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Regulatory T cells (Tregs), possess a pivotal function in the maintenance of 
immune homeostasis. The dysregulated activity of Tregs has been associated with 
the onset of autoimmune diseases and cancer. Hence, Tregs are promising targets 
for interventions aimed at steering the immune response toward the desired path, 
either by augmenting the immune system to eliminate infected and cancerous cells 
or by dampening it to curtail the damage to self-tissues in autoimmune disorders. 
The activation of Tregs has been observed to have a potent immunosuppressive 
effect against T cells that respond to self-antigens, thus safeguarding our 
body against autoimmunity. Therefore, promoting Treg cell stability presents a 
promising strategy for preventing or managing chronic inflammation that results 
from various autoimmune diseases. On the other hand, Tregs have been found to 
be overactivated in several forms of cancer, and their role as immune response 
regulators with immunosuppressive properties poses a significant impediment to 
the successful implementation of cancer immunotherapy. However, the targeting 
of Tregs in a systemic manner may lead to the onset of severe inflammation 
and autoimmune toxicity. It is imperative to develop more selective methods 
for targeting the function of Tregs in tumors. In this review, our objective is to 
elucidate the function of Tregs in tumors and autoimmunity while also delving into 
numerous therapeutic strategies for reprogramming their function. Our focus is 
on reprogramming Tregs in a highly activated phenotype driven by the activation 
of key surface receptors and metabolic reprogramming. Furthermore, we examine 
Treg-based therapies in autoimmunity, with a specific emphasis on Chimeric 
Antigen Receptor (CAR)-Treg therapy and T-cell receptor (TCR)-Treg therapy. 
Finally, we discuss key challenges and the future steps in reprogramming Tregs that 
could lead to the development of novel and effective cancer immunotherapies.
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1. Introduction

Immunotherapy seeks to utilize the immune system in the management of a diverse range 
of illnesses (1–4). Nonetheless, in order for a particular therapy to be efficacious, it is essential 
that it precisely target an immune response against the illness while simultaneously safeguarding 
the host from autoimmunity and producing the desired antitumor outcomes (5–7). Such an 
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effect is scrutinized especially in the context of cancer and 
autoimmune disorders (8). In the tumor microenvironment, Tregs 
(CD4+ FOXP3+ regulatory T cells), formerly known as suppressor T 
cells, promote cancer immune evasion through the suppression of 
antitumor T effector responses (9, 10). As a result, they represent the 
primary obstacles to cancer immunotherapy. On the other hand, a 
deficiency in Treg function fosters T effector responses against self-
antigens, which can ultimately lead to autoimmune disease (8, 11–13). 
Therefore, the disruption of the homeostatic balance between T 
effector and Treg cells is frequently associated with both cancer and 
autoimmunity (14–16).

The importance of Tregs in cancer and autoimmune diseases has 
made them a potentially critical target for these illnesses (17, 18). It is 
increasingly evident that the development of effective therapeutic 
strategies to reprogram Treg functionality holds great promise for 
immunotherapy, both in inducing tolerance in autoimmune diseases 
and advancing immune-based treatments for cancer (19). In cancer, 
the selective reprogramming of Treg cells through molecular modules 
serves not only to reduce their immunosuppressive activity but also 
may have the potential to enhance the efficacy of cancer treatment by 
converting immunosuppressive Tregs into cancer-specific 
immunostimulatory cells (19, 20).

This review provides comprehensive data, focusing on novel drugs 
and strategies aimed at reprogramming Tregs for the treatment of 
cancer and autoimmunity. The section entitled “Treg-based therapies 
in cancer” emphasizes two critical aspects of TI(tumor-infiltrating)-
Tregs that, when perturbed, can modify their function: (i) their highly 
activated phenotype via stimulatory cell surface receptors; and (ii) 
their metabolic status. In the section “Treg-based therapies in 
autoimmunity,” we  discuss two therapies that are currently being 
investigated for the cure and prevention of autoimmune diseases: (i) 
autoantigen-specific TCR Tregs and (ii) autoantigen-specific CAR 
Tregs. These therapies suppress effector T cell function and promote 
Tregs, restoring immune homeostasis and tolerance by promoting and 
activating Tregs. Finally, we  review the future steps of Treg 
reprogramming to highlight the potential of Treg reprogramming in 
the treatment of both cancer and autoimmunity.

2. Role of Tregs in tumor

For decades, researchers have investigated the association between 
Tregs and tumor microenvironments. Tregs are present in various 
cancers’ tumor microenvironment (TME), including melanoma, lung, 
ovarian, pancreatic, breast, and stomach cancers, and high Treg 
infiltration has been linked to low survival rates and a poor prognosis 
(21, 22). Tregs can be generated and differentiated by conventional T 
cells in the TME, and these cells have a potent immunosuppressive 
effect that impedes antitumor immunity and promotes tumor growth. 
Tregs are crucial in the tumor’s immune escape and can repress 
immune effector cell activity in diverse forms in tumor-bearing hosts. 
Therefore, Tregs function as a double-edged sword, with a protective 
role in maintaining immune homeostasis and a pathological role in 
the inhibition of effector cells in TME (23). Tregs hinder immune 
responses against tumors by a variety of mechanisms. Tregs can 
release immunosuppressive molecules that can suppress antitumor 
immunity, such as TGF-β (Transforming growth factor-β), IL-10, and 
IL-35. TGF-β can inhibit T-helper (Th) 1, NK, and CTLs(Cytotoxic T 

lymphocytes) cell responses and convert NK cells in the TME to 
innate type 1 lymphoid cells (24). Moreover, TGF-β signaling can 
stimulate the differentiation of suboptimally stimulated peripheral 
CD4+ T cells into Tregs which then promotes the development of 
immune tolerance and immunosuppression in the TME (24, 25). It 
should be noted that both immune and nonimmune cells can generate 
TGF-β, and the role of TGF-β derived from Treg cells remains 
controversial (26, 27). TGF-β and IL10 induce the conversion of 
resident fibroblasts into cancer-associated fibroblasts (CAF) and 
monocytes into tumor-associated macrophages (TAM), respectively 
(28, 29). CAFs and TAMs are capable of inducing effector T cell 
apoptosis, thereby facilitating tumor evasion from antitumor 
immunity (30). The production of IL-10 by Tregs may be crucial for 
the survival and proliferation of tumor cells, as it regulates antitumor 
immunity. Its expression has been associated with an unfavorable 
prognosis in various cancers (31). The effects of IL-10 on the TME are 
varied, and IL-35 can reinforce its immunosuppressive impact, which 
is also generated by Tregs (31).Tregs producing IL-35 accumulated in 
the TME and impeded effector T cell activation and their effector 
function by inducing the expression of several inhibitory receptors 
such as PD-1 (Programmed cell death protein 1), Tim-3(T cell 
immunoglobulin and mucin-3)and BLIMP1(B-lymphocyte-induced 
maturation protein-1)-dependent exhaustion (32).

It is noteworthy that IL-35 and IL-10 have distinct 
immunomodulatory functions. Tregs producing IL-35 promote 
effector T cell exhaustion, while Tregs producing IL-10 inhibit the 
cytotoxic effector function of effector T cells. To some extent, Treg 
cells can also activate major pathways that regulate apoptosis, such as 
the FAS-FasL and TNF-TNFR-mediated signaling in response to 
specific antigens (33). Tregs can prompt tumors to become resistant 
to immune checkpoint inhibitors (ICIs). While the precise processes 
through which Tregs can promote tumor resistance to ICIs are not 
fully comprehended, several molecules and signaling pathways, such 
as Phosphatidylinositol 3-kinase (PI3K), have been associated with the 
resistance of Tregs to approved ICIs (23). Other roles played by Tregs 
include the immediate destruction of other cells by secreting granzyme 
and perforin, and the production and release of cAMP to disrupt the 
metabolism of other cells.

