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This paper provides an overview of artificial-intelligence (AI), as applied to 
dermatology. We  focus our discussion on methodology, AI applications for 
various skin diseases, limitations, and future opportunities. We  review how the 
current image-based models are being implemented in dermatology across 
disease subsets, and highlight the challenges facing widespread adoption. 
Additionally, we discuss how the future of AI in dermatology might evolve and the 
emerging paradigm of large language, and multi-modal models to emphasize the 
importance of developing responsible, fair, and equitable models in dermatology.
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1. Introduction

Recent advancements in artificial intelligence (AI) have fueled an interest in the utility of AI 
models in medicine (1). These models range from computer vision models that can interpret 
medical images (2) to large language models (LLM) that have capabilities for analyzing text data 
(3, 4) to multi-modal models that take both images and text as input (5). These AI models now 
have the capacity to analyze unstructured data such as clinical notes (3, 6), identify novel 
correlations in large datasets (7), and generate synthetic image data for improving model 
training (8, 9).

One medical specialty poised to benefit from these emerging AI technologies is dermatology. 
Its inherent visual diagnostic process, combined with an increasing volume of clinical 
photographs, dermoscopy images, and electronic health records (EHR) data (10) underscores 
its suitability for AI-augmented patient care. Moreover, the shortage of specialists-3.65 
dermatologists per 100,000 people in the US (11, 12) and limited access to dermatological 
services in many regions (13, 14) provides a compelling case for augmented intelligent systems 
to help bridge this access gap (15). However, clinical integration of AI in dermatology workflow 
remains challenging. As novel medical applications arise, they also unveil problems that 
necessitate further research.

In this paper, we present a comprehensive overview of the fundamental principles of AI 
methodology as applied to dermatology, diving into categories and training approaches. Special 
emphasis is placed on the role of AI in the diagnosis and prognostication of an array of skin 
conditions. We also address the limitations of the AI models used in dermatology, notably issues 
of generalizability, bias, and explainability. Finally, we examine what the future might hold for 
dermatology-AI, while highlighting some research opportunities to help improve real-world 
utility of AI models. Our goal is to provide the readers with a panoramic view of AI’s principles 
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and evolving role in dermatology, while equipping them with the 
knowledge to navigate this dynamic field.

2. Principles of artificial intelligence

AI is the ability of a computer system to mimic human cognitive 
functions and encompasses many computational subfields, including 
machine learning and natural language processing (Figure  1). 
Currently, major developments in AI are within the field of machine 
learning (ML), which are algorithms that make predictions about data 
without explicit programming. In other words, the machines are 
“learning” from the data and providing analyses without being 
explicitly told what features to prioritize. Examples from dermatology 
include identifying melanomas from clinical images (16), predicting 
efficacy of biologic therapies in psoriasis (17), and analyzing physician 
notes in electronic health records to determine focus of atopic 
dermatitis clinic visits (18).

Deep learning (DL) (19) is a subset of ML that uses algorithms 
modeled off human neurons that can model complex patterns and 
relationships in the data. ML techniques prior to the introduction of 
DL required domain expertise and human engineering to convert raw 
data into features that the algorithm can understand and detect 
patterns from. On the other hand, in DL, raw data can be inputted into 
the algorithm, and the machine is able to create its own representation 
needed for pattern recognition. These representations are typically 
arranged in sequential layers, where each layer is inputted into the 
next layer, increasing the abstraction of the data, collectively known 
as neural networks (6) (Figure  2). Within DL, there are multiple 
algorithms that are implemented, including convolutional neural 
networks (CNN) (20), traditionally used in image processing, and 
transformer models (21), which are neural networks that learn context 
and track relationships in sequential data.

