16), and 
SLE according to the Systemic Lupus International Collaborating 
Clinics (SLICC) classification criteria (17); all others were clinical 
diagnoses made by the rheumatologist. We excluded patients with 
visually appreciable deformities, co-existing nodal osteoarthritis, and 
systemic sclerosis.

Demographic details recorded included age and gender; clinical 
details included duration and diagnosis of the disease as well as extra-
articular features, especially the involvement of coexistent skin lesions 
on the hands. The patient’s and doctor’s global perception at that 
clinical visit (on a visual analog scale) and results of markers of 
inflammation (ESR, CRP, or both) were recorded. An independent 
clinical examination was conducted by a trained rheumatologist. The 
presence of synovitis was recorded as a binary (yes/no) opinion, based 
on inspection, palpation, and range of motion testing in each of the 
15 joints in both hands (four distal interphalangeal, four proximal 
interphalangeal, one interphalangeal of thumb, five 
metacarpophalangeal, and one wrist).

Hand photograph acquisition and 
standardization

Photographs of both hands from the dorsal and palmar aspect 
were taken by a member of trained research staff in standardized 
conditions. We modified a foldable photo studio light box used for 
product photography of dimensions 26 × 26 × 26 cm with an inbuilt 
LED light system and white background to ensure uniform camera 
placement on the top. The modified studio box was kept on a desk, 
and patients sat in a chair to ensure appropriate placement of the 
hand. All photographs were taken using an iPhone 11 (Apple Inc., 
California, United States).

Data entry and anonymization

A unique identity generator was used to create randomly 
generated identifiers (18). A total of two thousand unique IDs were 
generated for patients with arthritis. Each subject was assigned two 
IDs: a personal ID (IDP), linked to personal information of the 
patient, and a study ID (IDS), linked to photographs and clinical 
information. The key to linking these two is securely stored with 
SP. The photographs were labeled with the IDS and suffixed according 
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to the hand’s laterality and view. Patient-identifying data were entered 
with the IDP and clinical data related to synovitis prevalence with 
IDS. Only the anonymized, labeled photographs and non-identifying 
information were shared.

Joint detection and image cropping

We used MediaPipe, an open-source library, for tracking the key 
points of the hands (Figure 1) (19). MediaPipe can locate the joints of 
interest in clinical images of the hands. The x and y coordinates of 
joints were extracted and used to isolate cropped images of the IFPIP, 
MFPIP, and wrists.

Neural networks

The main model used for training was a ReNet-101 backbone 
modified for two class outputs: “Inflamed” or “not.” Transfer learning 
was used throughout. The dataset was split into a ratio of either 80:20 
or 70:30 between training and validation sets. Typically, 
hyperparameters varied during each training run: batch sizes ranged 
from 32 to 64, training epochs were kept below 100, learning rate was 
on the order of 1e−4, solvers were either “adam” or “sgdm,” and early 
stopping was used when reasonable. Image augmentation typically 
included a random rotation of up to 20 degrees both clockwise and 
anticlockwise, a random scaling between 0.8 and 1.2, random 
reflection along the x-axis, and a random x- or y-shift of up to 10 
pixels. Neural networks were developed using the Deep Learning 
Toolbox in MATLAB (MATLAB version: R2023b, Natick, 
Massachusetts: The MathWorks Inc.; 2023.)

Hue adjustment for skin tone

It is widely known that human skin varies in hue roughly between 
6 and 34 degrees (Skin Colour Analysis. University of Edinburgh. 
2001). A hue-augmented dataset was created as follows: the RGB 
image was converted to HSV format and a random hue component 
between 6 and 34 degrees was applied: (0.1–0.016) × (rand − 0.5). The 
modified image was clipped for hue values lying outside (0.16, 0.1). 
Each image was augmented for a hue change once (Figure 2).