3. Role of Tregs in autoimmunity

Tregs play a pivotal role in preventing a multitude of autoimmune 
diseases by virtue of their capacity to maintain self-tolerance. Hence, 
the malfunctioning, paucity of Tregs, and the resistance of effector 
cells toward Treg immunoregulatory mechanisms can initiate 
autoimmune diseases. This is in line with earlier research, which 
indicates that several human autoimmune diseases exhibit 
abnormalities in Treg function or peripheral Treg cell counts (34). The 
mechanism by which Tregs inhibit autoreactivity is that when 
activated via their TCR and the costimulatory molecule CD28, Tregs 
secrete anti-inflammatory cytokines such as TGF-β, IL10, and IL35 
that target different cell types at the site of inflammation (35). These 
anti-inflammatory cytokines induce the production of tolerogenic 
APCs, which promote the anergy of autoreactive memory effector 
CD4+ T cells that bind to their MHC molecules (36). Tregs have also 
been found to suppress autoreactive effector T cells via IL-2 
consumption or the induction of cell death through granzyme and 
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perforin. Tolerogenic APCs can also induce the expression of PD-L1 
(CD274 molecule), serving as a pivotal mechanism for the induction 
of CD8+ T cell exhaustion following autoimmune activation (37). The 
expression of FOXP3 is believed to be modified or reduced in various 
diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS) 
in humans, as well as the Scurfy phenotype (which involves the 
complete absence of T cell regulatory function) in mice (38–40). Apart 
from the FOXP3 expression loss, which serves as the main regulator 
of Treg cells, a specific epigenetic signature is a distinguishing feature 
of Treg cells (41). Both components(epigenetic and FOXP3 
expression) are fundamental in the preservation of Treg cell function, 
and it is probable that the perturbation of FOXP3 expression or 
epigenetic modifications may result in Treg cell instability and 
aberrant plasticity, which are commonly observed in a variety of 
autoimmune diseases. Moreover, there is compelling evidence 
showing that the impairment of Treg function can be  linked to a 
decline in thymic production and a decrease in the mutual interplay 
between CD58 and CD2, both of which belong to the immunoglobulin 
family (42). In EAE (experimental autoimmune encephalomyelitis), it 
has been observed that the transmission of Tregs was sufficient in 
mitigating the severity of EAE (43). Conversely, the removal of Tregs 
has been shown to exacerbate the condition in EAE models (43). 
Despite recent advancements in comprehending Treg functions in 
pathological circumstances, more research is required to explicate the 
mechanisms that underlie Treg cell instability and plasticity. This will 
enable the modulation of Treg cell function in autoimmune 
pathologies and other diseases like cancer.

4. Treg-based therapies in cancer

The recent success of various immune-based therapies for cancer 
that activate cytotoxic T cells to attack cancer cells has brought about 
a revolutionary change in cancer treatment. However, a significant 
number of patients do not respond favorably to these immune-
stimulating therapies, highlighting the requirement for therapies that 
enhance the immune response beyond a simple boost. Currently, the 
major challenge hindering the success of tumor immunotherapy is 
overcoming immunosuppressive TME (20). Tregs are present in 
almost all cancers and serve as immunosuppressive regulators of 
immune responses, representing a significant obstacle to the success 
of cancer immunotherapy (44, 45). The requirement for a novel 
approach directed toward the targeted alteration of intratumoral 
regulatory T cells has been expedited due to the fact that general 
inhibition of regulatory T cells results in significant autoimmune 
toxicity (45). Hence, the specific reprogramming of Treg cells may 
decrease the frequency of immune-related unfavorable events 
frequently linked with systemic approaches intended to eradicate Treg 
cells, which may result in the discontinuation of therapy and 
subsequent loss of therapeutic benefit (46). Reprogramming Tregs has 
the potential to achieve two significant benefits in cancer therapy. 
First, it can evade immune regulation in tumors by eliminating 
immunosuppressive cells. Second, it can enhance the effectiveness of 
cancer treatment by transforming immunosuppressive Tregs into 
immunostimulatory cells, specifically within cancer (33). To 
reprogram the TI (tumor infiltrating)-Treg function, it is necessary to 
focus on targeting the unique properties of TI-Tregs, which include 
their activation condition via stimulatory cell surface receptors, 

metabolic condition, and transcriptional condition as influenced by 
critical transcription factors and chromatin regulators (20, 47).

4.1. Reprogramming of Tregs in highly 
activated phenotype

TI-Tregs exhibit highly activated phenotype. A number of 
receptors, including CTLA4 (cytotoxic T-lymphocyte associated 
protein 4), GITR (TNF receptor superfamily member 18), CD25, 
CD28, CD39, OX40, PD1 (programmed cell death 1), LAG3 
(lymphocyte activating 3), NRP1 (neuropilin 1), chemokine receptors, 
and NT5E are constitutively expressed in human Tregs and become 
visible on the cell surface upon activation in the TME. These receptors 
have the crucial role in regulating the immune response against 
tumors (48–50). Therefore, targeting Tregs in tumors and 
reprogramming their functions to the highly activated state of TI-regs 
or their particular differentiation state is an effective approach.

4.1.1. OX40
The surface receptor OX40 is expressed by both effector T cells 

and Tregs. Despite its role as a potent costimulatory molecule for 
activated effector T cells, OX40 plays a critical role in regulating 
FOXP3 Tregs. According to Vue et al., activation of OX40 on mature 
FOXP3 Tregs completely disables their ability to inhibit effector T cell 
proliferation and cytokine production. Interestingly, OX40 signaling 
on Tregs does not appear to affect their survival and proliferation but 
suppresses FOXP3 expression (51). OX40 consistently impedes the 
capacity of TGFB to elicit FOXP3 expression in activated effector T 
cells. Consequently, OX40 functions as a potent negative regulator of 
both inherent FOXP3 Tregs and Tregs that are produced by activated 
effector T cells. This illustrates that OX40 governs a pivotal checkpoint 
in Treg homeostasis (51). The co-stimulation of OX40 has emerged as 
a promising method to combat the suppressive effects of Tregs (52). 
OX40 agonists have been observed to augment antitumor immunity 
in multiple tumor models and are currently being investigated as a 
new cancer immunotherapy target in clinical trials. The primary OX40 
agonist antibodies employed in clinical research are MEDI0562, 
MEDI6469, INBRX-106, PF04518600, and SL279252 (53). Another 
novel approach for improving antitumor immunity involves the in situ 
reprogramming of tumor cells into “artificial” antigen-presenting cells 
(APCs) that express OX40L using nanoparticles that are loaded with 
an OX40L plasmid. This method has demonstrated the capacity to 
induce T cell proliferation in vitro, while also eliciting potent 
antitumor immune responses in vivo without any notable toxicity (54). 
While targeted therapy for OX40 has exhibited remarkable outcomes 
in mice with tumors, preliminary clinical evidence suggests that its 
efficacy in humans is moderate when utilized independently. 
Nevertheless, when employed with immunotherapies that target 
inhibitory receptors such as anti-PD-1 and anti-PD-L1, OX40 
costimulation demonstrates potential as a promising strategy (55).