Within ML, there are different ways that algorithms can learn, 
including supervised learning, unsupervised learning, and 
reinforcement learning (Figure  2). Supervised learning, the most 
common form of machine learning, uses a labeled dataset to predict 
results. The algorithm learns to map the input data to the correct 
output, allowing it to make predictions on unseen data. The algorithm 
is given the data and the correct answers (ground truths) in a training 
set, which the algorithm uses to set its weights. Once the algorithm 
has learned from the training data, its performance is measured 
against a held-out test set that it has never encountered previously. 
This category of machine learning includes what most people are 
familiar with, such as logistic regression, linear regression, etc. Most 
of the image-based deep learning models in dermatology use 
supervised learning. Unsupervised learning is training a model on 
unlabeled datasets, meaning the data input does not have the ground 
truth. This algorithm aims to find patterns and relationships within 
the data, such as clustering similar data points together. Finally, 
reinforcement learning is when the agent (the algorithm) interacts 
with an environment to achieve specific goals. The agent receives 
feedback from the user (the human) in the form of rewards or 
penalties based on its actions, and it learns to optimize its behavior to 
maximize rewards. Compared to supervised and unsupervised 
learning, reinforcement learning has no predefined data input, but 
rather learns from the iterative feedback loops.

Natural language processing (NLP) is a branch of artificial 
intelligence that focuses on interpreting, analyzing, and generating 
human language. It combines linguistics with statistics, machine 
learning, and DL to process human language (22). NLP is generally 
divided into two subfields-natural language understanding (NLU), 
and natural language generation (NLG). NLU is focused on 
determining the understanding of the text, while NLG is focused on 
generating new text. Recent advancements in large language models, 
including OpenAI’s (San Francisco, United States) publicly-available 
ChatGenerative Pre-trained Transformer (ChatGPT) (23), fall under 
the subfield of NLG.

There are also recent emerging concepts of multimodal 
approaches, where algorithms are utilizing multiple data types to train 
their algorithms. Medicine is inherently a multimodal discipline, with 
clinicians interpreting lab values, clinical notes, radiology images, 
genomic data, etc. New development has been focused on utilizing the 
rich diversity of data to build more robust models and algorithms, 
including Med-PaLM Multimodal (Med-PaLM M) (24), LLaVa-Med 
(25), Med-Flamingo (5), and MiniGPT-4 (26). These new technologies 
are built on foundation models (FMs), which are models that are 
trained on a broad range of unlabeled data that are then adapted (fine-
tuned) to specific downstream applications (27). These models can 
learn from the large amounts of data, and then transfer their learnings 
to a more specific application, like medicine.

3. Applications of AI in dermatology

There has been an abundance of work done to explore artificial 
intelligence use in all aspects of dermatology (28–30), ranging from 
skin malignancies to inflammatory skin conditions, to 
dermatopathology, to text-based analyses. The visual nature of 
Dermatology lends itself to many advancements that are image-based, 
though researchers are exploring other multimodal approaches that 

FIGURE 1

Overview of principles of artificial intelligence. Artificial intelligence 
(AI) is a broad categorization of algorithms that encompass 
subcategories including machine learning (ML), natural language 
processing (NLP), and deep learning (DL).
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use patient characteristics and clinical texts. Here, we will provide a 
broad overview of the different applications of AI in dermatology.

3.1. Skin malignancies

Applications of AI in dermatologic malignancies, which have been 
well described in the literature (31, 32), include identifying and 
distinguishing between benign nevi and melanoma. Researchers break 
down images of skin lesions to the pixel level for individual analysis 
and then utilize the techniques described above to predict and classify 
malignancies. There have been multiple landmark papers for AI 
applications in skin malignancies (16, 31, 33), resulting in high 
sensitivities and specificities when distinguishing malignant from 
benign lesions. Esteva et al. trained a CNN using a large dataset of over 
100,000 biopsy-proven clinical images to determine keratinocyte 
carcinomas versus benign seborrheic keratoses, and malignant 
melanomas versus benign nevi (16). Han et al. fine-tuned a previously-
built CNN model with clinical images to classify multiple malignancies, 
including basal cell carcinoma, squamous cell carcinoma, melanoma, 
etc. (34). There is also an annual international skin imaging 
competition, which provides publicly accessible dermatology images 
for researchers to build melanoma-classifying models (32, 35). Aside 
from identifying the primary lesion, there are also studies exploring 
metastases. Jansen et al. utilized histological tissue sections of sentinel 
lymph nodes in their convolutional neural network models to identify 
presence of metastases with high sensitivity and specificity (36).