Statistics

Patient data, especially synovitis distribution, are presented as 
frequencies, mean (standard deviation) for normally distributed 
continuous variables, and median (IQR) for those that were not normally 
distributed. Normality was ascertained using the Shapiro–Wilk test. 
We report accuracy, sensitivity, and specificity of the CNN in detecting 
synovitis in the three individual joints within the validation set. The 
rheumatologist’s opinion was considered the gold standard for this 
analysis. Sensitivity (a/a + b, true positive fraction amongst all patients 
with disease) and specificity (c/c + d, true negative fraction in all patients 
without disease) were calculated using standard formulae. Accuracy was 
calculated as the overall probability of a correct classification 
(Sensitivity × Prevalence + Specificity × (1 − Prevalence)). We calculated 
positive and negative predictive values, using the prevalence rates of 
inflammation for each joint from the entire dataset (20).

Ethics statement

This study received ethics permission from the KEM Hospital 
Research Centre Ethics Committee (KEMHRCEC/2018) and a waiver 
from the IISER Ethics Committee for Human Research (IEHCR/
Admin/2021/006). A data sharing agreement has been signed between 
the institutions for this study. All patients signed an informed consent 
document with special permission for the storage of photographs in 
the photo repository for 30 years. This study has been registered with 
the Clinical Trials Registry of India (CTRI/2020/08/027129).

Results

Patient characteristics

We included 100 consecutive patients (22 men) with inflammatory 
arthritis with an onset period of less than 2 years. The mean age of the 
cohort was 49.7 (12.8) years. The selected patients had a mean weight 
of 65.1 (12.6) kg and a mean height of 160.1 (4.5) cm. The mean 
hemoglobin level was 11.4 (1.8) g/dL; all the above variables were 
normally distributed. The median Erythrocyte sedimentation rate 
(ESR) was 36 (IQR 32) mm/h and the median C-reactive protein was 
10.3 (IQR 12.6) mg/dL. Sixty-eight patients were classified as RA, 

FIGURE 1

Schema of photograph processing and outputs from the convolutional neural network.
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eight had peripheral spondylarthritis, six had PsA, and 13 had 
connective tissue diseases (three with SLE, four with SS, and six with 
undifferentiated or mixed connective tissue disease). Five patients had 
chronic post-viral arthritis.

Synovitis was present in only one hand of 19 patients, while bilateral 
involvement was observed in 81 patients. Of the 200 hands studied, 52 
had one swollen joint, 33 had two swollen joints, 38 had three swollen 
joints, and 58 had polyarthritis (four or more). The wrist was the most 
common joint to be swollen (62.5% of hands) followed by the MFPIP 
(47%) and IFPIP (41.5%). DIP joint swellings were relatively rarer 
(Table 1). All patients were able to lay their hands flat inside the photo 
box, as deformities were excluded. Since these were all adult participants 
and the depth of the box was constant, the aspect ratio was not altered, 
and the images were distortion-free; thus, no editing was required.

CNN performance

The CNN achieved the highest accuracy with the MFPIP (83%), 
followed by the IFPIP (74%), and the wrist (62%) (Figures 3, 4). It should 
be  noted that the percentages in the contingency table are largely 
representative. Given that the number of images in the dataset is relatively 
small for deep learning, particular training runs give rise to somewhat 
different accuracies, typically varying by approximately 5%, depending 
on the exact samples used in the training. Sensitivity was good in all three 
joints, but specificity was low at the wrist joint (Figure 3).

FIGURE 2

Hue augmentation for skin tone: representative hue-augmented pairs with random hue variation between 6 and 34 degrees. (A) Index finger proximal 
interphalangeal joints, (B) middle finger interphalangeal joints, and (C) wrist joints. Note the henna on some images did not change the results.

TABLE 1 Patient characteristics: distribution of synovitis in the dataset 
(n  =  100).