4.1.2. CD28
The secondary stimulus for Treg function is activated concurrently 

with TCR stimulation and facilitated by the costimulatory receptor 
CD28. The protein CD28 from the immunoglobulin superfamily 
contains a single “V-like” extracellular domain that positively regulates 
Treg cell response. It is the most typical and best- studied costimulatory 
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transmembrane protein (56). CD28 is of critical importance in the 
development of Treg cells in the thymus, as well as in the survival, 
proliferation, suppressor function, and homeostasis of Treg cells in the 
periphery (57, 58). However, it is still unknown how CD28 regulates Treg 
development and homeostasis. In addition, CD28 plays a crucial role in 
preventing T cell anergy by providing a co-stimulatory signal. Without 
this signal, T cells may either remain inactive or develop tolerance to 
antigens. Therefore, CD28 is identified as an essential second signal for 
T cell activation. In the nonobese diabetic (NOD) mouse model, wherein 
CD28 or its ligands (CD80 [B7-1] and CD86 [B7-2]) have been knocked 
out, the number of natural Tregs (nTregs) decreased significantly, 
resulting in accelerated autoimmunity in mice (58). The development of 
CD28 blockers could potentially offer a more targeted therapy for cancer. 
Drugs like abatacept (CTLA4-Ig) and belatacept (LEA29Y) affect the 
CD28 signaling pathway by acting as blocking agents for CD28/CD80-
CD86 interactions. Abatacept, for example, inhibits CD28 from binding 
to CD80-CD86 on the APC surface, thereby hindering CD28-mediated 
costimulatory signaling that is essential for Treg cell activation and 
reducing the resulting downstream inflammation response (59). These 
medications are employed in clinical settings to manage autoimmune 
diseases like psoriasis and rheumatoid arthritis (RA), wherein genetic 
abnormalities or modified posttranslational variations of the CTLA-4 
gene or its promoter are detected. However, more research is needed to 
determine how strong the immunosuppressive effects of these drugs are 
in cancer settings. Inhibition of downstream components of the CD28 
signaling pathway is another potential target for modulating Treg cell 
activation. Vang et al. demonstrated that the effective development of 
Tregs requires the P187YAP motif in the cytoplasmic tail of CD28 (60). 
The CBM complex (CARD11/CARMA1-BCL10-MALT1) is activated 
by the LCK-PRKC (protein kinase C) pathway, which is linked to CD28 
through this motif (61). This complex then activates the JNK2 complex 
and the IKK complex, which, in turn, triggers the activation of the 
classical NF-κB pathway (60, 61). REL is one of the NF-κB family 
members required for the development of progenitor Tregs or the 
development of mature Tregs. A xanthine derivative called PTXF 
(pentoxifylline) has specific and dose-dependent effects on REL and 
exhibits competitive and nonselective phosphodiesterase inhibitory 
activity (62). Ghosh et  al. demonstrated that in a mouse model of 
melanoma inhibition of C-Rel by PTXF, similar to genetic deletion of 
C-Rel, reduced Tregs and improved antitumor response (63). Inhibition 
of MALT1 in tumor-bearing mice with a drug induces Treg cells to 
secrete the immunostimulatory cytokine IFNγ only in tumor tissue, 
resulting in stunted tumor growth. This antitumor effect is due to 
macrophage activation and upregulation of MHC class I on tumor cells 
(64). EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) 
is expressed in Treg cells via CD28 signaling (1). Once activated, FOXP3 
and EZH2 can develop a complex crucial for preserving the identity of 
nTregs. Suppression of EZH2 in Tregs (using Foxp3-cre ezh2fl/fl mice) and 
employing CPI-1205 (a pharmacological inhibitor of EZH2) resulted in 
functional modifications in Tregs and improved cytotoxic activity of 
effector T cells (65).

4.1.3. CTLA4
CTLA4 is a related inhibitor of the costimulatory T-cell molecule 

CD28. While CD28 promotes T-cell activation, CTLA4 serves as an 
immune checkpoint and downregulated T-cell responses (66). Similar 
to CD28, CTLA4 binds to CD80 and CD86 on APCs, but with higher 
affinity and avidity than CD28, allowing it to outcompete CD28 in 

terms of ligands. Activation of CD28 induces expression of CTLA4 as 
a negative feedback mechanism in effector T cells and inhibits 
activation of effector T cells, whereas expression of CTLA4  in 
TI-Tregs, most likely due to their highly activated state, enhances their 
immunosuppressive activity in the TME (67). Monoclonal antibodies 
directed toward CTLA-4 have been found to provide an 
immunotherapeutic effect against cancer (CITE), however, they are 
also associated with inducing severe immunotherapy-related adverse 
events (irAE). Despite this, the targeting of CTLA-4 remains a valuable 
approach for cancer immunotherapy owing to its remarkable long-
term benefits provided the irAEs could be effectively managed (68). 
Further research is warranted to design safer reagents targeting 
CTLA-4. Several therapeutic molecules are currently being developed 
to selectively knock down or disrupt CTLA4 function in TI-Tregs. 
Drugs that block CTLA4 are called ICIs (immune checkpoint 
inhibitors) (66, 69). These drugs include ipilimumab (Yervoy) and 
tremelimumab. Inhibition of CTLA4 by ipilimumab and 
tremelimumab allows for CD28-mediated positive signaling and 
activation of cytotoxic T-cell responses (69). Ipilimumab was the first 
antibody approved by the FDA. It is a fully human anti-CTLA4 (IgG1) 
monoclonal antibody that has been shown to improve the long-term 
survival of melanoma patients (70).

4.1.4. GITR
GITR (TNF receptor superfamily member 18) is categorized 

under the TNFR superfamily, and its expression is more common in 
Treg cells as compared to conventional CD4 and CD8 T cells. GITR 
can interact with its corresponding ligand, GITRL, which is expressed 
in APCs and endothelial cells (71, 72). The activation of GITR on Treg 
cells leads to instability and reduction of suppressive function, whereas 
activation of GITR in conventional T cells results in a co-stimulatory 
signal that enhances T effector cell viability, cytokine production, and 
effector function (72). Studies have provided evidence that the 
resistance to immunotherapy in glioblastoma mice models can 
be effectively reduced through the targeted activation of Treg cells by 
GITR. In a study conducted by Amoozgar et al., it was demonstrated 
that the activation of GITR in Treg cells by an agonistic antibody 
(αGITR) led to the transformation of immunosuppressive Treg cells 
in the TME into immunostimulatory Th1-like CD4 T cells, enhancing 
the immune response against the tumor (73). ΑGITR promotes the 
differentiation of CD4 Treg cells into CD4 effector T cells, reduced the 
ability of Treg cells to suppress effector T cells, and induced potent 
antitumor effector cells in GBM (73). Other potent GITR mAbs 
currently in ongoing clinical trials include MEDI1873 (NCT02583165) 
(74), AMG 228 (NCT02437916) (75), BMS-986156 (NCT02598960) 
(76), and GWN323 (NCT02740270) (77). A Phase 1 clinical trial 
administered the anti-GITR antibody TRX518 to patients with cancer 
that cannot be cured. The study established that TRX518 is safe to use 
as monotherapy and has immune effects (78). However, although 
Tregs were reduced and the ratios of T effector cells to Tregs increased, 
there were no notable clinical responses. Similarly, in mice with 
advanced tumors, GITR agonist alone could not activate effector T 
cells because of persistent exhaustion (78, 79). Overcoming the 
resistance of advanced tumors to anti-GITR monotherapy may 
be  achieved through T-cell reinvigoration with other immune 
checkpoint inhibitors, such as PD-1 blockade. These findings have 
prompted the investigation of TRX518 in combination with the PD-1 
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pathway blockade in patients with advanced refractory tumors 
(NCT02628574) (78).