3.2. Inflammatory skin diseases-psoriasis, 
dermatitis, and others

Aside from classification of melanomas and other malignant skin 
conditions, researchers are also exploring the identification and 

management of inflammatory skin conditions, including psoriasis, 
dermatitis and acne. Similar to malignancy classification, a majority 
of work is focused on psoriasis identification and classification 
through images of skin (37–40), nails (41), and scalp (42) using CNN’s 
and other DL techniques. In addition to diagnosing psoriasis via 
image recognition, researchers have utilized machine learning 
techniques to identify patients with increased risk of associated 
psoriatic conditions, including psoriatic arthritis (43). Work has also 
been done to determine the efficacy of psoriasis management by 
predicting outcomes of biologic therapies by using parameters such as 
patient demographics, clinical history of psoriasis, treatment history, 
and presence of other comorbidities (17, 44). These preliminary 
models could be used to eventually optimize therapy and management 
for patients. Finally, aside from determining outcomes of current 
biological treatments, AI techniques have been applied to genomic 
studies to help with drug target identification and drug repurposing 
(45), as well as screening for psoriasis biomarkers (46) and gene 
expression profiling (47).

Similar to diagnostic tasks with psoriasis, many researchers have 
explored using machine learning algorithms in dermatitis (48), 
ranging from image-based algorithms (49) to electronic health record 
text-based algorithms (50). Aside from determining diagnoses, 
researchers have developed proof-of-concept algorithms using self-
reported eczema flare scores, patient demographics and treatment 
history to predict atopic dermatitis severity, resulting in a biologically 
interpretable model that focuses on patient’s responsiveness to 
treatment (51). AI models have also been used to help prevent contact 
dermatitis by predicting skin sensitization potential and potency of 
substances (52).

In addition to psoriasis and dermatitis, researchers have developed 
acne lesion segmentation and evaluation tools (53–55) that can grade 
acne severity from easily-accessible smartphone images (56). There is 
also exploration in identifying lichen planus (41), and assessing the 
severity of hidradenitis suppurativa (57).

FIGURE 2

Classifications of machine learning. Supervised learning uses labeled datasets to categorize the data, while unsupervised learning does not have 
labeled datasets, using patterns and relationships in the data to create categories. Reinforcement learning uses iterative feedback loops to teach the 
algorithm. DL utilizes representation layers in a neural network to increase abstraction of the data, and employs techniques from supervised, 
unsupervised, and reinforcement learning.
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3.3. Ulcer assessment

One of the primary methods in identifying and classifying skin 
lesions is segmenting the lesion from the backdrop of normal skin. 
Multiple studies have explored determining and measuring ill-defined 
wound boundaries using techniques that simplify images down to the 
pixel level (58–61). Recent work has been done to apply these 
techniques into broader hospital systems to predict pressure ulcers 
(62), with the ultimate goal of pressure ulcer prevention (63, 64). 
Groups have even explored using body heat maps from pressure mats 
to identify poor in-bed position posture that could cause pressure 
ulcers (65). These proof-of-concept works, after validation in clinical 
trials, may ultimately translate into clinical-assist tools to aid clinicians 
in the management of ulcers.

3.4. Dermatopathology

Beyond identifying diagnoses via clinical images and electronic 
health record notes, machine learning techniques are being applied in 
dermatopathology (66, 67). Groups have developed models to classify 
basal cell carcinoma in digitized Mohs micrographic surgery histology 
slides to reduce the workload of manually examining these slides (68). 
Likewise, Hekler et al. used CNNs to aid in histopathologic melanoma 
diagnoses (69). There have also been studies done to interpret indirect 
immunofluorescence microscopies to classify bullous dermatoses (70).