Swollen 
joints

Left hand 
(n =  100)

Right hand 
(n =  100)

Total 
(n =  200)

Wrist 61 64 125 (62.5%)

MCP 1 5 15 20 (10%)

MCP 2 14 23 37 (18.5%)

MCP 3 16 21 37 (18.5%)

MCP 4 5 3 8 (4%)

MCP 5 3 4 7 (3.5%)

IP 1 8 19 27 (13.5%)

PIP 2 (IFPIP) 41 42 83 (41.5%)

PIP 3 (MFPIP) 44 50 94 (47%)

PIP 4 17 21 39 (19.5%)

PIP 5 17 20 37 (18.5%)

DIP 2 1 2 3 (1.5%)

DIP 3 2 1 3 (1.5%)

DIP 4 2 0 2 (1%)

DIP 5 1 1 2 (1%)

No swollen joint 9 10 19 (9.5%)

IP, interphalangeal; PIP, proximal interphalangeal; DIP, distal interphalangeal; MCP, 
metacarpophalangeal.
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We created a dataset in which skin tone augmentation was applied 
in a 1:1 ratio, that is, each original image was augmented with one 
image with a modified hue (Figure 3). The training was carried out 
based on these data. The rationale was to augment the data with 
different samples of skin tones. We also attempted to train networks 
by employing a larger ratio of original to hue-modified images, which 
resulted in even higher validation accuracies. In principle, we were 
aiming for augmentation to increase the dataset; however, this may 
have simply introduced artifacts arising from having images (an 
original and its modified images) that are too similar between the 
training and validation sets. Finally, we  chose to restrict to a 
conservative 1:1 ratio of original and hue-augmented images. The 
networks were trained with the training set containing hue-augmented 
images, while the validation set contained only the original images. 
With this training protocol, the results were comparable to the naive 
case above (without hue augmentation). In larger datasets, this is 
likely to be an interesting direction to pursue further.

Discussion

In this proof-of-concept analysis, we demonstrated that computer 
vision was able to distinguish inflammatory arthritis, with reasonable 
accuracy in three selected synovial joints of the hand on standardized 
photographs. The CNN worked in a real-world setting despite the 
heterogeneity in the etiology of inflammation and without the need 
for feature engineering. The accuracy remained constant when using 
skin tone augmentation through modified hue. These data increase 
confidence in the utility of CNNs across different diseases and ethnic 
groups. We provide further credibility to the potential future use of 
applying computer vision on smartphone photographs as a screening 
and follow-up tool in inflammatory arthritis.

CNNs have been used previously in rheumatology, mainly in 
automating the analysis of microscopic immunofluorescence 
radiographic images, achieving the agreement close to human expert 
readers (21). A “cascade” of CNNs achieved accuracy comparable to 

FIGURE 3

Representative image showing the performance of Convolutional Neural Network (CNN) for three joints in contingency tables. Accuracy denotes the 
overall probability that a patient is correctly classified. MFPIP, middle finger proximal interphalangeal joint; IFPIP, index finger proximal interphalangeal 
joint; PPV, positive predictive value; NPV, negative predictive value.

FIGURE 4

(A) Representative training graph for naive (no hue augmentation) middle finger PIP. On this run, accuracy  =  83%, sensitivity  =  77%, and specificity  =  88%. 
(B) Representative training graph for naive (with hue augmentation) MFPIP. On this run, accuracy  =  81%, sensitivity  =  65%, and specificity  =  92%.
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trained rheumatologists in discriminating healthy joints from hand 
X-ray images (9). Similarly, CNNs have been trained to perform scores 
such as the modified van der Heijde Sharp Score for joint erosions on 
hand radiographs (22). A plethora of studies using both MRI and 
X-ray images in detecting and scoring rheumatoid arthritis erosions 
with various learning mechanisms and classification techniques are 
currently available (7). While these studies are highly useful, most of 
them are use cases for specialists once a diagnosis is made and require 
expensive imaging technologies. In more resource-limited settings 
such as ours, there is a need for applications at the screening and 
diagnosis levels. A preassessment using tele-health for efficient referral 
can help optimize time for rheumatologists (23). Smartphone-based 
photographs can be easily taken even before the patient has access to 
imaging technologies at negligible cost. Promising steps have been 
taken in establishing the utility of smartphone camera sensors in the 
assessment of physical function in RA. The PARADE study 
demonstrated their utility in capturing the functional ability in wrist 
movements and gait in patients (24). The innovative TELERA 
randomized trial evaluates the possibility of using app-based outcome 
measures in remotely following up with patients with arthritis (25).