4.1.5. CD25
The IL2RA (interleukin-2 receptor subunit alpha)/CD25 is 

expressed on activated CD4+ and CD8+ T cells, as well as on Tregs, 
in a constitutive manner. It is noteworthy that Tregs exhibit a greater 
upregulation of IL2RA expression when compared to CD4+ and 
CD8+ T cells. This observation implies that targeting IL2RA could 
be a promising strategy for cancer therapy, as supported by prior 
research (80). The development, control, proliferation, and 
maintenance of Tregs depend on IL2. The binding of IL2 to IL2R leads 
to phosphorylation, dimerization and translocation of STAT5 (signal 
transducer and activator of transcription 5) to the nucleus, where they 
direct the transcription of target genes required for the Treg 
immunosuppressive phenotype, largely through direct regulation of 
FOXP3 expression (81). CD25 also interferes with the optimal 
functioning of effector T cells by depriving surrounding effector T 
cells of IL2. IL2 is necessary for the differentiation and fate of effector 
T cells after immune activation (82). Therefore, an efficient strategy to 
reprogram Tregs would entail the creation of a recombinant IL-2 that 
demonstrates heightened selectivity toward the IL-2 receptor on 
natural killer (NK) and naïve CD8 T-cells, while abstaining from 
binding to the IL-2 receptor on Tregs. The first approach targeting 
IL2RA was the use of denileukin diptitox, a fusion protein of IL2 and 
diphtheria toxin (83). More recently, the recombinant anti-IL2RA 
immunotoxins and daclizumab have been evaluated for their ability 
to block IL2 binding to IL2RA in Tregs (83). However, the mechanism 
of action of these drugs remains to be  elucidated. Proleukin 
(recombinant human interleukin-2) has been identified as an effective 
therapy for metastatic melanoma and renal cell carcinoma (RCC) 
(84–86). However, the need for the high-dose regime of Proleukin 
because of its short half-life, and the potential to expand Tregs, has 
raised concerns about the use of this therapy. MDNA11 is a new IL-2R 
agonist designed to address the limitations associated with IL-2 
therapy (86, 87). This has been made possible by implementing two 
crucial modifications: first, the selectivity of the receptors has been 
altered in favor of anti-cancer immune cells, which has led to a 
significant improvement in therapeutic effectiveness, and second, the 
immunotherapeutic has been fused with albumin to prolong its half-
life, eliminating the need for a high dosage of administration (87). 
MDNA11 exhibits an increased attraction to CD122 (IL-2 receptor on 
NK and naïve CD8 T cells), but does not bind to CD25 on Treg cells. 
This leads to a restriction of Treg stimulation, while simultaneously 
prompting an amplified activation of NK and naïve CD8 T cells when 
compared to Proleukin. In in vivo models, MDNA11 effectively 
restricted tumor growth when used alone, and when combined with 
inhibitors of immune checkpoints, it resulted in tumor eradication 
with a once-weekly dosing schedule (87).

4.2. Metabolic reprogramming in Treg cells

Tumor cells are characterized by dysregulated metabolism that 
disrupts the metabolism of infiltrating immune cells, resulting in 
decreased glucose, hypoxic and acidic TME. Improving productive 
antitumor immune responses by disrupting the metabolic programs 
required to support the tumor-killing functions of infiltrating effector 

T cells while minimizing the ability of Treg cells to suppress effector T 
cells in the TME (88). Many molecular signaling pathways and/or 
molecules, including AKT–MTOR signaling, TLR signaling, HIF1A, 
MYC, and FOXP3, have been shown to directly affect metabolic 
programming and development of Tregs.

4.2.1. Glucose uptake
Glucose is needed for effector T cells to function and kill cancer 

cells. Similarly, cancer cells use glucose and compete with T cells for 
it, effectively reducing the amount of available glucose and, 
consequently, reducing the anti-cancer response (89). However, Tregs 
are less dependent on glucose uptake due to their master 
transcriptional regulator FOXP3, which shifts their metabolism from 
aerobic glycolysis to mitochondrial pathways, allowing Tregs to thrive 
in TME (90). In addition, in human FOXP3+ Tregs, FOXP3 inhibits 
AKT phosphorylation, which in turn prevents Glut1 (the main 
glucose transporter of Tregs) from being expressed on the cell surface. 
The most direct method for metabolic reprogramming of Tregs is the 
PI3K-AKT–MTOR pathway, which is essential in the control of 
various metabolic pathways, including glucose metabolism (91, 92). 
An important signal that appears to abolish the Treg suppressive 
phenotype is the activation of the PI3K → AKT → MTOR axis. In 
effector T cells, this axis is crucial for inducing proliferation and 
achieving effector function. However, in Tregs, this pathway can have 
a profound negative effect on suppressive activity (91). Low glucose 
levels in the TME promote Treg cell suppressive activity, as 
downstream activation of the PI3K → AKT → MTOR signaling 
pathway renders Tregs unstable. Thus, pharmacological intervention 
to enable AKT activation increases glucose uptake and glycolysis via 
the upregulation of Glut1 and subsequent destabilization of Tregs. 
PTEN (phosphatase and tensin homolog) is the main negative 
regulator of PI3K. PTEN catalyzes the dephosphorylation of the 
inositol ring 3′-phosphate in phosphatidylinositol-3-phosphate)
PtdIns3P(and reverses the PtdIns3K reaction (93). Mice that carried 
a particular PTEN Treg deletion exhibited a substantial decrease in 
tumor growth and even experienced rapid regression of tumors (94). 
In addition, PTEN deficiency in Tregs increases FOXP3 instability, 
which is likely the result of increased glycolytic metabolism and 
decreased oxidative phosphorylation (OXPHOS) (95). The effective 
operation of Tregs depends on the OXPHOS pathway. Studies have 
shown that deleting key regulators of OXPHOS, namely Peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) 
or NAD-dependent deacetylase sirtuin-3 can disrupt Treg-dependent 
suppressive function and impair their survival (96). Histone 
deacetylase-9 (Hdac9) inhibits myocyte enhancer factor 2 (MEF2), 
which induces the expression of genes essential to 
OXPHOS. Interestingly, deleting Hdac9 has been found to increase 
Treg suppressive function (96). PTEN inhibitor drugs are under active 
investigation for their immunostimulatory impacts (94). VHL (von 
Hippel–Lindau tumor suppressor) could be an effective target for the 
activation of the PI3K → AKT → MTOR pathway. Lee et  al. 
demonstrated that Treg cells deficient in VHL exhibit elevated 
expression of HIF1-α (hypoxia inducible factor 1 subunit alpha). The 
family of prolyl hydroxylase domain-containing proteins, namely 
PHD1, PHD2, and PHD3, play a crucial role in driving Treg 
programming in metastatic niches. This is achieved through the 
catalyzation of post-translational hydroxylation of HIF1α, which leads 
to its degradation (97). The targeted deletion of the HIF1-α E3 
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ubiquitin ligase VHL in Tregs results in elevated levels of HIF1-α (98). 
This increase in HIF1-α level impairs Treg stability by upregulating 
the transcription of glycolytic enzymes and directly binding to FOXP3 
and inducing its degradation (98). Moreover, HIF1-α directly binds to 
the Ifng promoter in Tregs, ultimately leading to their conversion into 
Th1-like cells and the impairment of their suppressive function (99). 
Basu et al. demonstrated that SC79, a small molecular activator of 
AKT, is able to overcome the effects of FOXP3-mediated AKT 
repression, leading to significant upregulation of Glut1  in both 
primary Tregs and conventional T cells (92).