3.5. Miscellaneous multiclass classification 
and text-based analysis

To better replicate real-world clinical scenarios of multiple differential 
diagnoses from a single skin lesion, technologies take a broader approach 
to solve multi-class classification problems. Many of the problems 
discussed above were binary classification, where algorithms strived to 
identify if a lesion was a specific disease or not; multi-class classification 
presents a more challenging problem with multiple possible diagnoses. 
Liu et al. created a DL system that provided a differential diagnosis for 
skin lesions, creating a ranked list of the most likely diagnoses for the skin 
lesion (71). Taking another multi-class approach, Sitaru et al. have worked 
to classify body parts from dermatology clinical images, creating body 
distribution maps for different diagnoses (72).

While dermatology is a visual specialty that focuses on using 
visual cues for diagnoses, there are aspects of written data that can 
be used to aid in better understanding questions posed by the research 
community. Frequently, this written data is unstructured and 
freeform, using natural human language; to understand and interpret 
this data, one needs to implement NLP techniques. Researchers have 
used NLP methods to examine dermatology discussion forums on 
social media to understand patient perceptions of the field (73). 
Others conducted analyses of clinical notes in the electronic health 
records to identify specific topics that providers and patients discuss 
during clinical visits (18). This analysis provided insights into the lack 
of documentation of the disease’s impact on a patient’s life, which may 
ultimately affect management and treatment options.

In addition to understanding natural language, there are also 
recent advances in technologies that generate new text, including 
ChatGPT. This technology could be utilized to guide patients, aid 

clinicians with administrative tasks, educate trainees, etc. Groups are 
exploring ChatGPT’s ability to generate responses to patient inquiries 
about melanoma (74), create patient education guides for acne (75), 
and even triage surgical management of cutaneous neoplasms (76).

3.6. Human-AI hybrid models

Given all the innovation that is occurring at the intersection of AI 
and dermatology, the logical next step is to evaluate the performance of 
these AI algorithms against clinicians (77, 78). Esteva et al.’s landmark 
study was the first to compare a DL algorithm against dermatologists, 
showing that their model was able to match the performance of 21 
dermatologists in melanoma classification (16). Others have even 
shown that, in a group of 58 international dermatologists, many were 
outperformed by a CNN model (79). Because of the incredible ability 
of the technology to perform diagnostic tasks, many researchers are 
exploring ways to incorporate AI in a clinical workflow to help 
clinicians. There have now been multiple studies creating AI-based 
assistive tools to aid clinicians in interpreting clinical images. Groups 
have designed pipelines with the ultimate goal of real-time AI analysis 
of skin lesions in the clinics (77). Marchetti et al. prospectively assessed 
the diagnostic accuracy and utility of a melanoma AI algorithm used in 
real-world clinical settings to help determine the necessity of biopsying 
a suspicious lesion (33). Han et al. conducted a randomized trial and 
showed that AI can augment the accuracy of non-expert physicians in 
the real-world setting (80). With these smaller pilot studies showing 
promising results, the AI research community may be  looking to 
increase prospective studies and randomized trials to help further assess 
AI’s application in the real-world clinical setting.

4. Limitations and ethical 
considerations of AI in dermatology

AI research in dermatology is still in its infancy and encounters a 
myriad of challenges. From biases and lack of interpretability to 
regulatory hurdles and difficulty in integrating with existing clinical 
workflows, these issues are complex and need to be tackled before AI 
can become ubiquitous in clinical practice. Robust, transparent, and 
equitable AI algorithms are needed in order to truly enhance patient 
care without introducing new problems.