Recently, a CNN recognized that joint swelling was shown to 
be  efficacious as a digital biomarker (14). The authors used 
cropped-out images of the PIP joints in a similar-sized dataset as ours. 
The patient population in the study by Hugle et  al. was more 
homogenous, with all patients satisfying the criteria for RA. However, 
there was no comment made regarding the joint-swelling distribution, 
ethnicity, and skin color characteristics of the cohort. It can 
be assumed that the population was predominantly Caucasian. All of 
our patients belonged to the South Asian ethnicity, and skin hues for 
these patients were categorized as grade 3–4 as per the Fitzpatrick 
classification. Our results expand on this literature by demonstrating 
that CNN accuracy is maintained not only on additional joints (IFPIP 
and wrist) but also across different diseases and ethnic groups, 
especially in darker skin tones where inflammatory erythema may not 
be as readily visible. Our photos included those with henna markings 
and hand jewelry, which did not reduce accuracy.

The CNN performance did not improve significantly by training 
on the hue-augmented images. Thus, we  reason that, while hue 
augmentation is not an effective strategy for training, the results of the 
training (that is, the trained networks) will be effective for applying 
across populations with varying skin tones. Skin hue modification and 
its implications for training and prediction are likely to be  an 
interesting area to pursue in future studies, especially to improve 
generalizability across populations.

Similar to any black box AI technology, we are not certain what 
parameters were used to classify synovitis by the CNN, and one can 
only speculate that color, shape, and contour changes were involved. 
Hugle et  al. included the identification and extraction of dorsal 
finger folds from the joint images (10). Intuitively, this methodology 
may not extrapolate to synovial joints that do not have naturally 
occurring skin folds, such as the MCP joints, wrists, knees, or ankles. 
Our methodology ensures that any relevant features will be learned 
in the training. For example, it has learnt to ‘overcome’ confusion 
due to henna and rings. Even without feature engineering, our CNN 
achieved similar accuracy to their dataset, supporting a more general 
approach. The joint shape may be  important since wrist 
inflammation was picked up less accurately in our analysis. Larger, 
uniform datasets would be required in order to delve deeper into 

attempting to explain the basis for the classification. All our images 
were standardized for device, background, and lighting. We surmise 
that standard acquisition and preprocessing/cropping steps reduce 
the variability in the image background that the CNN picks up. 
However, this may limit generalizability in the community using 
different devices. The final goal would be for patients to take photos 
themselves, and it would be very interesting to see how this affects 
the CNN performance.

Despite being an initial analysis of an ongoing collection, our 
study has certain strengths: our patient distribution is heterogeneous 
and reflects a real-world rheumatology practice. We used carefully 
standardized photographs using the same phone camera. One of the 
shortcomings of this study is that the dataset used for analysis is 
relatively small. This precluded an analysis of the other joints of the 
hand due to the low prevalence of synovitis. Our assessment of a 
rheumatologist’s assessment gold standard is also subjective. Further 
evaluation should include assessing the CNN’s performance against 
more sensitive measures, such as USG and MRI-detected synovitis. 
Finally, since we included only early arthritis, the performance in the 
presence of joint deformity or co-existing osteoarthritis and 
deformities, both important clinical confounders, cannot 
be commented upon at this stage. Distinguishing inflammation from 
deformity and including other commonly involved joints, such as the 
MCP, would be an important future endeavor. Nevertheless, our pilot 
results increase confidence that larger, good quality, and diverse 
datasets would improve the reliability of computer vision-based 
applications in inflammatory arthritis. These would also enable 
determining individual accuracies for different joints, and Bayesian 
methodologies could improve synovitis detection.

In conclusion, we have demonstrated that computer vision could 
detect synovial joint inflammation with reasonable accuracy, 
sensitivity, and specificity in standardized smartphone photographs 
of joint areas. With larger datasets, this technology has the potential 
to be  a valuable remote tool in screening and follow-up of 
inflammatory arthritis.
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