4.2.2. Lipid metabolism
The elevation in lipid oxidation implies that this metabolic route 

may serve as a crucial source of energy for Treg cells, which is in line 
with the recent findings that these cells can maintain their viability 
even under conditions of glucose deprivation or exposure to 
2-deoxyglucose, a glycolysis inhibitor (100). However, a 
comprehensive understanding of how lipids regulate the development 
and function of Tregs is still lacking. The two most highly activated 
processes in activated Tregs obtained from human liver cancer are 
glycolysis and lipid biosynthesis. The utilization of various metabolic 
pathways may serve as an immune escape mechanism that grants a 
selective advantage to Tregs in the TME (101, 102). As a result, 
disrupting lipid metabolism could potentially serve as a therapeutic 
target for cancer therapy. Several studies have revealed that the genes 
responsible for lipid metabolism, including CD36, a fatty acid(FA) 
transporter, were found to be upregulated in TI-Treg cells, playing a 
crucial role in their ability to suppress antitumor CD8+ T cell 
responses. Notably, mice with Treg cell-specific loss of CD36 were 
found to exhibit a reduced count of Treg cells in their tumors, but 
higher numbers of TI-CD8 + T cells that produced IFN-γ and TNF 
(tumor necrosis factor) (103). In mice with tumors deficient in Cd36, 
administration of monoclonal antibodies to PD-1 was found to limit 
tumor progression and increase survival compared with wild-type 
mice. This suggests that the antitumor effect of CD36 blockade can 
be enhanced by reinvigorating exhausted T cells using ICIs. These 
results indicate that targeting CD36 in Treg cells has the potential to 
reprogram the TME to immunostimulatory conditions, which may 
therapeutically complement the effect of PD-1 blockade to combat T 
cell exhaustion (104). Lim et al. showed that inhibition of FAS (Fatty 
acid synthase) and SREBF (sterol regulatory element binding 
transcription factor)-dependent metabolic signaling in Treg cells 
induces potent antitumor immune responses without autoimmune 
toxicity (105). In an in vitro model of Treg proliferation, treatment 
with 5-tetradecyloxy-2-furoic acid (TOFA), an ACC (acetyl-CoA 
carboxylase) inhibitor, −a crucial enzyme in the FAS cascade  - 
significantly reduced Treg proliferation in a dose-dependent manner. 
TOFA treatment specifically abolished FA accumulation in 
proliferating cells, demonstrating the importance of FAS in both Treg 
expansion and lipid pool formation (102). Signaling between CD70 
and CD27 was identified as the only significant contact interaction 
between CD4+ naïve T cells, Tregs, and nasopharyngeal carcinoma 
(NPC) cells in the TME (106). This interaction strengthens a lipid 
signaling network in Treg cells that involves mitochondrial integrity, 
cholesterol homeostasis, and FA metabolism. Knockout of CD70 has 
been shown to inhibit Treg-mediated suppression, restoring CD8+ T 
cell immunity. CD70 blockade may act synergistically with anti-PD -1 
treatment to reinvigorate T cell immunity against NPC. Anti-CD70+ 

anti-PD-1 therapy has been studied in preclinical animal models and 
showed enhanced tumor-killing efficacy (106).

4.2.3. Amino acid metabolism
The metabolism of amino acids provides support for the synthesis 

of proteins and nucleotides crucial for the rapid proliferation of Treg 
cells. Nevertheless, the signaling of amino acids in Treg cells and their 
significance in vivo are presently obscure. During the proliferation and 
activation of Treg cells, a number of major amino acid transporters are 
expressed, including LAT1, LAT4, CAT-1, SLC3A2, and SLC7A11 
(107, 108). For example, the amino acid transporter SLC3A2 is 
required for maintaining the proliferative state of Treg cells and their 
suppressive activity by transporting branched-chain amino acids 
(BCAAs), including leucine, isoleucine, and valine (109, 110). 
Knockdown of Slc3a2 in mice results in impaired in vivo replication 
and reduced numbers of Treg cells (110). In addition to BCAAs, 
arginine, glutamine, serine, tryptophan, glutathione, and glutamate 
modulate Treg production and function. Tryptophan catabolism is 
mediated primarily by the rate-limiting enzyme IDO, and there is 
increasing evidence that IDO-induced metabolites of tryptophan, 
including kynurenine and 3-hydroxyanthranilic acid (3-HAA), 
promote the proliferation of Tregs (111). Recently, a correlation 
between the IDO signaling pathway and Treg biology has been 
showed in several stages. The first link is attributed to the ability of 
IDO -expressing dendritic cells (DCs) to drive the differentiation of 
naïve CD4 (+) T cells toward a Treg phenotype. The second link is the 
ability of IDO-expressing DCs to activate Tregs and significantly 
enhance target cell suppression. Finally, the third link is attributed to 
the ability of IDO to deter the inflammation-induced transformation 
of Tregs into T helper-like cells. These findings emphasize IDO’s 
potential as an appealing target for therapeutic intervention, given its 
involvement in stabilizing and strengthening the suppressive 
phenotype and deterring the reprogramming of Tregs into T helper-
like cells (112). Numerous preclinical and clinical trials have been 
carried out to examine the effectiveness of IDO1 inhibitors, with the 
most studied ones being NLG-8189, Epacadostat (INCB024360), 
NLG-919 (GDC-0919), and Linrodostat (113). The signaling of 
MTORC1 (mechanistic target of rapamycin complex 1) kinase plays 
a crucial role in the Treg cell responses to amino acids, specifically 
arginine, and leucine (108). The activation of MTORC1 is amino acid-
dependent and required the activation of GTPases such as RRAG 
(RRAGA or RRAGB) and RHEB (RHEB1 or RHEB2). The knockdown 
of these GTPases causes a decline in Treg cell accumulation and 
suppressive function and is associated with the emergence of deadly 
autoimmunity (108). The identification of RRAG and RHEB as 
downstream targets of amino acid signaling implies the potential 
therapeutic target of these proteins to regulate Treg cell responses in 
autoimmune diseases and cancer.