4.1. Datasets

AI algorithms learn by identifying features and patterns found in 
their training datasets and then use this knowledge to make future 
predictions. However, the presence of confounders in these datasets can 
influence the validity of AI algorithms. Confounders are features that 
may be correlated with the AI algorithm’s outcome through spurious 
associations. An illustrative example involves the presence of surgical 
pen markers or rulers on clinical dermatology images. As demonstrated 
in research by Winkler et al., lesions marked with surgical pen markers 
are more likely to be classified as malignant by the models (81). This 
finding is due to the fact that these markings are frequently used during 
biopsy procedures, which are typically performed on lesions suspected 
of malignancy. Therefore, an algorithm may incorrectly learn an 
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association between these markers and malignancy, when in fact the 
markings only indicate which lesions were biopsied, not necessarily 
those that are malignant. This example highlights the importance of 
identifying and managing confounders during the training phase of AI 
models to ensure their accuracy and validity.

Bias in training datasets can also inadvertently perpetuate pre-existing 
inequities in healthcare. In dermatology, this issue is particularly 
highlighted by early AI models trained on datasets that predominantly 
featured lighter Fitzpatrick skin types (I-IV). Daneshjou et al. has shown 
that some of these existing algorithms tend to underperform when 
assessed with images of darker Fitzpatrick skin types (V-VI) (15). 
Fortunately, fine-tuning these original algorithms with a dataset featuring 
darker Fitzpatrick skin types improved their performance, effectively 
closing the gap in performance between different skin types. Diverse and 
equitable data representation in the training dataset is primordial to 
ensure accurate and fair outputs in AI algorithms.

4.2. Image quality and image capturing 
modalities

Standardizing images in Dermatology AI research is important to 
preserve data quality. Images can originate from diverse sources, 
including various devices (e.g., iPhones, Android smartphones, or 
professional cameras) and with or without the help of diagnostic tools 
such as dermatoscopes (82). Additionally, the images may be captured 
under various settings (e.g., at home or in a clinic) and by different 
individuals (e.g., patients or healthcare providers). These factors result 
in a highly heterogeneous dataset comprising images of differing quality. 
Just as human interpretation can be  affected by image quality, AI 
algorithms are equally sensitive. Blurry images with poor lightning have 
been shown to negatively impact the performance of AI models (83). 
Simple image manipulations such as rotation can change the output of 
an algorithm (84). These considerations underscore the importance of 
establishing robust image capturing standards and Digital Imaging and 
Communications in Medicine (DICOM) standards similar to those in 
other medical fields such as cardiology and radiology (85).

4.3. Black box

The mechanisms behind traditional medical devices are often 
transparent and logical in nature. In contrast, AI algorithms appear 
more mysterious and impenetrable, like a “black box.” This 
phenomenon makes it difficult for humans to understand its reasoning 
process and to trust its outputs. Various techniques have been 
developed by researchers to tackle this problem including saliency 
maps (e.g., highlighting relevant areas on a picture) and content-based 
image retrieval (e.g., retrieving similar images from a database based 
on the query image). As AI penetrates high stake fields such as 
medicine, it becomes increasingly important to bring transparency 
and interpretability to AI models.

4.4. Implementation

Implementing AI into clinical practice presents a number of 
challenges that extend beyond technological complexity. The rapid 
advancement of AI technologies has created a complex landscape of 

medical-legal challenges regarding its use in the healthcare sector, 
spanning from concerns about patient consent and data privacy to 
liability in the event of AI-induced medical errors (86, 87). Scholars 
and professionals must work collaboratively to devise sound and 
comprehensive guidance to navigate the ethical and legal intricacies 
of integrating AI into our healthcare systems (87). Medical AI devices, 
by their very nature, will evolve as they learn from newly acquired 
data, a process that may continue long after receiving approval from 
regulatory bodies such as the Food and Drug Administration (FDA). 
This continual learning and adaptation, while a strength in many 
respects, also presents a challenge in ensuring the devices’ sustained 
reliability and performance over time. Without vigilant monitoring 
and a robust framework for ongoing validation, there may 
be unforeseen shifts in the accuracy or effectiveness of these tools, 
which could potentially negatively impact patient care. Moreover, 
there is a lack of high quality prospective randomized controlled trials 
of AI algorithms. While AI holds immense promise in dermatology, 
the absence of prospective trials hinders the validation of AI models 
in real-world clinical situations where there will be a diverse photo 
quality, image capturing modalities and demographically diverse 
population (33). For these reasons, an AI model validated in a hospital 
in Asia might not perform similarly in another hospital in North 
America. Wu et al. have shown that 126 out of 130 FDA approved 
medical AI devices were trained on retrospective data at the time of 
their approval (88). Most of the datasets used are not publicly available, 
thus preventing regulatory bodies and researchers from auditing their 
algorithms. Future AI models should undergo multi-site validation on 
a diverse and representative population in order to assess the 
generalizability of AI models. Furthermore, establishing trust among 
AI and various stakeholders will be vital in realizing AI’s full potential 
in the field. While model accuracy is very important, research has 
shown that dermatologists and patients value the potential of 
augmented intelligence in dermatology and also put a high priority on 
the human physician-patient relationship (89, 90).

5. Future directions and opportunities

5.1. LLMs and the advent of generalist 
medical AI

In recent months, advanced language models, in the form of 
chatbots, have gained popularity in medicine (4, 91–93). For 
dermatology, an extension of these models—Vision-Language Models 
(VLMs) and multi-modal models—offer immense potential. VLMs 
are large-scale models adept at associating visual inputs, such as 
images and videos, with text data (5). Their capabilities span generative 
tasks (creating new content), retrieval of information, and navigation. 
Recent studies underscore their impact on dermatology. For instance, 
Skin-GPT4, a VLM, can provide descriptions and diagnosis from 
clinical skin lesion photos (94). Further, research by Moor et al. and 
Tu et  al. show the accuracy of VLMs in medical visual question-
answering tasks (5, 24). In a related vein, Kim et al.’s study on FMs 
underscore the capacity of this new class of models to generate 
accurate skin images annotations (95).

The rapid advancements in this domain have the potential to 
usher a future of a generalist medical AI (96). These generalist models 
could be  capable of giving approximate diagnoses from clinical 
photos, generate treatment options, and offer deeper insights into 
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patient data by integrating demographics, visual inspection, and 
genetic data when applicable. Their potential applications can range 
from patient chatbots to triage tools (96). Additionally, the inclusion 
of genetic data could improve the diagnosis of orphan skin conditions. 
As dermatological datasets expand and computing power increases, 
FMs are on track to become more accurate and prove utility in 
dermatology. They could augment the practice of dermatology to 
provide more precise and holistic care.

5.2. Federated learning and the possibility 
of local models

Medical data, including skin images, are difficult to access largely 
due to privacy, legal, and the ethical risks associated with sharing 
health data. Currently, many dermatological images reside in data 
silos within healthcare institutions all over the world. Also, medical 
data is hard to collate, and often requires years of planning with 
significant costs (97). This is even more pronounced in resource-
limited settings, where there is less infrastructure to support collection 
and sharing of data. Since the DL model’s performance significantly 
improves with more diverse data (98, 99), new approaches are needed 
to expand model access to more distributed high-quality datasets.

Federated learning (FL) is a concept that enables DL models to 
be trained on different datasets without the need to leave their original 
locations (100). In FL, multiple collaborators can train a model on 
separate institutional datasets. It is an approach that can enable the 
preservation of data privacy, and it has already demonstrated similar 
performance—compared to centralizing the data—in fields like 
radiology and oncology (100). Although in some cases, there have 
been drawbacks in which the model sometimes memorizes the data 
inputs (101). Appropriately implemented, FL has the potential to 
enable fairer and more generalizable dermatology models by 
incorporating diverse demographics, thereby capturing the nuances 
in skin conditions across different societies. This is crucial in 
dermatology where the popular models significantly perform worse 
on underrepresented skin types of Fitzpatrick IV–VI (15).