4.2.4. Autophagy
Autophagy and lysosomal activities hold critical significance 

in governing the metabolic efficacy of Treg cells and their cell 
lineage stability in the TME. Suppression of ATG7 (autophagy-
related 7) or ATG5 (autophagy-related 5) in Treg cells results in 
elevated apoptosis rates and reduced lineage stability (114). 
Furthermore, it should be noted that the suppressive impact of 
autophagy on MTORC1 is a contributing factor to the survival and 
stability of Treg cells. In Treg cells that are deficient in autophagy, 
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the expression of MTORC1 is dysregulated, which in turn 
promotes the expression of c-Myc and glycolysis metabolic 
pathway (115). The stability impairment of autophagy-deficient 
Treg cells is partially restored by pharmacologically inhibiting 
MTORC1, MYC, or glycolytic activities (114). Conversely, 
lysosomal knockout of Traf3ip3/T3jam (TRAF3 interacting protein 
3) in mice impairs Treg cell suppressive functions and loss of 
signature gene Foxp3 expression, leading to the development of 
inflammatory diseases, stronger antitumor T cell responses, and a 
significant reduction in tumor size (116). TRAF3IP3 actively 
suppresses MTORC1 signaling at the lysosome and limits glycolytic 
metabolism, thereby preserving Treg cell identity and function 
(116). The Foxp3CreAtg7fl/fl mouse model was used to illustrate 
the effects of Treg-restricted autophagy deficiency on MC38 colon 
adenocarcinoma cells that were inoculated (117). Tumor growth 
was significantly reduced and the tumor site exhibited a remarkable 
increase in TI -CD8+ cells, increased IFN-γ expression in effector 
CD4+ and CD8+ T cells, and a remarkable decrease in Tregs (117). 

These results demonstrate the critical role that autophagy plays in 
Treg-mediated suppression of anti-tumor immune responses. 
Figure 1 illustrates immune signaling pathways involved in the 
regulation of Treg cell metabolism and adaptation to 
non-lymphoid tissues.

4.3. Treg reprogramming beyond reversal 
of its immunosuppressive effect

Recent studies have shown that Tregs present in the TME have the 
ability to not only suppress the anti-tumor immune response but also 
induce certain properties associated with the tumor, such as 
proliferation, invasion, and metastasis. This suggests that the 
reprogramming of Tregs beyond the reversal of their 
immunosuppressive function could potentially be used to enhance the 
overall survival of patients by decreasing the possibility of invasion 
and metastasis (119).

FIGURE 1

Immune signaling pathways play a vital role in regulating the metabolism and adaptation of Treg cells to non-lymphoid tissues. Stimuli like 
microenvironmental antigens, co-stimulators, toll-like receptors, and cytokines cause the PI3K signaling pathways to respond to TCR and other signals 
which then activate mTOR complexes, subsequently leading to the reprogramming of cellular metabolism through several transcription factors. LKB1 
signaling is further fueled by TCR and co-stimulation, which in turn restricts the function of STAT4 and stabilizes the b-catenin content, thus enabling 
metabolic reprogramming. This further leads to the upregulation of certain genes related to metabolic processes, including the biosynthesis of lipids, 
mitochondrial metabolism, glycolysis, fatty acid oxidation, and amino acid metabolism. Additionally, cytokines present in different tissues also sustain 
the accumulation and proper functioning of Treg cells through the mediation of various transcription factors. Moreover, the accumulation of VAT-Treg 
cells is dependent upon signaling from TCR, FOXP3, and IL-33, while IL-7 is necessary for the homeostasis and proper functioning of skin-Tregs. This 
figure adapted from Yang (118).
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The investigation into the correlation between the direct 
involvement of Tregs in the metastasis of cancer is currently ongoing 
and dynamic (120). Previous studies have shown that there is an 
association between the presence of Tregs and higher metastasis rates 
in RCC (121), breast cancers (BC) (122), and gastric cancers (GC) 
(123). TI-Tregs have been shown to stimulate BC cell metastasis 
through their expression of TNFSF11 (TNF superfamily member 11). 
TNFSF11 interacts with TNFRSF11A receptor on BC cells, decreasing 
the expression of SERPINB5 as a metastasis inhibitor and subsequently 
inducing epithelial-mesenchymal transition (EMT) (124). These 
results are consistent with the impact of Treg cells on the poor 
prognosis of human BC and suggest that targeting TNFSF11-
TNFRSF11A can be used as a novel therapeutic target in primary 
breast tumors to curb recurrent metastatic disease (124). Interestingly, 
in a mouse melanoma model, the combination of antibodies against 
TNFSF11 and CTLA4 inhibits tumor growth and metastasis, 
accompanied by increased T-cell effector function due to significantly 
higher T-cell infiltration into the tumor (125). A fully human 
monoclonal antibody called denosumab binds to TNFSF11 with great 
avidity and prevents signaling and interaction between TNFSF11 and 
TNFRSF11A. Denosumab is widely used to prevent skeletal-related 
events associated with bone metastases in solid malignancies such as 
breast and prostate cancer (126).

5. Treg-based therapies in 
autoimmunity

Therapeutic approaches to treat or control autoimmune diseases 
focus on reviving immune homeostasis and tolerance by promoting, 
activating, or administering Tregs (127). These therapeutic modalities 
employ pharmacological agents to inhibit effector T cell function and 
promote Tregs. Clinicians are increasingly utilizing Treg-mediated 
suppressive mechanisms as a means of treating autoimmune diseases 
due to safety guidelines (127). Several Treg-based therapies are now 
being investigated for the cure and prevention of autoimmune 
diseases, including polyclonal Tregs, autoantigen-specific TCR Tregs, 
autoantigen-specific CAR Tregs, and fecal transplantation of specific 
Treg-promoting bacteria. There are two main sources of Tregs for cell 
therapy: (1) in vivo induction of antigen-specific Tregs by the use of 
monoclonal antibodies (mAbs), particularly anti-CD3 mAb 
(teplizumab, and Otelixizumab), and (2) ex vivo expanded polyclonal 
Tregs isolated from peripheral blood and expanded in vitro with 
anti-CD3/CD28 antibody-coated beads and high-dose IL2 (128). In 
the next section, we have discussed in detail the process of CAR and 
TCR Treg in the treatment of autoimmunity.

5.1. CAR-Treg therapy

CAR is a strategy to generate antigen-specific Tregs in a manner 
independent of the major histocompatibility complex (MHC) and less 
dependent on IL2, presenting “off-the-shelf ” capability in a 
translational setting (129). The CAR construct is composed of an 
extracellular antigen recognition domain that is in a single-chain 
variable antibody fragment (scFv) form, combined with an 
extracellular hinge, a transmembrane region, and intracellular 
signaling domains (130). This particular configuration allows for the 

transmission of an extracellular signal of the antigen to the Treg cells, 
which subsequently results in the stimulation of Treg cell activation 
without the need for interaction with the antigen in the 
MHC-dependent manner. Based on previous preclinical and clinical 
results, CAR-Tregs have shown a promising therapeutic potential to 
treat autoimmune diseases and to induce graft tolerance (131, 132). 
Two clinical studies are currently underway (NCT04817774 and 
NCT05234190) using CAR-Tregs to recognize the HLA-A2 molecule 
on the donated organ and thus induce and maintain immune tolerance 
to the organ (133, 134).