Beyond FL, the concept of FMs introduces the possibility of local 
models. FMs have the distinct capability to learn from unlabeled data 
and can be adapted for a variety of downstream tasks without the 
necessity of specific training (96). This characteristic allows FMs to 
be fine-tuned with local data, from which they can glean insights and 
achieve impressive performance across diverse tasks. Given that the 
fine-tuning procedure is more cost-efficient than full-scale training 
(27), it amplifies the appeal of FMs within institutional contexts. 
Consequently, dermatology institutions can harness bespoke models 
attuned to their unique demographics and guidelines. While 
promising, progress towards this will require resolving data quality, 
aggregation, and infrastructural challenges. However, these new 
techniques could be  instrumental in building invaluable 
dermatology-AI models.

5.3. Improvements in model architecture 
and metrics evaluation

Recent years have witnessed notable advancements in the 
architectures of AI models, leading to enhanced performance across 

numerous medical tasks as previously discussed. As the industry 
attracts more investment and data generation surges, new 
architectures will likely further improve on existing tasks and expand 
into new areas. However, with these advancements arises a vital 
question: how should we holistically evaluate these models? While 
metrics like accuracy, area under the curve are common, 
comprehensive model evaluation will need to go beyond mere 
percentages. Clinical value needs to be demonstrated. As reported by 
Wornow et  al., standard evaluations are lacking for evaluating 
emerging models (102). In addition, many models fail to be evaluated 
on fairness and transparency metrics, and in many cases there’s no 
standard for this evaluation frameworks (103). Holistic model 
evaluation is likely to emerge in the near future as the desire for 
clinical integration increases. This could include uncertainty, model 
interpretability, and subpopulation analysis—which is important 
for dermatology.

Developing these types of model benchmarks will require 
collaboration among dermatologists, researchers, and patients. 
We  posit that soon, more robust consensus guidelines are likely 
to emerge.

5.4. Regulation, clinical utility, and usability 
in resource-poor settings

The current rapid model evolution underscores the pressing need 
for robust regulation (104). Such regulatory measures serve a two-fold 
purpose: Firstly, they shield the dermatology community from 
prematurely adopting under-tested models by establishing stringent 
benchmarks. Secondly, they foster trust, ensuring that AI tools 
resonate with the foundational clinical values practitioners hold dear. 
For AI models to achieve widespread adoption, especially in 
dermatology, they must be both reproducible and generalizable (105). 
As these models seek to bridge the dermatology access gap, especially 
in resource-limited settings, generalizability becomes even more 
pivotal. Also, standardizing the data collection process is another 
important factor towards optimizing model training and thus, 
performance. As highlighted in the position statement by the 
American Academy of Dermatology Augmented Intelligence working 
group, research in the dermatology-AI space needs to be directed 
towards prospective and randomized clinical trials that rigorously vet 
models before deployment (29, 106). Also, although most DL models 
are in the form of “black-boxes” (107), emerging FMs could further 
obfuscate their inner workings, making the issue of explainability 
vital. Research addressing explainability will be invaluable for model 
advancement and deployment.

6. Conclusion

Dermatology presents both opportunities and challenges to 
integrate AI into its daily workings. Whilst in its infancy, with many 
regulatory standards that are specific to the field yet to be developed, 
current trajectories of innovation and advance showcase the potential 
of AI is likely to emerge a critical element of the dermatologists 
workflow, with the need for the clinician to have a global 
understanding of its workings. Steering this ship towards a future of a 
transparent, fair, safe, and responsible dermatology-AI will be  an 

https://doi.org/10.3389/fmed.2023.1278232
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Omiye et al. 10.3389/fmed.2023.1278232

Frontiers in Medicine 07 frontiersin.org

interdisciplinary effort that involves the leadership of the 
dermatology community.
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