Type 1 diabetes, commonly referred to as juvenile diabetes, is 
caused by a breakdown in immunological tolerance toward self-
antigens. Extensive research has demonstrated that the absence of Treg 
cells or their suppressive activity may be a contributing factor toward 
the lack of self-tolerance among T1D patients. Consequently, utilizing 
CAR technology to restore the immunological tolerance of Tregs may 
present a promising approach to combating T1D (135). Tenspoldea 
et  al. produced CAR-Tregs specific to insulin and explored the 
potential to restore immunological tolerance in T1D using a 
significant number of CAR-modified Tregs. Despite not being able to 
prevent diabetes in NOD/Ltj mice, the resulting insulin-specific 
CAR-Tregs demonstrated a normal Treg phenotype and were long-
lasting for diabetic mice. Additionally, they exhibited suppressive 
properties, as evidenced by their ability to suppress effector T cell 
proliferation in vitro (136). In a separate investigation, Imam et al. 
conducted a study wherein CAR-Tregs that target beta cells (GAD65 
B-cell epitopes) were developed and subsequently employed for 
therapeutic purposes in a mouse model that closely resembling 
human T1D (137). The outcomes of this study demonstrated that 
GAD65-CAR-Tregs successfully colonized the pancreatic islets just 
24 h after infusion. Furthermore, the population of Tregs was markedly 
increased in the pancreas of treated mice in comparison to their 
untreated counterparts. The glucose tolerance tests (GTT) have 
demonstrated that the mice subjected to CAR-Tregs treatment 
exhibited considerably diminished blood glucose levels in comparison 
to the control group of mice. These findings clearly indicate that the 
application of CAR engineering in the production of robust, 
operational, and persistent beta cell-specific CAR-Tregs can serve as 
a viable therapeutic intervention for treating T1D in humans (137). 
T1D vaccine candidates can also promote the induction of human 
FOXP3+ Tregs in humanized mice. Serr et al. provided evidence for 
human autoantigen-specific FOXP3+ Treg induction in vivo using 
humanized NSG-HLA-DQ8 transgenic mice (138). They identified 
HLA-DQ8-restricted insulin-specific CD4+ T cell responses and 
demonstrated efficient insulin-specific FOXP3+ Treg induction 
following subimmunogenic application of insulin mimetopes in a 
human immune system in vivo. They demonstrated that high 
frequencies of insulin mimetope-specific Tregs are associated with a 
significant delay in the progression of T1D in children. This supports 
the consideration of inducing insulin-specific FOXP3+ Tregs to delay 
or even prevent T1D in humans (138).

Multiple sclerosis (MS), a disease of the central nervous system, is 
characterized by autoimmune demyelination and neurodegeneration 
and leads to lifelong disability. Its pathogenesis is associated with T 
cells, making the use of Treg cell therapy a potential treatment option. 
The rationale behind this approach is that patients with MS have been 
found to have less functional (although not necessarily less frequent) 
Tregs (139). In a mouse model of MS, the adoptive transfer of 
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CAR-Tregs has been shown to be effective and resulted in a reduction 
in disease symptoms. Fransson et  al. have reported that 
CAR-engineered Tregs targeting MOG (myelin oligodendrocyte 
glycoprotein) in the CNS can suppress the mouse model of 
experimental autoimmune encephalomyelitis(EAE) when 
administered intranasally, leading to a reduction in disease 
symptoms (140).

It is worth mention that, in patients diagnosed with MS, the 
application of oleic acid in vitro has been observed to partially restore 
the suppressive function of Tregs (141). This discovery suggests that 
an oleic acid-enriched diet may be considered as an adjuvant therapy 
for MS patients. Moreover, the binding of oleic acid to the cell surface 
of Tregs has been found to increase the expression of genes required 
for fatty acid oxidation (FAO)-driven OXPHOS pathway. This, in turn, 
reinforces the expression of FOXP3 and enhances the suppressor 
function of Treg cells (141). The signaling of Prostaglandin I2 (PGI2)-
prostacyclin has been found to provide support to the suppressive 
function of Tregs. In autoimmune diseases, the administration of 
PGI2 could prove to be  an efficacious therapeutic agent for the 
improvement of Treg function (142). It has been observed that mice 
lacking the PGI2 receptor exhibit a lower degree of suppressive effect 
when it comes to allergic airway inflammatory responses, compared 
to mice with intact PGI2 signaling (142).

5.2. TCR Treg therapy

Compared with CAR-Treg therapy, T cell receptor-modified Treg 
(TCR-Treg) therapy has no restrictions on the expression of antigens 
on the surface of target cells, which is a significant obstacle to the use 
of CAR -Treg in the clinic (143). Moreover, TCR-Tregs require only 
interaction with a peptide–MHC for activation, which differs from 
CAR -Treg, which requires the presence of more than 100 target self-
antigens on the target cell for successful recognition by CAR and 
subsequent Treg stimulation (144). However, mismatched 
hybridization of exogenous and endogenous MHC receptor chains 
may limit their application In NOD mice, which spontaneously 
exhibit a disease that bears resemblance to human T1D, and in EAE, 
a model that mimics multiple sclerosis, TCR-engineered Tregs that are 
targeted toward MBP (myelin basic protein) effectively suppress the 
development and the progression of the disease. Recent research has 
shown that TCR-engineered Tregs targeting MBP can effectively 
suppress MBP-specific T effector cells, as well as T cells with other 
specificities after Treg activation via the TCR. MBP-reactive Treg cells 
improve EAE recovery in recipient mice when used directly from 
donor mice (genetically modified mice expressing a transgenic 
MBP-reactive TCR). In vitro expanded MBP-reactive Treg cells also 
prevent disease progression when administered after the onset of 
clinical EAE (145). In vitro, these Tregs have demonstrated an increase 
in the expression of key markers, such as FOXP3, LRRC32 and IKZF2 
(146). It is noteworthy that these TCR-engineered Tregs have shown 
functional efficacy, even in the presence of TLR-induced solid 
inflammatory signals. MBP-specific Tregs have successfully mitigated 
EAE in MOG (myelin oligodendrocyte glycoprotein)-immunized 
transgenic mice. Further in vitro experimentation has revealed that 
IL-2 secretion by neighboring effector T cells activates MBP-specific 
Tregs, initiating suppression of T effectors within the local milieu 
(147). Similarly, TCR-engineered Tregs targeting MOG and 

neurofilament medium (NF-MT) were utilized to treat C57BL/6 mice 
with EAE induced by MOG35–55 or PLP178–191. These manipulated 
Tregs mitigated the clinical symptoms of EAE, and their effectiveness 
was noted to increase toward the peak of the disease. The 
TCR-engineered Tregs that were specific for MOG were equally 
efficacious in reducing EAE induced by an unrelated central nervous 
system (CNS) antigen, PLP178–191. Hence, this finding suggests that 
if extrapolated to humans, this approach could be  a valuable 
therapeutic property in the management of MS (148). Another study 
demonstrated that induced regulatory T cells (iTregs) that have been 
engineered with TCR and target proteolipid protein139–151/
lipophilin peptide can effectively suppress the T cell response to the 
PLP139–151 peptides in experimental EAE without inducing 
pan-suppression in vivo. These iTregs are generated in vitro by 
stimulating T cells with TGF-β, retinoic acid, and IL-2. These iTregs 
underwent antigen-driven proliferation and impeded the proliferation 
and activation of CD4+ T cells specific to PLP139–151 in SJL/B6 F1 
mice that have been primed with PLP139–151 (149).

The primary obstacle in utilizing antigen-specific Tregs in clinical 
practice is the isolation of Tregs with rare specificities from the native 
polyclonal T cell repertoire. A novel approach to instantly prevent 
tissue damage caused by previously activated T cells in autoimmune 
diseases involves converting primary T cells into antigen-specific 
regulatory cells. Wright et al. transferred FOXP3 and TCR genes to 
transform conventional CD4+ T cells into antigen-specific regulators 
for the purpose of facilitating adoptive T-cell therapy of arthritis (150). 
They used OTII-TCR, which targets SERPIN (SERine Proteinase 
INhibitors) presented by MHC class molecules II. After adoptive 
transfer into recipient mice, FOXP3 TCR-transduced CD4+ T cells 
gather specifically in the draining lymph nodes of the SERPIN/
ovalbumin-loaded knee, resulting in a local decline in the numbers of 
inflammatory Th17 cells and a substantial drop in arthritic bone 
destruction (150). This strategy provides the opportunity to use 
induced Tregs from CD4+ T cells for highly targeted inhibition of 
tissue damage without systemic immunosuppression. Moreover, 
opens the possibility of targeting Tregs with tissue-specific antigens to 
treat autoimmune tissue damage without knowing the autoantigen 
responsible for the disease.

5.3. Metabolic and epigenetic 
reprogramming

The dysregulation of T helper 17 cells (Th17) and Treg cells has 
been identified as a prominent etiological factor in various 
autoimmune diseases (151). It has been observed that 
methylidenesuccinic acid (itaconate), an endogenous metabolite that 
is associated with inflammation, can effectively reprogram metabolic 
and epigenetic processes (152, 153). In Th17- and Treg-polarizing T 
cells, itaconate can suppress the metabolic pathway that is responsible 
for glycolysis and electron transport-linked phosphorylation. This 
suppression leads to inhibition of Th17 cell differentiation and 
promotion of Treg cell differentiation. In both Th17 and Treg cells, 
itaconate has been observed to result in a reduction in the 
concentrations of SAM (S-adenosyl-L-methionine) to the levels of 
SAH (S-adenosylhomocysteine) and 2-hydroxyglutaric acid (2-HG), 
respectively (153). These metabolic alterations have been linked to 
changes in genome accessibility and gene expression during 
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differentiation of Th17 and Treg cells, including decreased binding of 
RAR-related orphan receptor gamma (RORγt), a member of the 
nuclear receptor family of transcription factors (154), at the CTLA8 
(cytotoxic T-lymphocyte-associated protein 8)/IL-17A promoter 
(155). The transfer of itaconate-treated Th17-polarizing T cells 
significantly treated experimental EAE, suggesting that itaconate, as a 
crucial metabolic regulator for Th17/Treg cell balance, might serve as 
a therapeutic agent for autoimmune diseases (153).

6. Key challenges and future steps

Researchers worldwide have extensively investigated the potential 
of Treg therapy. The preclinical studies conducted on animal models 
have yielded valuable insights into the safety, efficacy, and feasibility 
of Treg therapy. Subsequently, several phase I clinical trials and a few 
phase II trials have been initiated, indicating that Treg therapy is well-
tolerated and holds some promise of efficacy (156). Despite the 
positive results of Treg therapy in treating autoimmune diseases, 
several obstacles still need to be  addressed. In an experimental 
context, adoptive cell transfer (ACT) of Treg cells is being utilized to 
treat autoimmune diseases such as systemic lupus erythematosus and 
RA. Nonetheless, the isolation of functional Treg cells in higher 
quantity for Treg cell-based therapies has become challenging (150, 
157). Furthermore, the requirement for ex vivo manipulations that are 
considerably expensive and complex, coupled with the risk of 
contamination with nonTreg cells, serves to limit the effectiveness of 
their utilization. A novel approach to addressing these challenges 
involves the generation of functional Treg cells from induced 
pluripotent stem (iPS) cells (157). Through transduction of the Foxp3 
gene and stimulation with a NOTCH ligand in vitro, the differentiation 
of iPS cells into Treg cells is initiated. These Treg cells, which are 
derived from iPS cells, have the potential to be therapeutic, as they are 
capable of secreting TGFB and IL10, and interfering with other 
immune cell activities. In mouse models, Treg cells that are derived 
from iPS cells have been demonstrated to suppress arthritis, as well as 
recipient autoimmunity in allogeneic (MHC incompatible) 
status (157).

Several pre-clinical studies have exhibited the effectiveness of 
TI-Treg reprogramming because of its ability to reduce Treg 
immunosuppression in tumors. In fact, it can even reverse it by 
converting TI-Tregs into pro-inflammatory cells that stimulate the 
immune response within tumors. However, targeting TI-Tregs for 
their unique properties in the cancers described here may have 
negative effects by blocking the function of beneficial immune cells 
that attack cancer. For example, the development of CD28 blockers 
may allow for more targeted cancer therapy by interrupting the 
activation and development of Treg cells. However, it should be noted 
that CD28 is also crucial for T-cell activation and facilitates maximal 
glucose uptake by promoting Glut1 subsequent to TCR-induced 

stimulation (158). Furthermore, it has been shown that the 
co-stimulation of CD28 has a significant effect on the effectiveness of 
anti-PD1 therapy (159). The inhibition of CD28, which impairs the 
activity of effector immune cells that infiltrate the TME, thus 
counteracts the numerous advantages of Treg reprogramming. 
Similarly, inhibiting CD25 could potentially impede the anti-
neoplastic functions of both NK cells and T effector cells. The 
expression of CD25 is observed on activated NK cells and is 
indispensable for their proliferation as well as the production of lytic 
agents including PRF1 (perforin 1) and GZMB (granzyme B) (160, 
161). Therefore, further investigation is necessary to precisely target 
these pharmaceutical substances toward TI-Tregs, without eliciting 
negative impacts on immune cells that fight against cancerous cells.
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Glossary

Tregs regulatory T cells

CAR chimeric antigen receptor

IDO indolamine-2,3-dioxygenase

Th T helper

CAF cancer-associated fibroblasts

TAM tumor-associated macrophages

PD-L1 Programmed death-ligand 1

T1D type 1 diabetes

MS multiple sclerosis

CTLA4 cytotoxic T-lymphocyte associated protein 4

GITR Glucocorticoid-induced TNFR-related protein

NRP1 neuropilin 1

NOD nonobese diabetic

CBM CARMA1/Bcl10/Malt1

RA rheumatoid arthritis

TME tumor microenvironment

ICIs immune checkpoint inhibitors

GITRL Glucocorticoid-induced TNF-related ligand

IL2RA interleukin 2 receptor subunit alpha

STAT5 signal transducer and activator of transcription 5

PTEN phosphatase and tensin homolog

OXPHOS oxidative phosphorylation

VHL von Hippel–Lindau

HIF1-α hypoxia inducible factor 1 subunit alpha

DCA dichloroacetate

PDHK pyruvate dehydrogenase kinase

2-DG 2-deoxyglucose

FAS fatty acid synthesis

SREBF sterol regulatory element binding transcription factor

TOFA 5-tetradecyloxy-2-furoic acid

ACC acetyl-CoA carboxylase

CPT1 carnitine palmitoyltransferase 1

FAO fatty-acid β-oxidation

BCAAs branched-chain amino acids

3-HAA 3-hydroxyanthranilic acid

Arg arginine

ATG7 autophagy related 7

Traf3ip3 TRAF3 interacting protein 3

RCC renal cell carcinomas

BC breast cancers

GC gastric cancers

EMT epithelial-mesenchymal transition

TNFSF11/RANKL TNF superfamily member 11

MHC major histocompatibility complex

scf single-chain variable antibody fragment

GTT glucose tolerance tests

MOG myelin oligodendrocyte glycoprotein

EAE encephalomyelitis

MBP myelin basic protein

SERPIN serpin family B

ACT adoptive cell transfer

iPS induced pluripotent stem

EZH2 enhancer of zeste 2 polycomb repressive complex 2 subunit
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